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Abstract. A narrative of special relativity meant for graduate students in

mathematics or physics. The presentation builds upon the geometry of space-
time; not the explicit axioms of Einstein, which are consequences of the geom-

etry.

1. Introduction

Einstein was deeply intuitive, and used many thought experiments to derive the
behavior of relativity. Most introductions to special relativity follow this path;
taking the reader down the same road Einstein travelled, using his axioms and
modifying Newtonian physics. The problem with this approach is that the reader
falls into the same pits that Einstein fell into. There is a large difference in the
way Einstein approached relativity in 1905 versus 1912. I will use the 1912 version,
a geometric spacetime approach, where the differences between Newtonian physics
and relativity are encoded into the geometry of how space and time are modeled.
I believe that understanding the differences in the underlying geometries gives a
more direct path to understanding relativity.

Comparing Newtonian physics with relativity (the physics of Einstein), there
is essentially one difference in their basic axioms, but they have far-reaching im-
plications in how the theories describe the rules by which the world works. The
difference is the treatment of time. The question, “Which is farther away from you:
a ball 1 foot away from your hand right now, or a ball that is in your hand 1 minute
from now?” has no answer in Newtonian physics, since there is no mechanism for
contrasting spatial distance with temporal distance. In relativity, space and time
are combined into spacetime, with an element in spacetime called an event. The
“ball 1 foot away from your hand right now” references two events. One event is
where you are right now and the other is where the ball is right now. The “ball
in your hand 1 minute from now” similarly refers to two events, you right now
and the ball at your hand’s location in 1 minute. The distance between events is
knowable and is covered in section 3. In Newtonian physics there is only one clock
and only one coordinate system is needed for space. Newtonian physics envisions
space and time connected like pages in a book. Each page is space at an instant in
time, and flipping the pages is time advancing. Whereas in relativity, every point
in space forms its own coordinate system with its own clock which may run at a
different rate from other neighboring points’ clocks, and distances from a point may
be measured differently than how neighboring points measure those same distances.

This also effects how light is treated. In relativity, light is built into the geometry
of spacetime in that everyone’s measurement of the speed of light is the same, and
that the speed of light is the upper limit of speed that a physical particle can

1



2 WILLIAM K. ZIEMER

achieve. In Newtonian physics, there is no upper limit for the speed of a physical
particle, and the notion that nothing can go faster than light has to be imposed
as an artificial rule. In Newtonian physics, time is embedded in Euclidean 3-space
as a parameter, whereas relativity uses a Lorentz metric (or Minkowski metric) to
join time and space into spacetime, a 4-dimensional Minkowski space. This will be
covered at some length in section 3.

The Lorentz transformation, and associated Lorentz metric, had been used by
Lorentz, Poincaré, and others in the 1890’s while exploring electrodynamics, specif-
ically in addressing what change of coordinates would leave Maxwell’s equations
unchanged. Einstein in his 1905 [1] paper constructed a change of coordinates that
would keep the laws of Newtonian physics intact while also preserving the speed
of light for different observers, and found this was also the Lorentz transformation.
With Maxwell’s equations being relativistic invariants, some attention was focused
in using the Lorentz transformation for measuring distances in the setting of space-
time, but it was abandoned as too strange for modeling reality. It was Minkowski
in 1908, three years after Einstein published his paper on special relativity, who
worked out the details showing four dimensional space with a Lorentz metric was
the proper setting for special relativity. Ironically, Einstein, Lorentz, and many oth-
ers, rejected out of hand the four-dimensional spacetime of Minkowski as being too
complicated, and published a “more elementary” non-four-dimensional derivation
of the equations for moving bodies in Euclidean space. However, it was Minkowski’s
four-dimensional framework that proved to be the basis for further developments
in relativity. By 1912 Einstein used the Minkowski framework for his work, and
it had become standard for even experimental physicists [6]. It is the Minkowski
understanding of special relativity that this paper addresses.

2. Problems with the Einstein train.

One implication of the difference in how light is handled between Newtonian
physics and relativity is an effect called time dilation. Before we tackle the ge-
ometry of spacetime, let us look at a common thought experiment based off of
a thought experiment from Einstein’s 1917 book on special relativity [2]. This is
special relativity done in the common (but incorrect!), patched Newtonian physics
way. In defense of Einstein, he never used the argument presented below. He was
very careful to implement Lorentz transformations in combining different points of
view.

Consider two people, one standing by the side of a railroad track and another on
a train going at constant speed v along the track. In the train a light is on ceiling
with a detector on the floor. Turn on the light and have both observers measure
the time it takes for the light to go from the ceiling to the floor, see figures 1 and
2. Put the distances from these figures together to get the schematic in figure 3.

If Newtonian physics is correct, the times Tout and Tin are the same T , and the
speeds inside and outside are different. The Newtonian computation from figure 3
is

(cout T )
2

= (cin T )
2

+ (v T )
2

cout =
√
c2in + v2 > cin,

and the speed of light is faster for the outside observer.
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Figure 1. Measuring inside the train
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Figure 2. Measuring outside the train

Contrast this with the relativistic postulate that both observers measure the
speed of light as c, and we have that

cin =
Din

Tin
= c =

Dout

Tout
= cout.

The computation from figure 3 becomes

(c Tout)
2

= (c Tin)
2

+ (v Tout)
2

Tout

√
1−

(v
c

)2
= Tin.
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v Tout

Dout = cout Tout

Din = cin Tin

Figure 3. Combined measurements

The term
√

1− (v/c)2 < 1, so that Tout > Tin and the clock inside the train is
running slower than the clock outside the train.

The Newtonian version, that the speed of light is dependent on the observer, has
been ruled out experimentally. Michelson and Morely conducted the seminal such
experiment in 1887 [5]. Also, time dilation has been experimentally verified multiple
times. The Hafele-Keating experiment occurred when I was a child. It captured my
imagination and made me aware the world was a much stranger place than I had
ever thought [3]. During October 1971, four atomic clocks were flown on jet flights
around the world, eastward and westward. The time offset of the flying clocks,
compared with reference clocks at the U.S. Naval Observatory, matched with the
amount predicted by relativity (gravitational effects from general relativity, along
with the velocity effects from special relativity).

Even though the time dilation result is correct, there is a fatal problem with this
argument. One can not simply superimpose the two observer’s coordinate systems
as is done in Newtonian physics to get figure 3. This “superimposing” is called
a Galilean transformation. Special relativity requires a Lorentz transformation to
reconcile the two points of view. Before we define a Lorentz transformation, let us
examine some errors that this “superimposing points of view” argument yields.

If the detector is put anywhere else, this argument will give a different result
for the relationship between Tin and Tout. Move the detector forward on the floor,
replacing the right angle in figure 3 by θ, see figure 4. Repeating the previous
construction, the Law of Cosines applies to the triangle that combines the two
points of view, figure 5, and gives

(c Tout)
2 = (c Tin)2 + (v Tout)

2 − 2 c Tin v Tout cos θ.

Experimentally however, no matter where the detector is placed, the equation
(c Tout)

2
= (c Tin)

2
+ (v Tout)

2
is the relationship for the two times, not the Law of

Cosines. Indeed, in the airplane experiment, the motion does not even have to be
in a straight line. The error lies in how the two viewpoints are combined into the
one triangle of figures 3 and 5.
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Figure 4. Different Detector Positions in Train
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Figure 5. Combined Measurements: Different Detector Position

Another serious problem in the argument concerns the fact that the person
inside the train believes he is stationary while the observer outside is moving. So
the person in the train will measure the outside observer’s clock as running slower
(and indeed it is, as we will see in section 5.5), but the “superimposing points of
view” construction can not reveal this fact. This is the “Simultaneity Paradox”.
The resolution of this paradox is, again, in combining the different points of view
correctly using the geometry of spacetime.

What if instead of a light beam, we stick to what Newtonian physics is good at
describing, and we throw a ball in the train? Newtonian physics and relativity both
say that the outside observer measures the speed of the ball as going faster than
the inside observer’s measurement, but they do not agree on how much. Newto-
nian physics adds the velocities, relativity does not. Unfortunately for Newtonian
physics, experiments confirm the speed predicted by relativity. To analyze why
they don’t agree and how time dilation really works, we need to set up some math-
ematical machinery first. We will revisit the thrown ball in section 5.6 after we set
up the requisite geometry for special relativity.

3. Special Relativity

3.1. General Relativity. Special relativity is a special case of general relativity
in the same sense that a line is a special case of a curve. Special relativity operates
under the assumption that gravity has a uniform strength and direction, or equiv-
alently, that spacetime is flat (curvature zero). This assumption suffices for many
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calculations by the same reasoning that calculations involving a smooth curve can
be replaced by calculations on a line in a small neighborhood (the slope of a curve,
for instance)

In special relativity you can move vectors around in the usual fashion and freely-
falling objects move in straight lines, while in the general relativity setting you can’t
just move vectors around and freely-falling objects don’t move in straight lines [4].

3.2. Minkowski space: Geometry and Nomenclature. There is one new no-
tion that must be introduced, the Minkowski 4-space (R4

1), which is the structure
of spacetime.

The Minkowski 4-space models the universe we live in, but does not model the
world that our senses perceive. We exist in Minkowski 4-space, but our senses
think we are in Euclidean 3-space with time as a parameter. The two spaces are
closely related, but are quite different in their geometry. In Euclidean space, the
distance between two points is measured using the Pythagorean Theorem, which
is the Euclidean metric. Newtonian physics uses the Euclidean metric for space,
with time as a parameter, as in the computations of section 2. Relativity uses
the Minkowski metric to measure the distance between two points, or events, in
spacetime.

In relativity it is usual to write the vector components as superscripts starting
at zero, so for R4, x = (x0, x1, x2, x3).

In the Euclidean case of R4, the length of a vector is constructed from the
Euclidean inner product, the dot product, by

‖x‖ =
√
x · x

=
√

(x0)2 + (x1)2 + (x2)2 + (x3)2.

The length of a vector in spacetime, R4
1, uses the Lorentz inner product 〈 , 〉 which

subtracts the initial component. It is given by

〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3.

The length of x in R4
1 is defined by

‖x‖ =
√
|〈x, x〉|

=
√
|−(x0)2 + (x1)2 + (x2)2 + (x3)2|

=

∣∣∣∣∣−(x0)2 +

3∑
i=1

(
xi
)2∣∣∣∣∣

1/2

=
∣∣∣−(x0)2 + |~x|2

∣∣∣1/2 ,
where I am using |·| for length of a vector in R3 as well as for absolute value.

The reason time is subtracted is to keep the speed of light constant for different
observers. Suppose we have two observers measure a light pulse, one observer
measures the pulse going distance |~x| in time t, the other observer measures the
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pulse going distance
∣∣∣~ξ∣∣∣ in time τ . The speed of light, c satisfies both equations

|~x|2 = (ct)2∣∣∣~ξ∣∣∣2 = (cτ)2

and so

0 = −(ct)2 + |~x| = −(cτ)2 +
∣∣∣~ξ∣∣∣2 .

If x = (ct, ~x) ∈ R4
1 describes the passage of light then ‖x‖ = 0. A non-zero x can

have “length” zero.

3.3. Spacetime and Coordinate Systems. An event is defined as a specific
time and space location, where you sitting right now for instance. Spacetime is the
collection of all events, and is a manifold. You can think of a manifold as a set of
points with a approximate local vector space structure, just like a smooth curve is
a set of points, where at each point the curve is approximately the tangent line. At
each point on a smooth cure there is an approximate local vector space structure
(tangent line = one dimensional vector space). A coordinate system is the function
that takes as an input a point on a manifold, and gives as an output a vector in a
vector space.

An event in spacetime is just an element of a set, without more information
we can not know how it interacts with other events in spacetime. Einstein’s two
postulates are equivalent to saying that the coordinate system for the spacetime
manifold gives a local R4

1 vector space structure; a coordinate system at an event
gives the spacetime manifold a local R4

1 vector space structure with which that
event can interact with neighboring events.

More precisely, given an event q in spacetime and a coordinate system x, the
Minkowski spacetime coordinates of q are denoted by

xq = (x0q, x1q, x2q, x3q) = (x0q, ~q ) ∈ R4
1,

where x0q is the time q occurs, and ~q = (x1q, x2q, x3q) is the spatial coordinate of
q. This notation may seem odd, but it does make sense (and is standard): x is a
function that acts on a point q in a manifold. The output vector xq should really be
written x(q), but is abbreviated like sin θ is for sin(θ). This structure is necessary,
because every observer has their own coordinate system. In figure 6 two observers
examine the event q, and use different coordinates to describe it.

Given two events in spacetime, p and q, their spacetime-distance from each other
(measured by the Lorentz metric) is called the separation between events p and q.
The separation pq is naturally defined by the length of the vector connecting them.

pq = ‖−→pq‖

= |〈xq − xp, xq − xp〉|1/2

=

∣∣∣∣∣− (x0q − x0p)2 +

3∑
i=1

(
xiq − xip

)2∣∣∣∣∣
1/2

=
∣∣∣− (x0q − x0p)2 + |~q − ~p |

∣∣∣1/2 .
(1)

For the Minkowski spacetime coordinate system, we will use geometric units,
where the speed of light c and the gravitational constant G are defined as the
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Figure 6. Different coordinate system views of one event q

number 1 and spacetime coordinates are made dimensionless using c and G. Only
light has the same speed for every observer, so using light to measure time and
distance is both natural and dimensionally consistent. For instance, one second is
interpreted as one light-second, or the time it takes light to travel 3 × 1010 cm.
The conversion factors from geometric units to conventional units follow from the
values of c and G for that conventional system. For example in the cgs (cm, gram,
second) system

c = 3× 1010
cm

sec
G = 6.67× 10−8

cm3

g sec2
.

The speed of light relates cm to seconds and the gravitational constant gives their
relationship to grams. All measurements in spacetime can then be expressed in
terms of any unit: cm, gram, or second. Let us now compare the separations of
the events mentioned in the introduction: “Which is farther away from you: a ball
1 foot away from your hand right now, or a ball that is in your hand 1 minute
from now?” Using c = 58, 924, 800, 000 ft/min = 1, we can choose to measure the
separation in feet,

a ball 1 foot away from you now =
√
|−02 + 12| = 1 ft

a ball in your hand in 1 minute =
√
|−c2 + 02| ≈ 5.9× 1010 ft,
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or in minutes

a ball 1 foot away from you now =
√
|−02 + (1/c)2| ≈ 1.7× 10−11 min

a ball in your hand in 1 minute =
√
|−12 + 02| = 1 min.

In geometric units, since length and time are expressed in terms of c, all velocities
are relative to c = 1. To convert velocities from conventional to geometric units,
divide by c and replace by the appropriate conversion. For instance 50 cm/sec is

50 cm/sec

1
=

50 cm/sec

c

=
50 cm/sec

3× 1010 cm/sec
.
= 1.7× 10−9

in geometric units.

4. Measuring distance

In Euclidean space, distance is measured using the Pythagorean Theorem. The
length of a line segment going from point p to q is the hypotenuse of the right triangle
formed with the coordinate axes. It doesn’t matter what coordinate system you use,
as long as the coordinate systems are connected by a Galilean transformation (a
rotation, reflection, or shift of the origin), the distance is the same. The definition of
a Galilean transformation is a transformation of coordinates that preserves distance.

In R2, fixing the points p and q and measuring with the (x, y) or the (ξ, η)
coordinate system,

pq =
√

∆x2 + ∆y2 =
√

∆ξ2 + ∆η2,

see figure 7. Seen from the point of view of the coordinate systems, if the point p
has the same coordinates, the point q will lie somewhere on a circle of radius pq
centered at p. Any Galilean transformation of coordinate systems will just put q
somewhere on this circle, see figure 8.

y

p p

qq

η

ξ

x

Figure 7. Measuring distance pq with different coordinates

In spacetime, where p and q now have a time component, the Hyperbolic
Pythagorean Theorem is used to measure distance (see section 4.0.2). Form a
triangle with with one leg in the time direction, one leg in the space directions, the
length of the leg in space is measured using the (Euclidean) Pythagorean Theo-
rem. The Hyperbolic Pythagorean Theorem says that hypotenuse2 = time leg2 −
space leg2. Similar to the Euclidean case, the distance remains the same in any co-
ordinate system as long as the systems are connected by a suitable transformation.
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q

ξx

y η

p p

q

Figure 8. Coordinate system’s view of distance pq

The collection of distance preserving transformations in spacetime are called the
Lorentz transformations.

Similar to the Euclidean case of a Galilean transformation moving q along the
circle, the definition of a Lorentz transformation can also be done from the point
of view of coordinate systems. The point q is on a hyperbola centered at p, since
for any coordinate system x,

pq2 = constant = −(xq0 − xp0)2 + |~q − ~p|2

by equation 1. Any distance preserving transformation of coordinate systems will
just put q somewhere along this hyperbola. Recall from section 3.2 that this coun-
terintuitive way of measuring distance has one redeeming feature: light is defined
as lying on the line where pq = 0, which makes the speed of light the same for all
coordinate systems linked by Lorentz transformations. If p and q are events from
a light beam, then any change of coordinate system puts q on the cone centered at
p, and the distance pq remains zero, see figure 10.

p

another time

space another space

time

q

p

q

Figure 9. Different spacetime views of distance pq
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hyperbola pq2 = time2 − space2

R3

time

p

q

q

q

light-cone pq = 0

Figure 10. Spacetime views of distance pq plotted together

4.0.1. Vectors in spacetime. While in Euclidean space the set ‖ ~pq‖ = r makes
a sphere of radius r, in R4

1 it makes one of three types of hyperboloids: cone,
two-sheet, or one-sheet. Rotate about the t-axis in figure 11 to visualize these
hyperboloids. Note that the horizontal axis is really three dimensional Euclidean
space, so these hyperboloids are actually hyperbolic three-spaces; figure 11 is just
a schematic of Minkowski spacetime. If we think of o as the origin in figure 11, all
events in the hyperboloid containing q are the same distance from o.

A notable consequence of the length in R4
1 being defined by the Lorentz metric is

that some non-zero vectors can have zero length. For instance the vector (1,1,0,0)
has length zero:

‖(1, 1, 0, 0)‖ =
∣∣∣〈(1, 1, 0, 0), (1, 1, 0, 0)

〉∣∣∣1/2
=
∣∣−(1− 1)2 + (1− 1)2 + 02 + 02

∣∣1/2 = 0.

The zero-length vectors form a cone coming out of the origin of the spacetime
diagram. These vectors are called light-like and are the velocity vectors for light;
the dashed line in figure 11 is the light cone for event o made up of the light-like
vectors at o.

The velocity vectors for a moving physical particle are called time-like; these
are the vectors ~oq with 〈 ~oq, ~oq〉 < 0. They can also go between two physical particles
at different times if the particles are in the light cones of each other. The time-like
vectors ‖ ~oq‖ = r form a hyperboloid of two sheets. The upper sheet is the future
pointing vectors.

Vectors ~oq with 〈 ~oq, ~oq〉 > 0 are called space-like. They normally go between
two simultaneous events in space for some observer, and ‖ ~oq‖ = r forms a hyper-
boloid of one sheet. We will see that not every observer has the same notion of
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q

R3

t

space-like ‖x‖ = r

time-like ‖x‖ = r

light-like ‖x‖ = 0

future-pointing

o

Figure 11. Minkowski spacetime centered at event o

simultaneous events in space, so we will need more than just horizontal vectors in
the spacetime diagram to model space.

We use these hyperbolas to relate coordinate systems, reference figure 12. Take
an upper sheet hyperbola that has point (1,~0) on it, this is one time unit from the
origin. Any other point on the hyperbola is one time unit for another time axis, τ
that goes through it. This defines the proper time for the τ -ξ coordinate system.

The angle ϕ that the t-axis makes with the τ -axis defines the ~ξ space. The details
are contained in the sections 4.0.2 and 4.0.3. The explicit Lorentz transformation

Λ that relates the two systems, (τ, ~ξ) = Λ(t, ~x), is defined in section 7.
Changing from one coordinate system to another by a Lorentz transformation is

the same as making new time and space axes that follow the hyperbolas in figure
11. Light-like vectors have the same length in any coordinate system, which is 0,
and any Lorentz transformation on the light cone stays in the light cone. This is
the model of reality that Einstein, Lorentz, and Poincaré rejected out of hand as
being too strange to be true. You are in good company if your puzzler is sore.

This definition for light, events in spacetime propagated by light-like vectors,
has two important consequences. It makes all observers measure the same value
for the speed of light. It also makes light a natural upper limit for the speed
of physical particles, since the geometry of spacetime separates light-like vectors
from the velocity vectors of physical particles, the time-like vectors. This is further
defined in section 4.0.4.

To connect your physical experience with Minkowski geometry, try the following
two thought experiments. Consider all the things you can theoretically see. A
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light

ϕ

ϕ

t τ

~ξ

~x

1 = τ

t = 1

Figure 12. Coordinate systems

light ray connects you to it at some time in your life. Look at figure 11 and the
positive t-axis is your worldline where o is your birth. The things that you can see
at some time are the inside of the light-cone at o. Alternatively, every point on
the positive t-axis has a separation from o, the elapsed time from your birth until
then. Collecting all the events in spacetime with the same separation fills in the
light cone.

Think of a horizontal plane moving up the t-axis of figure 11. The t-axis is the
worldline for you sitting still and the horizontal plane is the physical space around
you at that time. As the horizontal plane hits the hyperboloid containing q, what
you will see is a point that turns into an expanding sphere about you. As you
watch the sphere expand, while the physical points are moving away from you, the
spacetime distance between your birth and the sphere remains same. The increase
in time is canceling out the increase in spatial length in the Hyperbolic Pythagorean
Theorem, equation (1), since the separation is constant.

4.0.2. Hyperbolic Pythagorean Theorem. Before we get to how Newtonian physics
and special relativity fit together, we need to more precisely define the analog of
the Pythagorean Theorem in R4

1. The Hyperbolic Pythagorean Theorem is going
to be the most useful tool in analyzing common situations. Form a “right triangle”
off of the time-like vector −→oq, see figure 13.

Noting that −→op = (x0p − x0o,~0) and −→pq = (0, ~q − ~p) and using the definition
of vector length, equation (1), we get the hyperbolic version of the Pythagorean
Theorem:

(2) (oq)2 = (op)2 − (pq)2.

In Euclidean space, the vertical and horizontal projections of a vector are ex-
pressed using sin and cos, ~x = (r cos θ, r sin θ) in R2, and this also defines the angle
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−→oqϕ

t

qp

o
R3

ϕ oq
oq coshϕ

oq sinhϕ

−→op

−→pq

Figure 13. Hyperbolic Pythagorean Theorem

θ that the vector makes with the x-axis. In R4
1 we can use sinh and cosh similarly,

since cosh2− sinh2 = 1. As in figure 13,

pq = oq sinhϕ

op = oq coshϕ.
(3)

This defines the hyperbolic angle ϕ, the angle the vector makes with the time axis.
As velocity is the change in distance over time, so it is no surprise that tanhϕ is
related to velocity. The precise relationship is defined in section 4.0.4.

The right angle symbol in figure 13 indicates that −→op ⊥ −→pq, which means that
〈−→op,−→pq〉 = 0, not that there is necessarily 90◦ between them in the diagram. Be
aware that one leg of this “right triangle”, −→op, is a time-like vector which lie on the
time axis for an observer, the other leg, −→pq, is a space-like vector which will lie in
the rest space for that observer. Also, the sum of the angles in the triangle do not
add up to π as in Euclidean space, since the hyperbolic angle can be as large as
you want, see figure 14.

4.0.3. Rest spaces and Worldlines. The concept of rest space is prominent in relat-
ing special relativity to Newtonian physics, and is related to the concept of world-
line. A worldline tracks a particle in spacetime, returning its spacetime coordinate
in the observer’s coordinate system. In Newtonian physics, to track a particle in
time, time is input and a space coordinate is output; ~α(t) = (α1(t), α2(t), α3(t)). To
put it in spacetime, put t as the initial component: α(t) = (t, ~α(t)) = (α0(t), α1(t), α2(t), α3(t)).
Given a worldline, the rest space is the three dimensional Euclidean space that is
orthogonal to the time direction of the worldline.

For your worldline, your rest spaces are what you perceive around you at any in-
stant in time. The objects in motion about you are the projections from their
worldlines onto your rest space, as you are a projection onto their rest space.
More precisely, given two particles (either stationary or accelerating) that trace
out worldlines α and β, their time directions are their time-derviatives α′ and β′.
Using the coordinate system centered on α, the time for α is then along the vector
α′ = (1, 0, 0, 0) and the time for β is along some other vector β′ = (1, a, b, c). Since
we are using α’s coordinate system, the rest space for α is spanned by the linearly
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ϕ = 100

R3

t

ϕ =∞

light-cone
ϕ = 10

ϕ = 1

ϕ = 1000

Figure 14. Hyperbolic angle ϕ

independent vectors (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). The rest space for β is
spanned by the linearly independent vectors (a, 1, 0, 0), (b, 0, 1, 0), and (c, 0, 0, 1),
since

〈β′, rest space vector〉 = 〈 (1, a, b, c), (c, 0, 0, 1) 〉 = −c+ 0 + 0 + c = 0

and the other two vectors are similarly orthogonal to (1, a, b, c). Note that being
orthogonal in spacetime is not always 90◦ like in Euclidean space. Using the dif-
ferent coordinate systems centered on α or on β the apparent angle between the
time-axis and the rest space changes, see figure 15 where the rest spaces are Sα and
Sβ .

light

α

Sα

ϕ

Sβ

α β

ϕ

β

light light
light

Sβ

Sα

Figure 15. Rest spaces are orthogonal to time axes

An observation I wish to reinforce is that hyperbolic angles are not evenly dis-
tributed as angles are in Euclidean space. As vectors approach the light cone, the
apparent angles between them appear more acute, see figure 16.

Another crucial definition is that each worldline has its own clock, measured
by its proper time. The particles’ proper times are the scaling needed to make
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γ

α

Sα

light

ϕ

β

Sγ

light
β

α

γ

ϕ

Figure 16. Apparent angles between worldlines α, β, and γ

‖α′‖ = ‖β′‖ = 1, so that a particle’s clock never speeds up or slows down, according
to the particle.

4.0.4. Worldlines and Newtonian Physics. A physical particle traveling through
time with a future-pointing time-like derivative vector, traces out a worldline in
spacetime. A worldline is a one parameter curve, say α(τ). A moving particle in
Newtonian physics is the projection of the worldline into Euclidean space. Each
particle has its own clock, measured by the proper time τ so that ‖α′(τ)‖ = 1.

Referring back to figure 11, for a stationary observer at the origin, his worldline
is the t-axis, (t,~0 ). Thus, the velocity vector for his motion, (1,~0 ), points straight
up along the t-axis and has length 1, the height of the hyperbola in the figure. The
vector ~oq would span the time axis for a worldline, α′ = dα/dτ = ~oq and the rest
space for worldline α, which are orthogonal to the time direction of α, is spanned
by the pictured space-like vector. From figure 12, the τ -axis is the time axis α′ and
the ξ-axis is the rest space.

To see this better, let a worldline for a particle α(τ) be plotted on the coordinate
system of a stationary observer, and let a particular event α(τ0) be given as in figure
17.

The t-axis is the worldline for the stationary observer and the R3 “axis” is the
rest space for that observer at time 0. All the other rest spaces for the stationary
observer stack up horizontally, one for each time. At each time t0, the rest space
intersects the worldline α once at (t0, ~α(τ0)). Collapse the rest spaces together into
one Euclidean 3-space, and all the ~α points give us the familiar path in space for
the particle, parameterized by τ . Now we can define how Newtonian physics and
special relativity relate, referring to figure 17.

The Newtonian particle of α for an observer is defined as ~α, where x is
the coordinate system of the observer and xα = (x0α, ~α) = (t, ~α). ~α(τ0) lies in the
rest space for time t0 of the observer, and is what the observer sees of α at the
observer’s time t0.

Since t = x0α(τ), we can change the parameter from the proper time of the
particle, τ , to the proper time of the observer, t, for finding the speed a particle has
in Euclidean space. The Newtonian velocity of α for an observer at the time t0
is d~α

dt (t0), this is the velocity of the particle that the stationary observer measures
with his clock using t-units for time. Some authors refer to d~α/dt as the velocity
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(
dt
dτ

(τ0),~0
) dα

dτ
(τ0)

α(τ)

d~α
dτ

(τ0)
α(τ0)

R3

d~α
dt

(t0)

t

~α(τ0)

t0 = x0α(τ0)

ϕ

Figure 17. Time-like particle α

of α, and dα/dτ is then called the 4-velocity. Using the Chain Rule,

d~α

dτ
=
d~α

dt

dt

dτ
,

we can relate the velocities:

(4)
d~α

dt
(t0) =

d~α/dτ

dt/dτ
(τ0) =

d~α/dτ

d(x0α)/dτ
(τ0).

Naturally enough,
∣∣d~α
dt (t0)

∣∣ is the speed of α relative to the observer at time t0, or
the speed of ~α(t0). A useful characterization is∣∣∣∣d~αdt (t0)

∣∣∣∣ = tanhϕ

where ϕ is the hyperbolic angle between the t-axis and dα
dτ (τ0) (the time axes of the

worldlines). This is easily seen from the Hyperbolic Pythagorean Theorem (figure
13):

d(x0α)

dτ
=
dt

dτ
=

∥∥∥∥dαdτ
∥∥∥∥ coshϕ∣∣∣∣d~αdτ

∣∣∣∣ =

∥∥∥∥dαdτ
∥∥∥∥ sinhϕ,

and thus from (4), ∣∣∣∣d~αdt
∣∣∣∣ =
|d~α/dτ |
dt/dτ

= tanhϕ.
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Let us revisit the example from section 2 and put it in spacetime, see figure 18. A
train moves by an outside observer at a constant rate of v mph; in 1 hour traveling
v miles according to that outside observer, so in geometric units, c miles in the
time direction and v miles in the rest space. Using the outside observers coordinate
system (t, ~x), plot the spacetime point (c, v). The line through the origin and that
point is the time axis for the train. The angle ϕ is defined by tanhϕ = v/c, from
the Hyperbolic Pythagorean Theorem.

train time

v

c

ϕ

t

~x

Figure 18. Constant Velocity

5. Examples using Special Relativity

5.1. Measuring the Speed of Light. Einstein’s second postulate, the speed of
light in a vacuum is the same for all observers, regardless of their relative motion
or of the motion of the source of the light, is built into spacetime geometry. Pick
any observer and use their coordinate system x. Let λ(τ) be a worldline for light,
an event propagated by light-like vectors, so that

∥∥dλ
dτ

∥∥ = 0. Expressed in the x

coordinate system, xλ = (t, ~λ), we have ∥∥∥∥d xλdτ
∥∥∥∥2 = 0

−
(
d x0λ

dτ

)2

+

3∑
i=1

(
d xiλ

dτ

)2

= 0

−
(
dt

dτ

)2

+

∣∣∣∣∣d~λdτ
∣∣∣∣∣
2

= 0∣∣∣∣∣d~λdτ
∣∣∣∣∣ =

dt

dτ
.

Thus the speed of light in any observer’s coordinate system is∣∣∣∣∣d~λdt
∣∣∣∣∣ =

∣∣∣d~λ/dτ ∣∣∣
dt/dτ

= 1.
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Recall that the length formula (1) is defined using geometric units, and multiplica-
tion by c converts velocities to conventional units.

5.2. Time dilation. Let us revisit the example from section 2 in a spacetime
diagram, see figure 19. α is the worldline for the observer outside the train with
proper time t and rest space Sα. β is the worldline for the lightbulb inside the train
with proper time τ and rest space Sβ . γ is the worldline for the detector inside the
train, it also has proper time τ and rest space Sβ . The speed of the train, β or γ,
relative to α is v, or v/c = tanhϕ in geometric units.

q

observer
α

p
Sα

ϕ

γβ

o

detector in train

bulb in train

Sβ

outside

oq = Tin
= Tout

o

q

ϕ

oq coshϕ

Figure 19. Time Dilation

The dashed line is the path of the light, where event p is the light emitted and
event q is the light hitting the detector. For the detector inside the train, event
o occurs at the same time as event p since they are in the same rest space. The
separation oq is then the elapsed time inside the train, Tin. Notice the “simultaneity
paradox” here: the event o does not occur at the same time as p according to the
outside observer who has rest space Sα. By the Hyperbolic Pythagorean Theorem
(figure 13), the time outside the train, Tout, is oq coshϕ. By dividing the hyperbolic
identity 1 = cosh2 ϕ− sinh2 ϕ by cosh2 ϕ we get

1

cosh2 ϕ
= 1− tanh2 ϕ

coshϕ =
1√

1− tanh2 ϕ
=

1√
1− (v/c)2

(5)

and thus,

Tout = oq coshϕ

= Tin
1√

1− (v/c)2
.

Notice that the actual location of the detector plays no role, all we need is the
detector to be on the train. More directly, we can get the same result by computing
the rate of change of the outside clock with respect to the inside clock: dt/dτ . Using
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the coordinate system for α, call it x, to measure β’s time and taking a τ–derivative:

t = x0β(τ)

dt

dτ
=
d(x0β)

dτ

=

∥∥∥∥dβdτ
∥∥∥∥ coshϕ, by (3)

= coshϕ

=
1√

1− (v/c)2
, by (5).

5.3. Space contraction. Since time and length are related by c, and the times
inside and outside the train are different, the lengths of the train as measured inside
and outside the train will also be different. Using the same example as in sections
2 and 5.2, let us look at the relative lengths of the train. Figure 20 describes this
situation.

a

ϕ

ϕ

b

α
β

o

p

γ

Sβ

Sα
Lα

Lβ

Figure 20. Moving Train

α is the worldline for the observer outside the train that measures the speed of
the train as v, which in geometric units is v/c = tanhϕ. β is the worldline for the
observer at the back of the train who believes the train is stationary. The time 0
rest space for α is Sα and is Sβ for β. Event o is the back of the train at time 0
as measured by both observer’s clocks, event a is the front of the train at time 0
as seen by the outside observer, and event b is the front of the train at time 0 as
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seen by the observer in the train. Again, notice that the events that occur at time
0 are not the same events for the inside and outside observers. Observer α then
measures the length of the train as Lα and observer β measures the length of the
train as Lβ . We have the right triangles ∆pob and ∆pao, thus Lα = bp sinhϕ and
Lβ = op sinhϕ, see figure 21.

o Lβ = op sinhϕ

bp

Lα = bp sinhϕ

ϕ ϕ

op
op

p p

oa b

Figure 21. Right Triangles ∆pao and ∆pob

Using that op = bp coshϕ from the Hyperbolic Pythagorean Theorem, equation
(3) or figure 13, we have

Lβ = bp coshϕ sinhϕ

= Lα coshϕ

=
Lα√

1− (v/c)2
, by (5).

The outside observer measures the train as being smaller than the inside observer’s
measurement. For instance, if the observer inside the train measures it as Lβ = 100

ft long, then the observer watching the train go by at v = c
√

3/2 ft/min thinks it is
Lα = 50 ft long. This is such a startling length difference, why don’t we notice this
effect? This train’s speed of v ≈ 5.8 billion miles per hour is not one we typically
experience.

5.4. Simultaneity Paradox. Simultaneity is a statement of rest space member-
ship. As we have seen in sections 5.2 and 5.3, events that one observer measures as
simultaneous, another may not. Using the train example from those sections, put
a light bulb in the center of the train and detectors equally spaced front and back
from the bulb in the middle. Referring to figure 22, event o is turning on the light,
p is the front detector seeing the light, q is the rear detector seeing the light. The
worldlines β and γ are the detectors, and any stationary observer in the train will
have a parallel worldline. The worldline α is the outside observer. Inside the train,
the events p and q are simultaneous, outside they are not and the separation is a
function of the angle between the worldlines. Again we see that the time direction
for α and the rest spaces Sα do not make 90◦ in the spacetime diagram, but they
are orthogonal with respect to the spacetime metric.
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o

β

Sβ

Sα

α

p q

x0p

x0q

γ

Figure 22. Simultaneity

5.5. Symmetry of Time Dilation Paradox. Given two freely-falling observers,
each thinks they are stationary and the other observer is moving, so each thinks
the other’s clock is moving slower! The resolution of this apparent paradox is in
noticing that the events used in measuring elapsed time are not symmetric. Let us
look at the spacetime diagram of the situation, figure 23. In the left hand side, using
the point of view of observer β, the right angle is made against the β worldline, so
that by the Hyberbolic Pythagorean Theorem (figure 13)

∆τ = ∆t coshϕ > ∆t

and β thinks that α’s moving clock runs slower. On the right hand side, using the
point of view of observer α, the right angle is made against the α worldline and
again by the Hyberbolic Pythagorean Theorem

∆t = ∆τ coshϕ > ∆τ

and α thinks that β’s moving clock runs slower. Notice that even though it looks
like ∆τ is larger than ∆t, the closer a segment is to being parallel to the light cone,
the smaller it is. Recall that on the light cone, the length of any segment is zero.

αα

Sα

light

ϕ

β

Sβ

∆τ∆t

Sα

light

ϕ

β

Sβ

∆τ

∆t

Figure 23. Time Perception
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5.6. Adding Velocities. Consider the same train example as in section 2, but
with a ball being thrown forward with velocity vb by the observer inside the train.
Newtonian physics says that the outside observer measures the ball’s forward ve-
locity as vb + v. Look at figure 24 for the spacetime diagram of this situation.

θ

βα

ϕ

p
Sα

γ

Figure 24. Adding Velocities

As in sections 5.2 and 5.3, α is the worldline for the outside observer that mea-
sures the train with speed v, v/c = tanhϕ in geometric units. β is the worldline for
the inside observer that measures the ball with speed vb, vb/c = tanh θ in geometric
units. γ is the worldline of the ball, and event p is the ball being thrown. The curve
γ is not a straight line since the ball is accelerating downward, but in the forward
direction it is the same motion as a ball rolled along the (frictionless) floor with
speed vb, which is a straight line. Even without that simplification, the diagram
is correct for adding the velocities at the event p. From figure 24 one can see that
adding the Newtonian velocities is adding the hyperbolic angles made
with the time axes in spacetime. The outside observer measures the ball’s speed in
geometric units as tanh(ϕ+ θ), and using the hyberbolic tanh addition identity

tanh(ϕ+ θ) =
tanhϕ+ tanh θ

1 + tanhϕ tanh θ

=
v
c + vb

c

1 + v
c
vb
c

.

Since v and vb are small relative to c, tanh(ϕ + θ) ∼= (v + vb)/c and the outside
observer measures the ball going approximately v + vb in conventional units. This
approximation is usually good enough. To illustrate, if v = 60 mph and vb = 50
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mph then the outside observer measures the ball’s speed in mph as

tanh(ϕ+ θ) c =
60
c + 50

c

1 + 60
c

50
c

c

=
60 + 50

1 + 60 · 50/c2
mph.

≈ 110

1 + 6.7 · 10−15
mph

≈ 110 mph.

5.7. Twin Paradox. One twin stays home, the vertical worldline in figure 25. The
other twin takes off with speed v = c tanhϕ as measured by the twin who stayed
home, turns around and comes back. The twin who stayed home is now older than
the twin that took off and came back. There is no paradox. Relative to the events
“leave” and “arrive” in figure 25, moving clocks run slower. Refer to example 5.2.
Alternatively, notice that the separation between the events “leave” and “turn” is
half the elapsed time for the twin at home, and apply the analysis of section 5.5.
Either way, the result is Thome = Taway coshϕ = Taway/

√
1− (v/c)2.

turn
light

ϕ

leave

arrive

Figure 25. Twin Paradox

6. Energy-Momentum

Just as space and time are linked, momentum and energy are also linked. If

β = (β0, β1, β2, β3) = (β0, ~β ) is the worldline for a material particle of mass m,
the energy-momentum vector field for β is mβ′, where the derivative is with

respect to β’s proper time. The spatial component of the particle, m~β′, is its mo-
mentum, and the time component is the total energy, m(β0)′ = E. Why is energy
in the time component? Einstein wanted to preserve the principle of conservation
of momentum, and this is what balanced the equation.
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Using the results from section 5.2, if β has proper time τ , then any other observer
that measures the particle’s velocity as v with their proper time t will measure

m
dβ

dτ
= m

dβ

dt

dt

dτ
=

m√
1− (v/c)2

dβ

dt

and will conclude that the particle has more mass; the mass going to infinity as the
velocity goes to the speed of light. This is the misleading concept of “relativistic
mass”, founded in the Newtonian thinking that mass is same for all observers,
coming from a counting of protons and neutrons. A better interpretation is that
the observer measures the particle as having more energy than the particle measures
for itself. The relativistic interpretation is that momentum is linked with mass like
space is linked with time, it is not meaningful to talk of one without the other.

However, there is a backwards compatibility in the new mass definition. The
“rest mass” or “invariant mass” of a particle is the mass of a particle moving
without acceleration using the particle’s own coordinate system, and is the familiar
counting of protons and neutrons. If the particle is not accelerating, then from the
particle’s point of view it is stationary. Using the particle’s coordinate system, its
worldline is β = (τ, 0, 0, 0) with mβ′ = (m,~0). The total energy of the particle, E,
is only potential energy. E = m in geometric units, and converting to conventional
units gives the celebrated equation E = mc2.

7. Time Dilation, Length Contraction, and Simultaneity explicitly
computed with Lorentz Transformations

Remember that a linear change of coordinates can be expressed as a matrix,
with the columns of the matrix being the image of the basis vectors. This does not
depend on the underlying metric used to measure the size of the grid generated by
the basis; it is a direct property of the definition of a vector space. The explicit
Lorentz transformation for changing from the α coordinate system (t, ~x) to the β

coordinate system
(
τ, ~ξ
)

in section 5.3, Λ

[
t
~x

]
=

[
τ
~ξ

]
, is

Λ =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 .
The outside observer has back bumper with coordinate (t, x1, x2, x3) = (0, 0, 0, 0)
and the top of the train at the back bumper (t, x1, x2, x3) = (0, 0, h, 0). After time t
with velocity v in the x1-direction measured by the outside observer, the coordinates
of the trains’ ends are (t, vt, 0, 0) and (t, vt, h, 0). The outside observer measures
the front of the train similarly with coordinates (0, Lα, 0, 0) and (0, Lα, h, 0), and
at time t with coordinates (t, vt+ Lα, 0, 0) and (t, vt+ Lα, h, 0), see figure 26.

Using that v = tanhϕ,

coshφ− v sinhφ = 1/ coshφ,
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speed vtime 0 time t

(t, vt+ Lα, h, 0)

(t, vt+ Lα, 0, 0)(0, Lα, 0, 0)

(0, Lα, h, 0)

(0, 0, 0, 0)

(0, 0, h, 0) (t, vt, h, 0)

(t, vt, 0, 0)

Figure 26. Train Coordinates, outside observer

and direct calculation on the coordinates for the back of the train at time 0

Λ


0
0
0
0

 =


0
0
0
0

 Λ


0
0
h
0

 =


0
0
h
0


and at time t

Λ


t
vt
0
0

 =


t/ coshφ

0
0
0

 =


τ
0
0
0

 Λ


t
vt
h
0

 =


t/ coshφ

0
h
0

 =


τ
0
h
0


shows time dilation, where t maps to τ = t/ coshϕ = t

√
1− v2, with no change in

the height of the train between observers. Calculating for the front of the train at
time 0,

Λ


0
Lα
0
0

 =


−Lα sinhφ
Lα coshφ

0
0

 =


−Lα sinhφ

Lβ
0
0

 Λ


0
Lα
h
0

 =


−Lα sinhφ
Lα coshφ

h
0

 =


−Lα sinhφ

Lβ
h
0


and at time t,

Λ


t

vt+ Lα
0
0

 =


τ − Lα sinhφ

Lβ
0
0

 Λ


t

vt+ Lα
h
0

 =


τ − Lα sinhφ

Lβ
h
0


again shows time dilation, non-simultaneity in the time for the front of the train,
and length contraction in the direction of motion, where the front of the train, Lα
maps to Lβ = Lα coshϕ = Lα/

√
1− v2.
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