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Project Abstract

The overarching goal of the project is to create a truthful and optimal
resource allocation framework for emerging base station-less sensor networks

(BSN's).

As BSNs are deployed in challenging environments (e.g., underwater
exploration), theré is no data-collecting base station available in the BSN.
The paramount task of the BSN is to preserve large amounts of %enerated
data inside the BSN before uploading opportunities become available.

Previous research desi ned a sequence of cooperative data reservation
techniques based on classic network flows (e.g., maximum (weighted) flow
and minimum cost flow).

In a distributed setting and under different control, however, the sensor

nodes with limited resources (i.e., energy power and storage .sp@.cesilc.ould
behave selfishly in order to save their owh resources and maximize their

own benefits.

The tension between node-centric selfishness and data-centric data
Freservation in our unique BSN model (fgives rise to new challenge that calls

or 1ntegrated study of game theory and network flows in the same
problem space.
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Base Station-less Sensor Networks

(BSNs)

D Sensing applications developed inaccessible

and remote area

. Source: http://fiji.eecs.harvard.edu/Volcanp

<* Underwater exploration, volcano eruption

*¢* Not feasible to install base station in field

* Sensory data are stored in the network,

periodically uploaded via robots or AUVs
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Data Preservation in BSNs

*¢* Non-uniform data generation and limited storage capacity

“* Source nodes
Storage-depleted
Overflow data packets

** Storage nodes
Available storage spaces

¢ Data Preservation: overtlow

data is offloaded from source nodes to storage nodes

“ Node u sends a packet of R bits to v over I,
ET(R) — Eelec x R

Et(Ra lu,v) — Eelec X R + €amp X R x lgm
(-

@ Source Nodes O Storage nodes
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Data Preservation Problem (DPP)

*¢* Goal: How to find a data preservation that minimizes the energy
consumption (total preservation cost)

* An Example

A B Cc D E F
O—O0—CO—"—C0C—0C-—0

© source Nodes (O storage Nodes

<* B, D, F are source nodes (with one packet each)

< A, C, E are storage nodes (each has one storage capacity)

** Energy cost on each edge is one

<* Optimal solution: B to A, D to C, and F to E, with total cost of 3

_ <>
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Why Game Theory?

** Sensor nodes become intelligent, could perceive, learn,
and reason on top of sensing, computation, and

communication

+%» Sensor networks are distributed in nature and sensor

nodes could under different controls

*t*Sensor nodes are resource-constrained in battery and

processing power

* Game-theoretical solution (such Nash Equilibrium, that
characterizes selfish players’ optimal strategies in non-

cooperative games
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Research Results




On the Performance of Nash Equilibria for Data
Preservation in Base Station-less Sensor Networks

Giovanni Rivera,Yutian Chen, and Bin Tang, IEEE International Conference on

Mobile Ad-hoc and Sensor Systems (IEEE MASS 2023)




Nash Equilibrium (NE) in Data Preservation

*v* Game-theoretical solution that characterizes selfish players’
optimal strategies n non—cooperative games

<*Not socially optimal due to selfish players, needs to study
performance degradation in NE

* Question: Can we design data preservation algorithms that
achieve NE with performance guarantees?
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Data Preservation Game

** Players: k source nodes {S;, S, ..., S)}

<* Source node §; compensates all other nodes involved in the

preservation of its data

¢ 5, has a set of data preservation strategies 4;: how many of its
packets are offloaded to which storage nodes
7 . '
%* Data preservation strateqy profile: A = Ay X Ag... X Ay
* Utility of S, under A: u, = - c,, the preservation cost of S:s packets
% S.aims to maximize u,
7/

st = {sfs*,} € A, s toui(s],st;) > ui(si,st;) forall s; € A;
% Data Preservation NE (DP-NE)

N>




Performance Metrics

** Price of Anarchy (PoA): ratio of total preservation cost
of worst DP-NE and the socially optimal

+* Performance upper bound

** Price of Stability (PoS): ratio of the total preservation
cost of the best DP-NE and the socially optimal

+* Performance lower bound

** Rate of Efficiency Loss (REL): ratio of total
preservation cost of any DP-NE and the socially optimal

*»» Able to quantity any DP-NE
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Minimum Cost Flow (MCF)

Source Nodes V, Storage Nodes V,
(ds, ¢(1,1))

Super Source

! Super Sink
(with supply of d)

(with demand of d)

(de c(k.q))
G'(V,E)

2 DPP in BSN graph is equivalent to MCF in above flow network

* Theorem 1:The MCF-based data preservation algorithm gives a
NE with optimal total preservation cost; its PoA = PoS = 1
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The PoS of Greedy Algorithm

*¢* Theorem 4: There exists a greedy algorithm for DPP that
reaches NE with PoS = PoA = 1

** Proof by Induction

D Socially optimal outcome for any network involves at least one

overflow data preserved via its minimum-cost path

¢ Successive shortest path algorithm for minimum

cost tlow problem
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Preservation cost

S ggg . MCF—— = | S ggg . 1 MCF /|
% 180 | Greedy-D =3 { = 1[ Greedy-D ——=m
8 Greedy-N ]L 8 180 ]l Greedy-N =
c 160/ { = 160 | |
S 140 2 140
8 120 8 ' '
E e 120 | -
g 100 r 3
o 80 | o 100 ¢ 1
S g0t & 80} 1
o r o i 1
= 20 o | ﬂlﬂ = 40 ﬁ*ﬂ I{-I-}I{-I
50 60 70 80 90 100 50 60 70 80 90 100
Overflow Packets Storage Capacity
(a) Varying d; with m; = 100. (b) Varying m; with d; = 100.

Fig. 8. Total preservation costs of different algorithms.

+« MCF < Greedy—D < Greedy—N

+ Performance difference are smaller when data preservation is less

challenging

» Economic interpretation: more resources results in less performance

degradation of NEs




Truthful and Optimal Data Preservation in
Base Station-less Sensor Networks: An
Integrated Game Theory and Network Flow
Approach

Yuning Yu, Shangli Hsu, Andre Chen,Yutian Chen, Bin Tang. ACM Transactions
on Sensor Networks, 2023,Volume 20, Issue 1, , pp 1—40.




o Integrates algorithmic mechanism design (AMD) and
minimum cost flow-based data preservation solution.

+¢» Data preservation games that yields dominant strategies
for sensor nodes and delivers truthful and optimal data
preservation.

“*When nodes have limited battery power, the games fail to
achieve truthtul and optimal data

D Utilizing packet—level flow observation of sensor node
behaviors computed by minimum cost tlow and ILP,
uncover the cause of the failure.
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Network Flow Approach

+* Solve Data Preservation Problem by designing an
integer linear programming (ILP)-based optimal solution
considering energy constraint and selfishness

10
@ Data Packets

[] Storage Spaces
1

(o, E4(1) + EY)

(a) (b) ()
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Algorithmic Mechanism Design

¢ Data preservation games that yields dominant strategies
for sensor nodes and delivers truthful and optimal data
preservation.
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Algorithmic Mechanism Design

“*When nodes have limited battery power, the games fail to
achieve truthtul and optimal data

il

| (a) Node 32’s lying utility is larger
that its truth-telling.

vtility
@
]

500+

(b) Total energy consumption (i.e.,
total preservation cost) resulted
from node 32’s lying is lower than
the optimal total preservation

cost when it is truth-telling.




g Microscopic View from
Network Flow Computation

Number of Data Packets Droppe d
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(b)

(a) Each storage node’s assigned
(and actual) receive, transmit,
and save, as well as energy
consumption when a = 0.6.

(b) Number of dropped data
packets by lying storage nodes.
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Data Loss Inhibiting Mechanism

“*When nodes have limited battery power, the games fail to
achieve truthtul and optimal data

Data: A BSN graph G(V, E).

Result: Detect if data loss occurs at storage node i.

Transform G(V, E) to a flow network G”’(V""’, E’"") following Transformation III in Section 4.2.2;
Apply ILP (B) on G”'(V"”, E”’) to compute the assigned load, assigned relay, and assigned save;
if assigned load > | |, where | L is node i’s storage capacity then

actual save = assigned save = | 7 |;

assigned relay = assigned load — L%J;

-0 2
actual relay = 0; 500 a=06 —3 a=1 ==
Sort the packets in the assigned relay in the non-descending order of their transmission energy; 2000 Wi yeng =083 a=11C=3
Let EL,,,, be the remaining energy of node i after receiving the assigned load amount of data packets a=08 =12
following ILP (B); 1500 | _ 1605
// In the assigned relay, relays those incurring minimum transmission energy until i’s energy power is 8y REt ?107'2" 119928 S
depleted; 1000 - 957 ass e %6 a2t
while EL,., > 0 do > T
Elyrr = Elyrr — | 3t] - @ - € ; //compute the remaining energy after saving data packets; = 500
Relay the packet in the assigned reply with minimum transmission energy; ol
‘L,
Update E¢y,r: 33 34 36 41 42 43 44 45 47 48
actual relay = actual relay + 1; 500+
end
else -1000
actual save = assigned load; -1500 A2 A2 an2
actual relay = 0; Node ID
end

actual load = actual save + actual relay; Fig. 19. Utilities of nodes 32-49 in DPG-2 with data loss inhibiting mechanism. E; = 1312 m) and m; = 26.

data loss = assigned load - actual load;
Return data loss;
Algorithm 1: Finding data loss at storage node i.

.
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Where did they go after graduation?

“*Five undergraduate students, five graduate students

*Rachel Varghese, Justin Gamoras, Grace Huang (CSULB Economics
Undergraduate Students)

%+ Jose Chavez, Brian Rios (CSULB Economics Graduate Students)
**Giovanni Rivera, Jennifer Ly (CSUDH CS Undergraduate Students)

¢ Chris Gonzalez, Ryan Steubs, Yuning Yu, Shangli Hsu (CSUDH CS
Graduate Students)

% Justin Gamoras has started his graduate MBA degree at UC Irvine
School of Business

2 Grace Huang will purse graduate degree in Public Policy at

George Washing University, starting Fall 2024

** Giovanni Rivera will purse Ph.D. in Computer Science in
University of California Riverside, starting Fall 2024

>
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Student presentation from this grant

™

< Justin Gamoras, Application of Economic Game Theory and Nash-Q Reinforcement
Learning in Studying Data Preservation Sensor Nodes, First Place Winner at 36th
Annual CSULB Student Research Competition, Virtual, May 9, 2024

<* Grace Huamg, A Correlated Equilibrium Q-Learning for Data Preservation in Base
Station-less Sensor Network, 98th Annual Western Economic Association International

(WEAI), July 2nd-6th, 2023, San Diego, California.

<* Gilovanni Rivera, Nash Equilibria of Data Preservation in Base Station-less Sensor
Networks, Third Computer Science Conference for CSU Undergraduates (CSCSU
2023), Virtual, April 13,2023

<* Giovanni Rivera, California State University, Dominguez Hills Computer Science
Presentation Title: Achieving Data Resilience in Wireless Sensor Networks Under Severe
Storage and Energy Constraints, Edison STEM-NET Student Research Symposium,
virtual, 4/9/2024

/



https://www.csulb.edu/student-research-competition
https://weai.org/
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Student Publication from this grant

<* On the Performance of Nash Equilibria for Data Preservation in Base Station-less
Sensor Networks, Giovanni Rivera, Yutian Chen, and Bin Tang, Proceedings of the
IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2023).

< Truthful and Optimal Data Preservation in Base Station-less Sensor
Networks: An Integrated GameTheory and Network Flow Approach ,
Yuning Yu, Shangli Hsu, Andre Chen, Yutian Chen, Bin Tang. ACM Transactions
on Sensor Networks, 2023, Volume 20, Issue 1, , pp 1—40.

< Data-VCG:A Data Preservation Game for Base Station-less Sensor Networks with
Performance Guarantee Jennifer Ly and Yutian Chen and BinTang, 3rd International
Workshop on Time-Sensitive and Deterministic Networking (TENSOR), IFIP
Networking 2023.

< Yoluntary Data Preservation Mechanism in Base Station-less Sensor Networks,
Yutian Chen, Jennifer Ly, Bin Tang , Proceedings of the 12th EAI International
Conference on Game Theory for Networks (GameNets 2022).

* DRE’: Achieving Data Resilience in Wireless Sensor Networks: A Quadratic
Programming Approach, Shanglin Hsu, Yuning Yu, and Bin Tang, Proceedings of the
IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2020).

¢ A Truthful and Efficient Auction Mechanism for Data Preservation in Base

Station-less Sensor Networks, Ryan Steubs, Yutian Chen, o/




Lesson we learned
+*Be tlexible

“*Start early, start small




Thank you NSF!




