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project2.pdf describes the major project proposed in
Chapter 2 of Computational Physics with Maxima or R
and is made available to encourage the use of the R and
Maxima languages for computational physics projects of mod est size.
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The author normally uses the default RGui interface when cod ing in R.

COPYING AND DISTRIBUTION POLICY:
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1 Introduction

The major project proposed in Chapter 2 of Steven Koonin’s text Computational Physics applies numerical integration of ordinary
differential equations to the prediction of the structure of white dwarf stars.

The model chosen, for simplicity, is a system at zero degreesKelvin temperature (throughout the star, including the surface region) in
which the electrons are a degenerate gas (similar to the electrons in a metal) and are responsible for the internal pressure (the heavy
nucei random motion and degeneracy pressure is neglected) of the star, and the heavy nuclei are responsible for the forceof gravity
holding the star together (neglecting the relatively smallmass of the electrons).

1.1 The Equations of Equilibrium

Quoting Koonin

If the star is in mechanical (hydrostatic) equilibrium, thegravitational force on each bit of matter is balanced by the
force due to the spatial variation of the pressureP . The [radial component of the] gravitational force acting on a unit
volume of matter at a radiusr is

Fgrav = −Gm(r) ρ(r)/r2, (1.1)

whereG is the gravitational constant,ρ(r) is the mass density, andm(r) is the mass of the star interior to the radiusr:

m(r) =

∫ r

0

ρ(r′) 4 π r′2 d r′ (1.2)

The [radial component of the] force per unit volume of matterdue to the changing pressure is−dP/d r. When the star
is in equilibrium, the net [radial component of the] force (gravitational plus pressure) on each bit of matter vanishes,so
that, using Eq.(1.1), we have

dP

d r
= −Gm(r)

r2
ρ(r) (1.3)

A differential relation between the mass and the density canbe obtained by differentiating the integral definingm(r)
with respect tor:

dm

d r
= 4 π r2 ρ(r). (1.4)

The description is completed by specifying the “equation ofstate”, an intrinsic property of the matter giving the pres-
sure,P (ρ), required to maintain it at a given density. Using the identity

dP

d r
=

d ρ

d r

dP

d ρ
, (1.5)

Eq.(1.3) can be written as
d ρ

d r
= −

(

dP

d ρ

)

−1
Gm(r)

r2
ρ(r). (1.6)

Equations (1.4) and (1.6) are two coupled first-order differential equations that determine the structure of the star for
a given equation of state. The values of the dependent variables atr = 0 areρ = ρc, the central density, andm = 0.
Integration outward inr then gives the density profile, the radius of the star,R, being determined by the point at which
ρ vanishes. (On very general grounds, we expect the density todecrease with increasing distance from the center.) The
total mass of the star is thenM = m(R). Since bothR andM depend uponρc, variation of this parameter allows stars
of different mass to be studied.
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1.2 Background on Quantum Mechanics and Pressure Ionization

Some introductory background material is well summarized in the on-line notes of Mike Guidry (Physics, U. of Tennessee)at the
web page:

http://eagle.phys.utk.edu/guidry/astro615/

With some light editing we quote portions of Guidry’s Chapter 3 here:

Quantum Mechanics and Equations of State

Stellar equations of state reflect microscopic properties of the gas in stars. At low densities this gas tends to behave
classically, but the correct microscopic theory of matter is quantum mechanics and at higher densities a quantum de-
scription becomes essential to an accurate treatment. The requisite physics can be understood conceptually in terms of
three basic ideas.

1. de Broglie Wavelength: A particle at the microscopic level takes on wave properties characterized by a de Broglie
wavelengthλ = h/p, wherep is the momentum [magnitude] of the particle andh is Planck’s constant. Thus in quan-
tum mechanics the location of a particle becomes fuzzy, spread out over a spatial interval comparable to the de Broglie
wavelength

2. Quantum Statistics: All elementary particles may be classified as either fermion or bosons. These classifications
have to do with how aggregates of elementary particles behave. Fermions (such as electrons, or neutrons and protons if
we neglect their internal quark and gluon structure) obey Fermi-Dirac statistics. The most notable consequence is the
Pauli exclusion principle: no two fermions can have an identical set of quantum numbers. All elementary particles of
half-integer spin are fermions. Bosons (photons are the most important example for our purposes) obey Bose-Einstein
statistics. Unlike fermions, there is no restriction on howmany bosons can occupy the same quantum state. All ele-
mentary particles ofinteger spin are bosons. Matter is made from fermions (electrons, protons, neutrons,. . . ). Forces
between particles are mediated by the exchange of bosons (for example, the electromagnetic force results from an ex-
change of photons between charged particles).

3. Degeneracy: The Pauli exclusion principle implies that in a many-fermion system each fermion must be in a dif-
ferent quantum state. Thus the lowest energy state [of the system] results from filling energy levels from the bottom
up. Degenerate matter corresponds to a many-fermion state in which all the lowest energy levels are filled and all the
higher ones are unoccupied. Degenerate matter occurs frequently at high densities and has a very unusual equation of
state with a number of implications for astrophysics.

Equations of State for Degenerate Gases

Degenerate equations of state play an important role in a variety of astrophysical applications. For example, in white
dwarf stars the electrons are highly degenerate, and in neutron stars the neutrons are highly degenerate. Let us look at
this in a little more detail for the case of degenerate electrons. We first demonstrate that (as a consequence of quan-
tum mechanics) most stars are completely ionized over much of their volume because ionization can be induced by
sufficiently high pressure, even at low temperature. This implies the possibility of producing a (relatively) cold gas of
electrons, which is the necessary condition for a degenerate electron equation of state.

Pressure Ionization

Suppose the radius of each atom isr and the average spacing between atoms isd. We assume that the stellar material
consists only of ions of a single species and the electrons produced by ionizing that species. Electrons in the atoms
obey Heisenberg relations of the form∆px · ∆x ≥ ~, with ~ ≡ h/(2 π), and with∆x,∆px being respectively the
uncertainty in thex component of electron position and the uncertainty in thex component of the electron momentum,
with similar relations for they andz components.

In terms of the electron momentum magnitudep and the corresponding electron de Broglie wavelengthλe, a conse-
quence of the Heisenberg relations is thatp · λe ≥ ~. Taking the average volume needed per electron to beV0 ≈ (λe)

3,

we can write this asp ≥ ~/V
1/3
0
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The uncertainty principle produces ionization when the effective volume of the atoms becomes too small to confine the
electrons. The average volume needed per electronV0 is related to the average volume needed per ionVi byZ V0 = Vi,
since there areZ electrons per ion. Thusp ≥ (~Z1/3)/V

1/3
i .

From atomic physics, the atomic radiusr may be approximated byr ≃ a0 Z
−1/3, wherea0 = 5.3 × 10−9 cm is the

Bohr radius. If the star is composed entirely of an element with atomic numberZ and mass numberA, there areZ
electrons in each sphere of radiusd (the average spacing between atoms) and the average number density of electrons
ne is related tod by ne = Z/(43 π d3).

This can be solved ford to gived = ((3Z)/(4 π ne))
1/3, which shows thatd becomes smaller asne becomes larger. If

d < r we expect pressure ionization. With increasing density fewer locally bound states are possible until none remain
and the electrons are all ionized. Thus, sufficiently high density can cause complete ionization, even at zero temperature.

Since there areA nucleons in each volume of radiusd, the mass densityρ is ρ ≈ (AMp)/(
4
3 π d3), in whichMp is the

proton mass. and requiring thatd ≃ r ≃ a0 Z
−1/3 defines a critical densityρcrit = (Z AMp)/(

4
3πa

3
0). We may expect

that for densities greater thanρcrit there will be almost complete pressure ionization, irrespective of the temperature.

For pure Carbon(Z = 6, A = 12), ρcrit = 230 g cm−3. For pure Oxygen(Z = 8, A = 16), ρcrit = 410 g cm−3.
For pure Iron(Z = 26, A = 56), ρcrit = 4660 g cm−3. The actual typical density of a half Carbon and half Oxygen
white dwarf is of the order106 g cm−3, much greater thanρcrit.

These considerations imply that Saha ionization equations, which are derived assuming ionization to be caused by
thermal effects, are no longer reliable in the deep interiorof stars.

1.3 The Approximate Equation of State

Koonin assumes the reader is aware of the rules for counting the number of momentum microstates available to a particle because of
quantum mechanics. A quick and dirty argument is to say

Since the uncertainty principle requires∆x∆p & 2π~, we can associate(d3xd3p)/(2π~)3 micro-states with a phase
space volume(d3xd3p). Therefore, the number of momentum states with thex component of momentum in the range
(px, px+dpx), they component of momentum in the range(py, py+dpy), thez component of momentum in the range
(pz, pz + dpz), and the position vector somewhere in a volumeV is V d3p/(2π~)3, whered3p = dpx dpy dpz.

You can find a better discussion in any text covering quantum statistics, such asFundamentals of Statistical and Thermal Physics
by Frederick Reif, (1965), Sec. 9.9: Quantum States of a Single Particle, where periodic boundary conditions are enforced on the
quantum wave function of a particle.

Again quoting Koonin (with considerable editing, and retaining c.g.s. units):

We must now determine the equation of state appropriate for awhite dwarf. . . . we will assume that the matter con-
sists of large nuclei and their electrons. The nuclei, beingheavy, contribute nearly all of the mass but make almost
no contribution to the pressure since they hardly move at all[and are non-degenerate]. The electrons, however, con-
tribute virtually all of the pressure but essentially none of the mass. We will be interested in densities far greater than
that of ordinary matter, where the electrons are no longer bound to individual nuclei, but rather move freely through
the material. A good model is then a free Fermi gas of electrons at zero temperature, treated with relativistic kinematics.

The number of nucleons per unit volume at radiusr is approximatelyρ(r)/Mp, whereMp is the proton mass (we
neglect the small difference between the neutron and protonmasses). IfYe is the number of electrons per nucleon, then
the number density (concentration) of electrons at radiusr is

n(r) ≃ Ye
ρ(r)

Mp
(1.7)

If the nuclei are all56Fe, thenYe = 26/56 = 0.464, while Ye = 1/2 if the nuclei are12C; electrical neutrality of the
matter requires one electron for every proton.

The free Fermi gas – independent identical fermions obeyingFermi-Dirac statistics (shielding effects allow us to ap-
proximately ignore Coulomb interactions) – is studied by considering a small but macroscopic volumeV containing a
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group ofN electrons at a given direction and located in the interval[r, r + dr] that occupy the lowest available energy
plane-wave states with magnitude of momentum0 ≤ p ≤ pf . Remembering the two-fold spin degeneracy of each
plane wave, we have

N = 2V

∫ pf

0

d3p

(2 π ~)3
= 2V

∫ pf

0

4 π p2 dp

(2 π ~)3
(1.8)

which determines the value of the local “Fermi momentum” magnitudepf in terms of the local electron density:

pf (r) = [3 π2
~
3 n(r)]1/3 (1.9)

wheren(r) = N/V . The total kinetic plus rest mass energy of this group ofN electrons occupying the lowest possible
momentum eigenstates is

E = 2V

∫ pf

0

4 π p2 dp

(2 π ~)3
εp (1.10)

whereεp = [p2 c2 +m2
e c

4]1/2 is the relativistic energy of an electron with massme and momentum magnitudep.

Changing the variable of integration fromp to y = p/(me c), we need the integral
∫ pf

0

p2 dp
√

p2 c2 +m2
e c

4 = m4
e c

5

∫ x

0

y2 dy
√

1 + y2 (1.11)

in which dimensionlessx is:

x =
pf
me c

=

[

n(r)

n0

]1/3

=

[

ρ(r)

ρ0

]1/3

, (1.12)

n0 is the local electron density at which the local Fermi momentumpf (r) = me c

n0 =
1

3 π2

1

λ3
c

= 5.87× 1029 cm−3, (1.13)

λc is the electron Compton wavelength

λc =
~

me c
= 3.86× 10−11 cm (1.14)

andρ0 is the local mass density of matter when the local electron density isn0:

ρ0 =
Mp n0

Ye
= 9.82× 105 Y −1

e gm cm−3. (1.15)

The indefinite integral needed is a standard integral, but wecan also practice using Maxima:

(%i1) assume(x>0);
(%o1) [x > 0]
(%i2) ival:integrate(yˆ2 * sqrt(1+yˆ2),y,0,x);
(%o2) (sqrt(xˆ2+1) * (2 * xˆ3+x)-asinh(x))/8
(%i3) display2d:true$
(%i4) ival;

2 3
sqrt(x + 1) (2 x + x) - asinh(x)

(%o4) ----------------------------------
8

We can then use the identity (fora > 0):

ln

(

x+
√
a2 + x2

a

)

= sinh−1(x/a). (1.16)

to finally get the local energy of this group of electrons in the form

E = V n0 me c
2 x3 ε(x) (1.17)

in which

ε(x) =
3

8 x3

[

x(1 + 2 x2)
√

1 + x2 − ln
(

x+
√

1 + x2
)]

. (1.18)

In the usual thermodynamic manner, the local pressure is related to how the energy of this group ofN electrons changes with volume
V at fixedN :

P (r) = −∂E

∂V
= −

(

n0 me c
2
)

{

x3 ε(x) + V
d

dx

[

x3 ε(x)
] ∂x

∂V

}

(1.19)
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From Eq.(1.12),x = [n(r)/n0]
1/3 = [N/(n0 V )]1/3, so

∂x

∂V
= − x

3V
(1.20)

and the local pressure then takes the form

P (x) =
1

3
n0 me c

2 x4 ε′(x) (1.21)

whereε′(x) = d ε/dx. The pressure has the units: energy per unit volume or force per unit area (since energy has the units: force
times distance).

We then need the derivativedP/dρ to make use of Eq.(1.6). We use the chain rule

dP

dρ
=

dP

dx

dx

dρ
. (1.22)

From Eq.(1.12),x = [ρ(r)/ρ0]
1/3, or ρ/ρ0 = x3, and differentiating both sides of the latter equation withrespect toρ yields

dx

dρ
=

Ye

3n0Mp x2
(1.23)

so
dP

dρ
= Ye

me c
2

Mp
γ(x) (1.24)

in which dimensionlessγ(x) is

γ(x) =
1

9 x2

d

dx
[x4 ε′(x)] =

x2

3
√
1 + x2

(1.25)

If you check the final simplified form ofγ(x) by hand, you can use

ε′(x) =
3

x
[
√

1 + x2 − ε(x)]. (1.26)

We can also use Maxima (after some trial and error) to verify that

√

1 + x2
d

dx
[x4 ε′(x)] = 3 x4. (1.27)

In our Maxima work we letddx be the quantityd
dx [x4 ε′(x)], and letrn be

√
1 + x2 times the numerator ofddx , and letrd be the

denominator ofddx . We then want the ratiorn/rd to be3* xˆ4 . Some experimentation is needed to find a path to a simplified form
which results from cancellation of factors in the numeratorwith factors in the denominator. The Maxima functionsnum, denom,
expand , factor , andratsimp are useful things to experiment with when starting with a complicated expression. Often, it is
useful to work with the numerator and denominator separately, and combine the results at the end. In our work (always using the
Xmaxima interface), we routinely setdisplay2d:false in our startup file.

(%i1) eps : 3 * ((x+2 * xˆ3) * sqrt(1+xˆ2) - log(x+sqrt(1+xˆ2)))/8/xˆ3$
(%i2) ddx : ratsimp(diff(xˆ4 * diff(eps,x),x));
(%o2) (12 * xˆ7+sqrt(xˆ2+1) * (12 * xˆ6+3 * xˆ4)+9 * xˆ5)

/(4 * xˆ4+sqrt(xˆ2+1) * (4 * xˆ3+3 * x)+5 * xˆ2+1)
(%i3) rn : factor(expand(sqrt(1+xˆ2) * num(ddx)));
(%o3) 3 * xˆ4 * (4 * xˆ3 * sqrt(xˆ2+1)+3 * x* sqrt(xˆ2+1)+4 * xˆ4+5 * xˆ2+1)
(%i4) rd : factor(expand(denom(ddx)));
(%o4) 4 * xˆ3 * sqrt(xˆ2+1)+3 * x* sqrt(xˆ2+1)+4 * xˆ4+5 * xˆ2+1
(%i5) rnd : rn/rd;
(%o5) 3 * xˆ4

Using Eq.(1.3) in Eq.(1.6) we get an explicit differential equation governing the evolution ofρ (recall that dimensionlessγ is a
function ofx which is a function ofρ which is a function ofr):

d ρ

d r
= −

(

Mp

me c2 Ye

)

Gm(r)

γ r2
ρ(r). (1.28)
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1.4 Internal Kinetic Energy of the Star

Using the same type of calculation as done in Eq.(1.10), the kinetic energy of the group ofN electrons in a given direction and having
radii in the range[r, r + dr] and occupying a small but macroscopic volumeV is

Ekinetic = 2V

∫ pf

0

4 π p2 dp

(2 π ~)3
(εp −me c

2), (1.29)

whereεp = [p2 c2 +m2
e c

4]1/2 is the relativistic energy of an electron with massme and momentum magnitudep. DividingEkinetic

by V yields the local kinetic energy densityk(r)

k(r) = n0 me c
2 x3 (ε(x) − 1), (1.30)

in whichε(x) is defined in Eq.(1.18). The internal kinetic energy of the star (neglecting the nucleii) is then

K =

∫ R

0

k(r) 4 π r2 dr. (1.31)

1.5 Internal Gravitational Energy of the Star

The gravitational energy due to adding a small mass elementδ m = ρ(r) δ V with center at(r, θ, φ) to a body of massm(r) and
radiusr is δ U = −Gm(r)

r δ m. With δ V = (r dθ)(r sin θ dφ) dr = r2 dΩ dr, integration over the solid angledΩ yields 4 π.
Integration overr from 0 toR then accumulates the total internal gravitational energy of the star:

U = −
∫ R

0

Gm(r)

r
ρ(r) 4 π r2 dr (1.32)

2 Scaling the Differential Equations

Quoting Koonin again:

It is often useful to reduce equations describing a physicalsystem to dimensionless form, both for physical insight and
for numerical convenience (i.e., to avoid dealing with verylarge or very small numbers in the computer). To do this for
the equations of white dwarf structure, we introduce dimensionless radius, density, and mass variables:

r = R0 r̄, ρ = ρ0 ρ̄, m = M0 m̄ (2.1)

with the radius and mass scales,R0 andM0 to be determined for convenience. Substituting into Eqs. (1.4, 1.28) yields

dm̄

dr̄
=

(

4 π R3
0 ρ0

M0

)

r̄2 ρ̄ (2.2)

and
dρ̄

dr̄
= −

(

GMp M0

me c2 YeR0

)

m̄ ρ̄

γ r̄2
. (2.3)

If we now chooseM0 andR0 so that the coefficients in parentheses in these two equations are unity, we find

R0 =

(

me c
2 Ye

4 π ρ0 GMp

)

= 7.71× 108 Ye cm, (2.4)

and
M0 = 4 π R3

0 ρ0 = 5.66× 1033 Y 2
e gm, (2.5)

and the dimensionless differential equations are

dm̄

dr̄
= r̄2 ρ̄,

dρ̄

dr̄
= − m̄ ρ̄

γ r̄2
. (2.6)

These equations are completed by recalling thatγ is given by Eq. (1.25) withx = ρ̄ 1/3.

γ =
ρ̄ 2/3

3
√

1 + ρ̄ 2/3
(2.7)

This pair of equations is then integrated fromr̄ = 0, ρ̄ = ρ̄c, m̄ = 0 to the value of̄r at whichρ̄ = 0, which defines the dimensionless
radius of the star̄R, and the dimensionless mass of the star is thenM̄ = m̄(R̄). The scaled solution then depends on the dimensionless
central mass densitȳρc.
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3 Scaling the Kinetic and Gravitational Energy

We can write the sum of the kinetic and gravitational energy of the starEstar (neglecting electrostatic contributions) in terms of an
energy scale factorE0 which carries the dimensions, and is defined in terms ofM0, R0, andρ0.

Estar = K + U = E0 Ēstar (3.1)

in which
E0 = 4 π n0 me c

2 R3
0 = 4 πGM0 ρ0 R

2
0 = 2.77 Y 3

e × 1051 ergs (3.2)

Then the dimensionless energy of the star (neglecting rest mass energy) is

Ēstar = K̄ + Ū (3.3)

in which K̄ is the dimensionless internal kinetic energy of the electrons (the nuclei kinetic energy is ignored), andŪ is the dimen-
sionless gravitational energy due to the nuclei (ignoring the mass of the electrons).

K̄ =

∫ R̄

0

k̄(r̄) d r̄ (3.4)

in which
k̄(r̄) = r̄2 ρ̄ (ε̄(ρ̄)− 1) (3.5)

with

ε̄(ρ̄) =
3

8 ρ̄

{

ρ̄ 1/3
(

1 + 2 ρ̄ 2/3
)

√

1 + ρ̄ 2/3 − ln
[

ρ̄ 1/3 +
√

1 + ρ̄ 2/3
]}

. (3.6)

The dimensionless gravitational energy of the star is

Ū =

∫ R̄

0

ū(r̄) d r̄ (3.7)

in which
ū(r̄) = −r̄ ρ̄(r̄) m̄(r̄). (3.8)

4 Scaled Dimensionless Differential Equations Summary

We drop the over-bars on the symbols for the scaled dimensionless variables in this and the next two sections, and in the code: r̄ → r,
m̄ → m, andρ̄ → ρ, for simplicity; we can always restore the over-bars beforeconverting results to c.g.s. units. The pair of ordinary
differential equations to be integrated are then:

dm

d r
= ρ r2 (4.1)

d ρ

d r
= − mρ

γ(ρ) r2
(4.2)

in which

γ(ρ) =
ρ2/3

3
√

1 + ρ2/3
(4.3)

This pair of first order differential equations is then integrated fromr = 0, ρ = ρc, m = 0 to the value ofr at whichρ = 0, which
defines the dimensionless radius of the starR, and the dimensionless mass of the star is thenM = m(R). The scaled solution then
depends on the dimensionless central mass densityρc.

As we discuss below, forr << 1

m(r) ≈ 1

3
ρc r

3 (4.4)

ρ(r) ≈ ρc −
ρ2c r

2

6 γc
(4.5)

whereρc = ρ(r = 0) andγc = γ(ρc).



5 EXPANSION OFM̄(R̄) AND ρ̄(R̄) ABOUT R̄ = 0 10

5 Expansion of m̄(r̄) and ρ̄(r̄) about r̄ = 0

To avoid “division by zero” errors atr = 0, we need to Taylor expand the dependent variables aboutr = 0, and start the Runge-Kutta
integration a tiny distance away fromr = 0.

We know thatm(r = 0) = 0. Forr << 1 we can replaceρ by ρc in Eq.(4.1) to getdm/dr ≈ ρc r
2, which vanishes asr → 0. Using

Eqs.(4.1 and 4.2), we can evaluate the second derivative ofm(r) as

d2 m

dr2
=

d

d r
(ρ r2) = −mρ

γ
+ 2 ρ r (5.1)

which also vanishes asr → 0 andm(r) → 0 together. Since(d2 m/d r2)0 = 0, the expansion ofm aboutr = 0 begins with ther3

term. For some positive value ofa, m ≈ a r3 for smallr. Then the first derivative ofa r3 must equalρc r2 for smallr, soa = ρc/3
andm(r) ≈ 1

3 ρc r
3.

We can then usem(r) ∝ r3 for r → 0 in Eq.(4.2) to see that for smallr, d ρ/d r ∝ r and hence vanishes atr = 0. We can use
Maxima to evaluated2 ρ/d r2 and its limit asr → 0. In this work,gam representsγ(ρ), rh representsρ, and we mentally let these
variables (as well asd γ/d ρ) take on their finiter = 0 values in our limiting process. Our code uses thedepends Maxima function,
which allows the differentiation to automatically use the “chain rule”,

d γ(ρ)

d r
=

d γ(ρ)

d ρ

d ρ

d r
(5.2)

(%i1) depends(gam,rh);
(%o1) [gam(rh)]
(%i2) depends([m,rh],r);
(%o2) [m(r),rh(r)]
(%i3) drh : -m * rh/gam/rˆ2$
(%i4) d2rh : diff(drh,r);
(%o4) ’diff(gam,rh,1) * m* rh * ’diff(rh,r,1)/(gamˆ2 * rˆ2)

-m* ’diff(rh,r,1)/(gam * rˆ2)-’diff(m,r,1) * rh/(gam * rˆ2)
+2* m* rh/(gam * rˆ3)

(%i5) d2rh_1 : subst([’diff(m,r,1)= rh * rˆ2,’diff(rh,r,1)=-m * rh/gam/rˆ2],d2rh);
(%o5) -’diff(gam,rh,1) * mˆ2* rhˆ2/(gamˆ3 * rˆ4)

-rhˆ2/gam+2 * m* rh/(gam * rˆ3)+mˆ2 * rh/(gamˆ2 * rˆ4)
(%i6) d2rh_2 : subst(m = rh * rˆ3/3,d2rh_1);
(%o6) -’diff(gam,rh,1) * rˆ2 * rhˆ4/(9 * gamˆ3)+rˆ2 * rhˆ3/(9 * gamˆ2)-rhˆ2/(3 * gam)
(%i7) d2rh_3 : limit(d2rh_2,r,0);
(%o7) -rhˆ2/(3 * gam)

Thus
(

d2 ρ

d r2

)

0

≈ − ρ2c
3 γc

(5.3)

and henceρ(r) ≈ ρc − r2 ρ2

c

6 γc
.

6 Behavior of ρ̄(r̄) Near the Surface

Near the surfacem(r) ≈ M andr ≈ R, so in the differential equation Eq.(4.2) we insertγ(ρ) from Eq.(4.3) and Taylor expand the
dependence onρ aboutρ = 0 for fixedm(r) ≈ M andr ≈ R.

(%i1) gam : rhˆ(2/3)/3/sqrt(1+rhˆ(2/3))$
(%i2) drh_dr : -m * rh/gam/rˆ2;
(%o2) -3 * m* sqrt(rhˆ(2/3)+1) * rhˆ(1/3)/rˆ2
(%i3) drh_surf : taylor(drh_dr,rh,0,3);
(%o3) -3 * m* rhˆ(1/3)/rˆ2-3 * m* rh/(2 * rˆ2)+3 * m* rhˆ(5/3)/(8 * rˆ2)

-3 * m* rhˆ(7/3)/(16 * rˆ2)+15 * m* rhˆ3/(128 * rˆ2)
(%i4) drh_surf : first(drh_surf);
(%o4) -3 * m* rhˆ(1/3)/rˆ2
(%i5) drh_surf : subst([m=M,r=R],drh_surf);
(%o5) -3 * rhˆ(1/3) * M/Rˆ2

We then solve the equation
d ρ

d r
≈ −3M

R2
ρ1/3 (6.1)
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by separation of variables, dividing both sides byρ1/3 and multiplying both sides bydr, and then integrating both sides over corre-
sponding intervals. This gives (near the surface)

ρ(r) ≈
(

2M (R − r)

R2

)3/2

∝ (R− r)3/2 (6.2)

and using this in Eq.(4.1) gives (near the surface)

dm

d r
≈ r2

(

2M (R − r)

R2

)3/2

(6.3)

which shows thatdm/d r → 0 asr → R, while d ρ/d r ∝ −
√
R− r.

7 Maxima Code dwarf1(rhoc, dr, rtol)

The Maxima codedwarf1 is in the fileproject2.mac , and calls the single step Runge-Kutta coderk4_step
(also inproject2.mac ). The coderk4_step was also used in Example 2.

/ * dwarf1(rhoc, dr, rtol) integrates white dwarf ode’s using r k4_step with step size dr,
(after taylor expanding the dependent variables out to r1=s mall) watching
for rho to pass from positive to negative.

If rho is found to be negative, we return to the previous step a nd let rtol be the
step size, integrating forward again until rho is found to be negative, then
taking the previous step as the final value of r,m and rho
and using that value of r to define the radius R and that value o f m(r) to define M.
In this code r stands for Koonin’s dimensionless rbar, where r[cgs] = R0 * rbar,

m stands for Koonin’s dimensionless mbar, where m[cgs] = M0 * mbar,
and rho stands for Koonin’s dimensionless rhobar, where rho [cgs] = rho0 * rhobar.

The signal that rho is negative is that rk4_step returns a val ue for
rho that is not a floating point number, containing things li ke
(-1)ˆ0.3333.

(%i4) gam : rhoˆ(2/3)/3/sqrt(1 + rhoˆ(2/3))$
(%i5) rk4_step([rho * rˆ2, -m * rho/gam/rˆ2],

[m,rho],[0.70582,0.0036087],[r,2.5,0.1]);
(%o5) [2.6,0.70678,

2.7270606E-4-4.192083E-4 * (-1)ˆ0.33333 * (0.0064245 * (-1)ˆ0.66667+1.0)ˆ0.5]

* /

dwarf1(rhoc, dr, rtol) :=
block([r1:1e-12, gam, gamc, m1, rho1, rksoln,rkstep,

rho,r,m, previous, num:1, nmax:1000, numer:true],

gam : rhoˆ(2/3)/3/sqrt(1 + rhoˆ(2/3)),
gamc : subst( rho = rhoc, gam),

/ * taylor expansion away from r = 0 * /

m1 : rhoc * r1ˆ3/3,
rho1 : rhoc - r1ˆ2 * rhocˆ2/gamc/6,
rksoln : [ [r1,m1,rho1], [0, 0, rhoc]],

/ * first do loop: search for rho = 0 position using step dr * /

do ( rkstep : rk4_step([rho * rˆ2, -m * rho/gam/rˆ2],
[m,rho],[m1,rho1],[r,r1,dr]),

rho1 : rkstep[3],
if not floatnump(rho1) then return(),
if num = nmax then (

print(" num = nmax; abort integration"),
return()),

rksoln : cons(rkstep,rksoln),
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r1 : rkstep[1],
m1 : rkstep[2],
num : num + 1),

/ * second do loop: search for rho=0 location using step = rtol * /

num : 1,
previous : first(rksoln),
r1 : previous[1],
m1 : previous[2],
rho1 : previous[3],
do (rkstep : rk4_step([rho * rˆ2, -m * rho/gam/rˆ2],

[m,rho],[m1,rho1],[r,r1,rtol]),
rho1 : rkstep[3],
if not floatnump(rho1) then return(),
if num = nmax then return(),
rksoln : cons(rkstep,rksoln),
r1 : rkstep[1],
m1 : rkstep[2],
num : num + 1),

reverse(rksoln))$

Here is an example of the use ofdwarf1 for ρ̄c = 1.

(%i1) load(project2);
(%o1) "c:/k2/project2.mac"
(%i2) soln : dwarf1(1,0.1,0.01)$
(%i3) fll(soln);
(%o3) [[0,0,1],[2.49,0.70664,9.7524488E-5],35]
(%i4) soln;
(%o4) [[0,0,1],[1.0E-12,3.3333333E-37,1.0],[0.1,3.29 7978E-4,0.99118],

[0.2,0.0026136,0.97034],[0.3,0.0086434,0.9368],[0.4 ,0.019904,0.89197],
[0.5,0.037461,0.83773],[0.6,0.061897,0.77623],[0.7, 0.09329,0.70971],
[0.8,0.13124,0.6404],[0.9,0.17493,0.57035],[1.0,0.2 2321,0.50135],
[1.1,0.27471,0.43491],[1.2,0.32795,0.3722],[1.3,0.3 8141,0.31406],
[1.4,0.43364,0.26104],[1.5,0.48333,0.21343],[1.6,0. 52934,0.17131],
[1.7,0.57077,0.13456],[1.8,0.60694,0.10298],[1.9,0. 6374,0.076269],
[2.0,0.66198,0.054064],[2.1,0.68071,0.036007],[2.2, 0.69387,0.021749],
[2.3,0.70197,0.010999],[2.4,0.70582,0.0036087],
[2.41,0.70601,0.003056],[2.42,0.70617,0.0025395],
[2.43,0.70631,0.0020602],[2.44,0.70642,0.0016195],
[2.45,0.7065,0.0012191],[2.46,0.70656,8.6174615E-4] ,
[2.47,0.70661,5.5097716E-4],[2.48,0.70663,2.9262378 E-4],
[2.49,0.70664,9.7524488E-5]]

The functionfll(aL) returns a list of the first and last elements of listaL , and also the length ofaL, and is inproject2.mac .

7.1 Maxima Plots of m̄(r̄) and ρ̄(r̄)

We can use the listsoln to make plots of the mass and the mass density as a function of radius. We use the functiontake , defined
in project2.mac , to extract a list of just the radial positionsrL , for example.

(%i5) rL : take(soln,1)$
(%i6) fll(rL);
(%o6) [0,2.49,35]
(%i7) mL : take(soln,2)$
(%i8) fll(mL);
(%o8) [0,0.70664,35]
(%i9) rhoL : take(soln,3)$
(%i10) fll(rhoL);
(%o10) [1,9.7524488E-5,35]
(%i11) plot2d([discrete,rL,mL],[style,[lines,3]],

[xlabel,"r"], [ylabel,"m"],
[gnuplot_preamble,"set grid"])$



7 MAXIMA CODE DWARF1(RHOC, DR, RTOL) 13

which produces the plot of the scaled massm̄(r̄):
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Figure 1: mass̄m(r̄) for ρ̄c = 1 anddr̄ = 0.1

and then a plot of the scaled mass density:

(%i12) plot2d([discrete,rL,rhoL],[style,[lines,3]],
[xlabel,"r"], [ylabel,"rho"],

[gnuplot_preamble,"set grid"])$

which produces the plot of̄ρ(r̄):
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Figure 2: mass densitȳρ(r̄) for ρ̄c = 1 anddr̄ = 0.1

If we decrease bothdr andrtol , we get closer to the true solution (we need to make surenmax is large enough to get tōρ = 0):

(%i13) soln2 : dwarf1(1,0.01,0.001)$
(%i14) fll(soln2);
(%o14) [[0,0,1],[2.497,0.70706,4.6097242E-6],258]
(%i15) rL2 : take(soln2,1)$
(%i16) fll(rL2);
(%o16) [0,2.497,258]
(%i17) mL2 : take(soln2,2)$
(%i18) fll(mL2);
(%o18) [0,0.70706,258]
(%i19) rhoL2 : take(soln2,3)$
(%i20) fll(rhoL2);
(%o20) [1,4.6097242E-6,258]
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(%i21) plot2d([ [discrete,rL,mL], [discrete,rL2,mL2] ],
[style,[lines,1]], [color,blue,red],
[xlabel,"r"], [ylabel,"m"],

[gnuplot_preamble,"set key bottom right; set grid"],
[legend, "dr = 0.1", "dr = 0.01"])$

which shows the curves right on top of each other:
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dr = 0.01

Figure 3: mass̄m(r̄) for ρ̄c = 1 and two values ofdr̄

and now we compare the plots ofρ̄(r̄) for these two different values ofdr̄:

(%i22) plot2d([ [discrete,rL,rhoL], [discrete,rL2,rhoL 2] ],
[style,[lines,1]], [color,blue,red],
[xlabel,"r"], [ylabel,"rho"],

[gnuplot_preamble,"set grid"],
[legend, "dr = 0.1", "dr = 0.01"])$

which produces again curves right on top of each other:
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Figure 4: mass densitȳρ(r̄) for ρ̄c = 1 and two values ofdr̄
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8 R Code dwarf1(rhoc, dr, rtol, nmax)

R code for the function dwarf1(rhoc,dt,rtol,nmax) is in the fileproject2.R .

## dwarf1
## With rbar -> r, rhobar -> rho, mbar -> m, rhobar_c -> rhoc, dr bar -> dr
## dwarf1(rhoc,dr,rtol,nmax) returns a R list with the vect or elements rL,mL,and rhoL,
## given the central density rhoc at r = 0, the step size dr, and the rtol value and the
## maximum number of elements per vector, nmax,
## (using the externally defined derivs function when calli ng rk4_step)
## after taylor expanding the dependent variables out to r1= small, and then watching
## for rho to pass from positive to negative value.
## If rho is found to be negative, we back up and let rtol = small er be the
## step size, integrating forward again until rho is found to be negative, then
## taking the last good values as the final values of r,m and rh o
## and using that last good value of r to define the radius R and that
## last good value of m(r) to define M.
## Inside dwarf1, rk4_step returns the vector c(m,rho).

dwarf1 = function(rhoc, dr, rtol, nmax) {

## we don’t know how long these vectors need to be

rL = vector(length = nmax) # radius values
mL = vector(length = nmax) # mass values
rhoL = vector(length = nmax) # mass density values

rL[1] = 0
mL[1] = 0
rhoL[1] = rhoc

## taylor expand away from r = 0 to avoid division by zero probl ems
rh23 = rhocˆ(2/3)
gamc = rh23/3/sqrt(1+rh23)
r1 = 1e-12
m1 = rhoc * r1ˆ3/3
rho1 = rhoc - r1ˆ2 * rhocˆ2/gamc/6
rL[2] = r1
mL[2] = m1
rhoL[2] = rho1

## first loop: search for rho = 0 position using step dr
num = 2 # number of vector elements defined so far
repeat {

rkstep = rk4_step( c(m1, rho1), r1, dr, derivs)
## watch for rho becoming negative

if (is.nan(rkstep[2])) {
cat(" new rho is negative-- go back and try again with smaller step \n")
break }

if (num == nmax) {
cat(" num = ",num," = nmax; abort integration \n")
return() }

r1 = r1 + dr
m1 = rkstep[1]
rho1 = rkstep[2]
num = num + 1
rL[num] = r1
mL[num] = m1
rhoL[num] = rho1}
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## second loop: search for rho = 0 location using smaller step size rtol
repeat {

rkstep = rk4_step( c(m1, rho1), r1, rtol, derivs)
## watch for rho becoming negative

if (is.nan(rkstep[2])) {
## cat(" rho is negative -- use last good value as surface \n")

break }

if (num == nmax) {
## cat(" num = nmax; abort integration \n")

return() }

r1 = r1 + rtol
m1 = rkstep[1]
rho1 = rkstep[2]
num = num + 1
rL[num] = r1
mL[num] = m1
rhoL[num] = rho1}

## construct vectors of length num for return
rrL = vector (length = num)
rmL = vector (length = num)
rrhoL = vector (length = num)
for (kk in 1:num) {

rrL[kk] = rL[kk]
rmL[kk] = mL[kk]
rrhoL[kk] = rhoL[kk] }

list(rrL, rmL, rrhoL) }

The R codedwarf1 makes use of the single step Runge-Kutta R coderk4_step (also inproject2.R ):

## rk4_step(init,t,dt,func) returns y(t+dt) if one depend ent variable
## or returns the vector c(x(t+dt), vx(t+dt)) if simple harm onic oscillator (two dependent
## variables), etc.

rk4_step = function(init, t, dt, func) {
num.var = length(init)
h = dt # step size
yL = init
k1 = func(t, yL) # vector of derivatives
k2 = func(t + h/2, yL + h * k1/2) # vector of derivatives
k3 = func(t + h/2, yL + h * k2/2) # vector of derivatives
k4 = func(t + h, yL + h * k3) # vector of derivatives
for (k in 1:num.var) yL[k] = yL[k] + h * (k1[k] + 2 * k2[k] + 2 * k3[k] + k4[k])/6
if (num.var==1) yL[1] else yL}

and when called insidedwarf1 , uses the derivatives functionderivs , also defined inproject2.R .

## derivatives function ’derivs’ for dm/dr = rho * rˆ2, drho/dr = -m * rho/gamma/rˆ2
## y[1] = m, y[2] = rho
## gamma = rhoˆ(2/3)/3/sqrt(1+rhoˆ(2/3))

derivs = function(r,y) {
with( as.list(y), {

y23 = y[2]ˆ(2/3)
gamma = y23/3/sqrt(1+y23)
dm = rˆ2 * y[2]
drho = -y[1] * y[2]/gamma/rˆ2
c(dm, drho)})}
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8.1 R Plots of m̄(r̄) and ρ̄(r̄)

Here is an example of use of this R code, using the same centraldensity as in the Maxima example. The functionmygrid is also in
project2.R .

> source("c:/k2/project2.R")
> soln = dwarf1(1,0.1,0.01,100)
> rL = soln[[1]]
> fll(rL)

0 2.49 35
> mL = soln[[2]]
> fll(mL)

0 0.70664406 35
> rhoL = soln[[3]]
> fll(rhoL)

1 9.7524488e-05 35
> plot(rL,mL,type="l",lwd=3,xlab="r",ylab="m",col="b lue")
> mygrid()

which produces the plot of̄m(r̄) for ρ̄c = 1:
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Figure 5: mass̄m(r̄) for ρ̄c = 1

and then for the mass density plot,

> plot(rL,rhoL,type="l",lwd=3,xlab="r",ylab="rho",co l="blue")
> mygrid()

which produces the plot:
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Figure 6: mass densitȳρ(r̄) for ρ̄c = 1
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9 Energy Plots Using Maxima

Using the dimensionless kinetic energy Eqs. (3.4, 3.5), let’s first show the shape of the kinetic energy integrandk̄(r̄) and then find the
numerical value of the integral̄K which gives the internal kinetic energy of the star as a whole.

We use list arithmetic methods in Maxima to generate the listof needed ordinates from the list ofr̄-valuesrL and the list of̄ρ-values
rhoL . Recall thatdwarf1 returns a list of[r̄, m̄, ρ̄] sub-lists.

(%i1) load(project2);
(%o1) "c:/k2/project2.mac"
(%i2) soln : dwarf1(1,0.1,0.01)$
(%i3) fll(soln);
(%o3) [[0,0,1],[2.49,0.70664,9.7524488E-5],35]
(%i4) rL : take(soln,1)$
(%i5) fll(rL);
(%o5) [0,2.49,35]
(%i6) mL : take(soln,2)$
(%i7) fll(mL);
(%o7) [0,0.70664,35]
(%i8) rhoL : take(soln,3)$
(%i9) fll(rhoL);
(%o9) [1,9.7524488E-5,35]
(%i10) eps(rh) := (3/8/rh) * (rhˆ(1/3) * (1+2 * rhˆ(2/3)) * sqrt(1+rhˆ(2/3)) -

log(rhˆ(1/3) + sqrt(1+rhˆ(2/3))))$
(%i11) epsm1(z) := eps(z) - 1$
(%i12) kL : rLˆ2 * rhoL * map(’epsm1, rhoL);
(%o12) [0,2.6047516E-25,0.0025683,0.0099318,0.02113, 0.034741,0.049113,

0.062613,0.073844,0.081802,0.085953,0.086227,0.0829 51,0.076743,
0.068388,0.058726,0.048559,0.038578,0.029329,0.0211 97,0.014409,
0.0090516,0.0050974,0.0024274,8.5586504E-4,1.460987 2E-4,1.1171861E-4,
8.2775005E-5,5.8920496E-5,3.9791237E-5,2.5002888E-5 ,1.4144578E-5,
6.7694126E-6,2.3779311E-6,3.8418924E-7]

(%i13) plot2d([discrete,rL,kL],[xlabel,"r"],[ylabel, "k(r)"],
[style,[lines,3]],[y,0,0.1],[gnuplot_preamble,"set g rid"])$

which produces the plot of the kinetic energy integrand:
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Figure 7: kinetic energy integrand̄k(r̄)

We then use the functiontrapz(xL,yL) (in the fileproject2.mac ), to find the “area under the curve”, which represents

the value of the integral
∫ R̄

0 d r̄ k̄(r̄). The codetrapz(xL,yL) uses the trapezoidal rule and accommodates the non-uniformgrid
associated with the output ofdwarf1 .

(%i14) area : trapz(rL,kL);
(%o14) 0.096435
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Using the dimensionless gravitational energy Eqs. (3.7, 3.8), we now plot the absolute value of the dimensionless integrandū(r̄) of
Ū and then compute the numerical value of|Ū |
(%i15) uL : rL * mL* rhoL;
(%o15) [0,3.3333333E-49,3.2688898E-5,5.0722051E-4,0. 0024291,0.0071014,

0.015691,0.028828,0.046346,0.067236,0.089792,0.1119 1,0.13142,0.14648,
0.15572,0.15848,0.15474,0.14509,0.13057,0.11251,0.0 92366,0.071579,
0.051472,0.0332,0.017759,0.006113,0.0051998,0.00433 99,0.003536,
0.0027914,0.0021102,0.0014978,9.6163089E-4,5.128080 7E-4,1.715986E-4]

(%i16) plot2d([discrete,rL,uL],[xlabel,"r"],[ylabel, "u(r)"],
[style,[lines,3]],[y,0,0.25],[gnuplot_preamble,"set grid"])$

(%i17) area : trapz(rL,uL);
(%o17) 0.17767

The plot of|ū(r̄)| is
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Figure 8:|ū(r̄)|

For this case, the sum̄K + Ū = −0.0812, a negative number, as is needed for the existence of a bound state.

10 Energy Plots Using R

Using the dimensionless kinetic energy Eqs. (3.4, 3.5), we compute values of the kinetic energy at ther values used in the integration
of the differential equations, then find the numerical valueof the integralK̄ which gives the internal kinetic energy of the star as a
whole, and finally plot the shape of the kinetic energy integrandk̄(r̄).

We use vector methods in R to generate the vector of needed ordinates from the vector of̄r valuesrL and the vector of̄ρ-valuesrhoL .

We use the functiontrapz(xL,yL) (in the fileproject2.R ), to find the “area under the curve”, which represents the value of

the integral
∫ R̄

0 d r̄ k̄(r̄). The R codetrapz(xL,yL) uses the trapezoidal rule and accommodates the non-uniformgrid associated
with the output ofdwarf1 .

> source("project2.R")
> soln = dwarf1(1,0.1,0.01,100)
> rL = soln[[1]]
> mL = soln[[2]]
> rhoL = soln[[3]]
> eps = function(rh) {
+ 3* (rhˆ(1/3) * (1+2 * rhˆ(2/3)) * sqrt(1+rhˆ(2/3)) - log(rhˆ(1/3)
+ + sqrt(1+rhˆ(2/3))))/8/rh }
> epsm1 = function(z) { eps(z) -1}
> kL = rLˆ2 * rhoL * sapply(rhoL,epsm1)
> kL

[1] 0.000000e+00 2.604752e-25 2.568310e-03 9.931753e-03 2.112956e-02
[6] 3.474073e-02 4.911342e-02 6.261336e-02 7.384384e-02 8.180181e-02

[11] 8.595289e-02 8.622710e-02 8.295137e-02 7.674282e-0 2 6.838762e-02
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[16] 5.872617e-02 4.855862e-02 3.857759e-02 2.932885e-0 2 2.119674e-02
[21] 1.440851e-02 9.051573e-03 5.097404e-03 2.427364e-0 3 8.558650e-04
[26] 1.460987e-04 1.117186e-04 8.277500e-05 5.892050e-0 5 3.979124e-05
[31] 2.500289e-05 1.414458e-05 6.769413e-06 2.377931e-0 6 3.841892e-07
> trapz(rL,kL)
[1] 0.09643478
> plot(rL,kL,type="l",lwd=3,col="blue",xlab = "r",ylab = "k")
> mygrid()

which produces the plot of̄k(r̄) for ρ̄c = 1:
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Figure 9: kinetic energy integrand̄k(r̄)

Using the dimensionless gravitational energy Eqs. (3.7, 3.8), we again use vector methods in R to find the values of the absolute
value ofū(r̄) at ther̄ values used in the integration of the white dwarf differential equations, usetrapz to find the “area under the
curve”, which is the numerical value of|Ū |, and then plot the absolute value of the dimensionless integrandū(r̄) of Ū .

> uL = rL * mL* rhoL
> uL

[1] 0.000000e+00 3.333333e-49 3.268890e-05 5.072205e-04 2.429142e-03
[6] 7.101385e-03 1.569108e-02 2.882771e-02 4.634633e-02 6.723638e-02

[11] 8.979184e-02 1.119057e-01 1.314240e-01 1.464765e-0 1 1.557222e-01
[16] 1.584790e-01 1.547387e-01 1.450879e-01 1.305683e-0 1 1.125095e-01
[21] 9.236633e-02 7.157889e-02 5.147179e-02 3.320043e-0 2 1.775878e-02
[26] 6.112973e-03 5.199767e-03 4.339866e-03 3.535981e-0 3 2.791400e-03
[31] 2.110234e-03 1.497842e-03 9.616309e-04 5.128081e-0 4 1.715986e-04
> trapz(rL,uL)
[1] 0.1776717
> plot(rL,uL,type="l",lwd=3,col="blue",xlab = "r",ylab = "abs(u)")
> mygrid()
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which produces the plot
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Figure 10:|ū(r̄)|

For this case, the sum̄K + Ū = −0.0812, a negative number, as is needed for the existence of a bound state.

11 Plot of R̄ Versus M̄ Using Maxima

A Maxima functiondwarf3 (in project2.mac ) converts a given central density into the list[M̄, R̄].

/ * dwarf3(rhoc, dr, rtol) calls dwarf1 and returns [Mbar, Rbar ] * /

dwarf3(rhoc, dr, rtol) :=
block([soln,surf,numer:true],

soln : dwarf1(rhoc, dr, rtol),
surf : last(soln),
[surf[2], surf[1]])$

A Maxima functiondwarf4 converts a list of central mass densities into a list with elements[M̄, R̄] and returns that list, as well as
printing a table of values.

dwarf4() :=
block([rhoL,drv:0.01,rtolv:0.001,mrL:[],rd3,numer:t rue],

rhoL : [0.1,0.5,1,5,10,100,1e3,1e4,1e5, 2e5,3e5,4e5],
print(" rhoc M R"),
for vv in rhoL do (

rd3 : dwarf3(vv,drv,rtolv),
mrL : cons(rd3, mrL),
printf(true,"˜& ˜8f ˜10f ˜10f ", vv, rd3[1], rd3[2])),

reverse(mrL))$

(%i1) load(project2);
(%o1) "c:/k2/project2.mac"
(%i2) mRL : dwarf4();

rhoc M R
0.1 0.2798235 3.759
0.5 0.5498911 2.834
1.0 0.7070609 2.497
5.0 1.12278661 1.833
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10.0 1.29799605 1.591
100.0 1.73549443 0.953

1000.0 1.93281009 0.533
10000.0 1.99719275 0.279

100000.0 2.02782531 0.14
200000.0 2.05241163 0.114
300000.0 2.08105322 0.1
400000.0 2.11459555 0.092

(%o2) [[0.27982,3.759],[0.54989,2.834],[0.70706,2.49 7],[1.122787,1.833],
[1.297996,1.591],[1.735494,0.953],[1.93281,0.533],[ 1.997193,0.279],
[2.027825,0.14],[2.052412,0.114],[2.081053,0.1],[2. 114596,0.092]]

(%i3) plot2d([discrete, mRL],[xlabel,"M"],[ylabel,"R" ],
[style,[lines,3]])$

which produces the plot
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Figure 11:R̄ vs. M̄ for ρ̄c = 1

12 Plot of R̄ Versus M̄ Using R

A R functiondwarf3 (in project2.R ) converts a given central density into a vector holding the values(M̄, R̄).

## dwarf3(rhoc, dr, rtol) calls dwarf1 and returns c(Mbar, R bar)

dwarf3 = function(rhoc, dr, rtol) {
nmax = 500
soln = dwarf1(rhoc, dr, rtol, nmax) # list(rL,mL,rhoL)

surfL = get_last(soln)
c(surfL[2], surfL[1]) }

## > dwarf3(1,0.1,0.01)
## [1] 0.7066441 2.4900000

A R functiondwarf4 converts a list of central mass densities into a list of two vectors,mvandrv , which hold corresponding values
of the scaled masses and radii for the different central massdensities, by callingdwarf3 with each central density.

## dwarf4() calls dwarf3 to accumulate vectors of values of M and R
## returns list(ML, RL)

dwarf4 = function(rho_vals) {
drv = 0.1

rtolv = 0.01
num = length(rho_vals)
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mv = vector(length=num)
rv = vector(length=num)
k = 1
for (rhoc in rho_vals) {

rd3 = dwarf3(rhoc,drv,rtolv)
mv[k] = rd3[1]
rv[k] = rd3[2]
k = k + 1}

list(mv, rv) }

Here we use the R functiondwarf4 to make the plot.

> source("project2.R")
> rhocL = c(0.1, 0.5, 1, 5, 10,100,1e3,1e4,1e5, 2e5, 3e5, 4e5 )
> mRL = dwarf4(rhocL)
> ML = mRL[[1]]
> fll(ML)

0.2797391 2.096836 12
> RL = mRL[[2]]
> fll(RL)

3.75 0.07 12
> plot( ML, RL, type = "l", lwd = 3, col = "blue", xlab = "M", ylab = "R")
> mygrid()

which produces the plot
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Figure 12:R̄ vs. M̄ for ρ̄c = 1

We can then make a table of values usingdata.frame .

> rho_cases = data.frame(rhoc = rhocL, M = ML, R = RL)
> rho_cases

rhoc M R
1 1e-01 0.2797391 3.75
2 5e-01 0.5496256 2.83
3 1e+00 0.7066441 2.49
4 5e+00 1.1219404 1.83
5 1e+01 1.2970923 1.59
6 1e+02 1.7459976 0.96
7 1e+03 1.9328042 0.53
8 1e+04 1.9970700 0.27
9 1e+05 2.0273174 0.13
10 2e+05 2.0504694 0.10
11 3e+05 2.0713817 0.08
12 4e+05 2.0968360 0.07
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13 Energy Components as a Function of ρ̄c and M̄ Using Maxima

The Maxima functiondwarf2 (in project2.mac ) takes as input the output ofdwarf1 and calculates the internal (dimensionless)
kinetic energy of the starEk, the internal (dimensionless) gravitational energy of thestarEg, and the internal (dimensionless) kinetic
and rest mass energy of the starEkm.

/ * dwarf2(sL) evaluates the dimensionless kinetic (Ek), grav itational energy (Eg),
and kinetic plus rest mass energy (Ekm) of the white dwarf usi ng the

output of dwarf1 as input, and returns the list [Ek, Eg, Ekm] * /

dwarf2(sL) :=
block([rL,mL,rhoL,kL,uL,Ek, Eg,Ekm,tempL, numer:true] ,local(eps,epsm1),

eps(rh) := (3/8/rh) * (rhˆ(1/3) * (1+2 * rhˆ(2/3)) * sqrt(1+rhˆ(2/3)) -
log(rhˆ(1/3) + sqrt(1+rhˆ(2/3)))),

epsm1(z) := eps(z) - 1,
rL : take(sL,1),
mL : take(sL,2),
rhoL : take(sL,3),
kL : rLˆ2 * rhoL * map(’epsm1, rhoL),
Ek : trapz(rL,kL),
uL : rL * mL* rhoL,
Eg : -trapz(rL,uL),
tempL : float(map(’eps, rhoL)),
kmL : rLˆ2 * rhoL * tempL,
Ekm : trapz(rL,kmL),
[Ek, Eg , Ekm ])$

We defineEL(rhoc) to use the output ofdwarf1 for a given central mass density as the input todwarf2 , returning the list
[Ek, Eg, Ekm]

(%i1) load(project2);
(%o1) "c:/k2/project2.mac"
(%i2) EL(rhvc):= dwarf2(dwarf1(rhvc,0.01,0.001))$
(%i3) EL(1);
(%o3) [0.096598,-0.17803,0.80366]
(%i4) EL(10);
(%o4) [0.62231,-1.008495,1.920303]
(%i5) EL(1e2);
(%o5) [2.435038,-3.355281,4.170529]
(%i6) EL(1e3);
(%o6) [6.974003,-8.383828,8.906817]
(%i7) EL(1e4);
(%o7) [17.09202,-18.80989,19.08944]
(%i8) EL(1e5);
(%o8) [39.16687,-41.08195,41.20077]
(%i9) EL(1e6);
(%o9) [86.5433,-88.49602,88.56048]

Evidently the sum(Ekm + Eg) approaches0 at high central densities.

To see the behavior of the total energy as a function of the mass of the star, we usedwarf5 , which returns a list with elements
[M, Et] .

/ * dwarf5 calls dwarf1 and dwarf2 to accumulate a list
with elements [M,Ekm+Eg] * /

dwarf5() :=
block([rhoL,drv:0.01,rtolv:0.001,MEL:[],rd1,rd2,

M,Et, numer:true],
rhoL : [0.1,0.5,1,5,10,100,1e3,1e4,1e5, 2e5,3e5,4e5],
print(" rhoc M Et "),
for vv in rhoL do (

rd1 : dwarf1(vv,drv,rtolv),
M : last(rd1)[2],
rd2 : dwarf2(rd1),
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Et : rd2[2] + rd2[3],
MEL : cons([M, Et], MEL),
printf(true,"˜& ˜8e ˜10f ˜10f ", vv, M, Et)),

reverse(MEL))$

and produces the table

(%i10) mel : dwarf5()$
rhoc M Et

1.0E-1 0.2798235 0.2710139
5.0E-1 0.5498911 0.5057441
1.0E+0 0.7070609 0.6256286
5.0E+0 1.12278661 0.8608924
1.0E+1 1.29799605 0.9118089
1.0E+2 1.73549443 0.8152481
1.0E+3 1.93281009 0.5229894
1.0E+4 1.99719275 0.2795461
1.0E+5 2.02782531 0.1188195
2.0E+5 2.05241163 0.0464371
3.0E+5 2.08105322 0.0018255
4.0E+5 2.11459555 -0.045787

and the output allows us the plot the total dimensionless scaled energy of the star (including rest mass energy) versus the dimensionless
scaled mass of the star.

(%i11) mv : take(mel,1)$
(%i12) fll(mv);
(%o12) [0.27982,2.114596,12]
(%i13) Ev : take(mel,2)$
(%i14) fll(Ev);
(%o14) [0.27101,-0.045787,12]
(%i15) plot2d( [discrete, mv, Ev] ,[xlabel,"M"],[ylabel, " "],[style,[lines,3]] )$

which produces the plot
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Figure 13: Total EnergȳEt vs. MassM̄

We see that the total scaled energy becomes negative at a critical value of the scaled mass of the star, corresponding to the scaled
radius of the star going to zero. Although our model is not detailed enough (especially needed is a better treatment of thephysics
near the surface of the star), the present results point to the existence of an upper limit to the value of the mass of a whitedwarf.
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14 Comparison of Non-Relativistic Approximation with Relativistic Solutions

In this section we drop the over-bars on the symbols for the scaled dimensionless variables. In the low density non-relativistic
approximation,x ≪ 1, andγ(x) ≈ x2/3 = ρ2/3/3, and the pair of ordinary differential equations to be integrated fromr = 0 to the
value ofr at whichρ = 0 are then:

dm

d r
= ρ r2 (14.1)

d ρ

d r
= −3m(r) ρ1/3

r2
(14.2)

And for r << 1 andr → 0,

m(r) ≈ 1

3
ρc r

3 (14.3)

ρ(r) ≈ ρc −
1

2
r2 ρ4/3c (14.4)

whereρc = ρ(r = 0).

14.1 Plot comparisons

The Maxima codedwarf6 , following the same logic asdwarf1 , integrates the non-relativistic case.

(%i1) load(project2);
(%o1) "c:/k2/project2.mac"
(%i2) soln1 : dwarf1(1,0.1,0.01)$
(%i3) soln6 : dwarf6(1,0.1,0.01)$
(%i4) rL1 : take(soln1,1)$
(%i5) rL6 : take(soln6,1)$
(%i6) mL1 : take(soln1,2)$
(%i7) mL6 : take(soln6,2)$
(%i8) rhoL1 : take(soln1,3)$
(%i9) rhoL6 : take(soln6,3)$
(%i10) plot2d( [ [discrete,rL1,mL1],[discrete,rL6,mL6] ] ,[style,[lines,3]],

[xlabel,"r"], [ylabel,"m"],[legend,"Relativistic","N R"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the comparisons ofm̄(r̄) :
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Figure 14:m̄(r̄) for ρ̄c = 1

and the comparisons for the mass density profile,

(%i11) plot2d( [ [discrete,rL1,rhoL1],[discrete,rL6,rh oL6] ] ,[style,[lines,3]],
[xlabel,"r"], [ylabel,"rho"],[legend,"Relativistic", "NR"],

[gnuplot_preamble,"set grid"])$
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which produces the comparisons ofρ̄(r̄) :
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Figure 15:ρ̄(r̄) for ρ̄c = 1

15 Suggested Further Explorations

1. Compare the ultra-relativistic casex ≫ 1 with the cases we have considered.

2. Write R code for functions which will allow exploration ofthe variations of the energy components with changing central
density and stellar mass, and allow a plot of the total star energy (including rest mass energy) versus the star mass.

3. Calculate the c.g.s. values of the mass and radius of a white dwarf star, assuming iron nucleii, for scaled central densities in
the range we have used, and express the c.g.s. central densities in terms of the central density of the Sun, and express the
masses in terms of the mass of the Sun, and express the radii interms of the radius of the Sun. Write some code to do these
calculations and make a table.

4. Find a theoretical discussion of the physics of the surface region of a white dwarf star, and incorporate that physics into our
model.

16 Astrophysics References

1. An Invitation to Astrophysics, Thanu Padmanabhan (World Scientific, 2006), Chapter 3, Matter, Chapter 4, Stars and Stellar
Evolution.

2. Theoretical Astrophysics, Volume 1, Astrophysical Processes, Thanu Padmanabhan (Cambridge Univ. Press, 2000), Chapter
1, Order of Magnitude Astrophysics, Chapter 5, StatisticalMechanics.

3. Theoretical Astrophysics, Volume 2, Stars and Stellar Systems, Thanu Padmanabhan (Cambridge Univ. Press, 2001), Chapter
5, White Dwarfs, Neutron Stars, and Black Holes.

4. The Early Universe, Edward W. Kolb and Michael S. Turner (Westview Press, 1994), Chapter 3, Standard Cosmology, Sec.
3, Equilibrium Thermodynamics.

5. An Introduction to the Study of Stellar Structure, S. Chandrasekhar, (Dover, 1958), Chapter 10, The Quantum Statistics,
Chapter 11, Degenerate Stellar Configurations and the Theory of White Dwarfs.


