Research Interests

My research is generally in the area of functional analysis, more specifically in the field of operator algebras, and in particular in subalgebras of C*-algebras and the C*-algebras they generate. I have studied subalgebras of homogeneous C*-algebras, Morita equivalence of operator algebras, and groupoid algebras.

I completed my doctoral studies in 2018 at the University of Iowa under the supervision of Paul Muhly.

Publications

J. Cornejo and K. McCormick, Classifying matrix-valued holomorphic cross-sections over an annulus up to complete isometric isomorphism. Accepted to New York Journal of Mathematics.

B. Armstrong, J. Brown, L.O. Clark, K. Courtney, Y.-F. Lin, K. McCormick, and J. Ramagge, The local bisection hypothesis for twisted groupoid C*-algebras. Semigr. Forum. Available online Oct 2023. arXiv: 2307.13814

B. Armstrong, L. Orloff Clark, K. Courtney, Y.-F. Lin, K. McCormick, and J. Rammage, Twisted Steinberg Algebras. J. Pure Appl. Algebr. 226.3 (2022). arXiv:1910.13005

K. McCormick, Completely bounded subcontext of a Morita context of unital C*-algebras. J. Oper. Theory 87(1):229-248, 2022. . arXiv:2007.04236

B. Armstrong, G. G. de Castro, L. Orloff Clark, K. Courtney, Y-F. Lin, K. McCormick, J. Ramagge, A. Sims, and B. Steinberg, Reconstruction of twisted Steinberg algebras. Int. Math. Res. Not. 2021. arXiv:2101.08556

K. McCormick, Matrix bundles and operator algebras over a finitely bordered Riemann surface. Complex Anal. Oper. Theory 13.3 (2019): 659-671. arXiv: 1710.06389

Preprints



Research mentees and projects