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1 Introduction

The major project proposed in Chapter 1 of Steven Koonixs@@mputational Physics applies root finding and quadrature meth-
ods to the task of finding the values of the scattering angleléssical scattering by a central potential) as functafrthe energy
and impact parameter of the scattered particle.

We use the resources of the free and open source sofR\ité://www.r-project.org/ ) and Maxima
(http://maxima.sourceforge.net/ ) to write code which helps to solve this type of problem.

The use of such modern powerful “command interpreters” erages a “bottom-up” style of code development, in whichlkjolas
are coded first, checked interactively for correct behawand then used as part of slightly larger coding jobs in anafite fashion.
Our discussion provides explicit examples (in both lan@sa@f this coding style.

The firstprojectl.pdf section explains our notation for classical scatteringe fidilowing two sections consider two examples
which can be solved analytically, classical Rutherfordtecag, both repulsive and attractive cases. When deirggopumerical
approaches, it is always good to start with an exactly selabke since when your numerical methods are producing thegwr
answers, it will be obvious. The following section consglstattering by the Lennard-Jones potential. The lastosedisplays the

R code used to create the first three figures.

2 Classical Scattering Kinematics and Dynamics

2.1 Decomposition into Relative and Center of Mass Motion

We includeR scripts used to draw some of the diagrams in Sec 6.

el =T2—T1
C. M.

mi ’\ my

r ra

Figure 1: Center of Mass Diagram

Given two particles: mass, with position vector; and massn, with position vectorrs, the position vectoR. of the
location of the center of mass of the two particle system imdd by

1
R = M(mlrl + mary), (2.1)
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whereM = my + mq is the system mass. The position of particle 2 relative ttiglarl is defined by
I =Tp = Iy — Tq. (2.2)
We define the position of particle 1 relative to the locatidthe system center of mass by
ri=r; — R, (2.3)

which can be written, using Egs. (2.1) and (2.2), as

r] = —%r. (2.4)

Likewise, the position of particle 2 relative to the centenass is

r/2 =ry — R, (2.5)
which becomes .
r, = er. (2.6)

From Egs. (2.3) and (2.4) the velocity of particle 1 can bdtemi
. . m
v1:r’1—|—R:V—ﬁ2v (2.7)

in terms of the velocity of the center of ma¥s= d R/d t and the velocity of particle 2 relative to particlevl= dr/d .
In a similar manner, the velocity of particle 2 can be writsen

. . m
V2:r’2—|—R:V—|—M1V. (2.8)

We can now transform the kinetic energy of the system

1 1
T = —miv? + —mavi (2.9)
2 2
into the form
1 2, 1 o
T= §MV + Pl (2.10)

which exhibits a clean separation of the kinetic energy@ased with motionV of the location of the center of mass, and
a kinetic energy associated with the relative motoWe have introduced the symbholfor the so-called "reduced mass”
of the systemyu = (myms) /M. In the absence of external forcég,is a constant vector, and a reference frame with
origin at the center of mass is an inertial frame in whi¢h= 0. In such a frame, the original lagrangian of the system

1 1
L= §m1V% + imgvg —V(|jra —ry|) (2.11)
becomes )
L= i,uv2 —V(r) (2.12)
wherer = |r|.

Once a solutionr(¢) has been found using the lagrangian Eq. (2.12), solutions; fo) and forrs(¢) can be written
down using Egs. (2.4) and ( 2.6) (bearing in mind that, oncehaxe adopted the center of mass frame~ r} and
ro = rb). In this sense, the two-body problem has been reduced tétatis problem of a single particle of magsand
position vectorr which experiences a potential (enerdyjr) with the associated "force” given ly= —VV'(r). The
solution involves motion in a plane with two degrees of fia®ad which can be taken to be plane polar coordinates
ande(t).

In the same center of mass frame, the system angular momeetior

L=r; Xp;+r2Xp2 (2.13)
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where the momenta agg, = m,v; andps = movs, can be written as

L=rxp=purxv.

The system angular momentum veclois a constant vector since

g = UV XVHTIXE
dt - Iu’ p?
and the lagrange equation of motion
4oL _oL
dtov  Or

which is used with the lagrangian form Eq. (2.12) implied tha

p=-VV(r)xr.

(2.14)

(2.15)

(2.16)

(2.17)

SincelL is a fixed vector with a fixed direction in space, Eq. (2.14)liegpthatr is always perpendicular th and thus
lies in a fixed plane, which we take to be the y) plane, with initial velocity vector of the incident pargcin the+x

direction.

Ty

0 X

Figure 2: Coordinates Used Here

Taking plane polar coordinatés, 6) in this fixed plane, with

and the orthogonal time dependent unit vectors

£(t) =icosO(t) + jsinf(t), O(t) = —isinb(t) + jcosb(t),

and the resulting unit vector derivatives

we find for the relative velocity

(2.18)

(2.19)

(2.20)

(2.21)
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We can expresé in terms of the magnitude of the relative angular momentuchrarsing Eq. (2.14) and x 6 = k:
L=purxv=pur’fk. (2.22)
0 is initially equal torr, and continuously decreases with time:

_ L]

0=——5. (2.23)
wr
We see that in general, as— oo, at the end of the scattering evefit 0, andd — some constant. Eliminatingin Eq.

(2.21), we get

v =7+ 22 (2.24)
The total relative energ¥ is then
1 1
E:iuv%V(r):imuveff, (2.25)
where
Vers =VI(r)+ Ll (2.26)
eff = T 2,[17‘2 . .

Before the collision event, the incident particle has orilyekic energy, and the total constant enefgyhas the value

% p v, whereuy is the initial speed. The constant angular momentuof this particle of masg is given by (decompos-
ing r along and perpendicular to theaxis and usindr , | — b before the incident particle feels the central force, where
b is the impact parameter of the particle considered).

L=prxvo=p(rj+ry)xXvo=pry XV():—,ubvolA{:—b\/(QuE)f{. (2.27)

Thus|L| = b puvg. Usingug = /2 E/u, we then get

. [2E b b

Solving Eq. (2.25) fod r/dt = r

=4 (1 — Vegs(r)/E)Y2 (2.29)
From Eqg. (2.23) we then have
26— — (%) dt = <%> i (2.30)
Combining Egs. (2.29) and (2.30) yields
L dr
dg =7 (\L%) N A (2.31)

We will later need to use the relation of the x and y componehtke vector velocity to the radial and theta components,
so we discuss that relation here. Using Eqg. (2.19) and EflY2and the equality

V:ivx—kjvy:ff—kéré (2.32)

we find

v, = 7 cos(f) — 70 sin(0), v, =7 sin(0) + 70 cos(0) (2.33)
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2.2 TheDifferential Scattering Cross Section

We here specialize the two body problem to the case of stagtén which one of the pair of particles is at restat 0,
and the other particle approaches the scattering centersathe intial speed and hence initial energy equal to thal init
kinetic energy. In general, as the incident particle apgnea the scattering center, the particle will have both &fad
velocity - and an angular velocity§. We see from Eq. (2.29) that the radial velocitys zero at a radius,,;,, defined
by the equation

E = Veff(rmm)- (234)

Forr > rpn, B > Veyp, and sinced/.;¢(r) — 0 asr — oo, a positive energy particle will approach the scatteringes
reaching a minimum radial distaneg,;,, and (in the absence of a capture mechanism) return to radiaity. The polar
angled is measured from the forward direction (the positivaxis).

v p—
m p—
NN
—
F'min
b r
o ¥
T T T T T T T
-4 -3 -2 -1 0 1 2
X

Figure 3: Scattering Anglg lllustrated

Since the scattering of a given particle in a central poitdikes place in a plane, we are free to choose the) plane,
and the position of a incident particle can be describedrmgeof the coordinategr, y), in whichy is the perpendicular
distance of the incident particle from theaxis. When the incident particle isat= —oc, y = b (the particle’s

impact parameter)y = oo, # has a value arbitrarily close tg and the value of decreases with time, with the scattered
particle finally having either a positive value 6f as shown in the figure, or a negative valuedpin which case the
asymptotic direction of the trajectory is below the forwaicection.

We will denote the scattering angle (the final valuegphby y, which can be either positive or negative. Consider a
beam of identical particles which approach the scatteranger. We consider first only those particles which have the
same kinetic energy when far away, (ie., a monoenergetimpe®e assume that the beam has a large diameter cross
section; the relations derived will be correct for particigith small enough values of impact parametfersVe assume

the number of beam particles per unit arear(at —o0) is independent op, the perpendicular distance from the x-axis;
this assumption is clearly related to the previous ond.ifthe incident beam flux density with unitsimber /(cm?sec),
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then we are assuming thdtis independent of the distangdrom the beam axis.

We locate each beam particle during the scattering procgag two different coordinate systems. We tag each beam
particle with the pair of number@, ¢), choosing the positive axis to be in the initial direction of motion of the beam
particles and passing through the scattering center. Thadhparametéris the initial distance of the beam particle from
the x axis, andg is a cylindrical angle around the beam axis. A beam particlermaintain a constant value af and

will be scattered into a final direction labeled by the twolasgy, ¢). Here we are using spherical coordinates), ¢),

with r the radial distance from the scattering centeis the (positive) polar angle measured from the positivaxis in

the (z, y) plane, andp is the azimuthal angle about theaxis.

Choosedb such that beam particles having impact parameters in teevadi{b, b + db) and also having azimuthal angles
in the interval(¢, ¢ + d¢) will be scattered into a small positive solid angle

d ) = siny diy deo (2.35)

subtended by the scattering center at the origin of cootelnda he number of beam particles scattered per second into a
particulardS? is written asd N = J do and this will also be equal tddA = J bdbd¢. Hence the positive quantitjo,
which has the dimensiommn?2, can be written as

do
= = (=) dQ 2.36
do =bdbdg (dQ) d ( )
Using our expression faif) and cancellingi¢, we obtain
do b db
Q" |smodn (2.37)

At this stage, all reference tohas dropped out, and we replace the positive atidhy the signed scattering angie to
get

do b db

— = — 2.38

ds2 siny dx ( )
For those impact parameters for whi¢h/db = 0, the differential scattering cross section is infinitelsgka
2.3 The Scattering Angle Integral
The effective potential (Eq. 2.26) can be written (using222y),

EV?
Verp =Vr)+ =5 (2.39)

and the change if (Eq. 2.31 ) becomes
6 = + (b \/E) dr (2.40)

12 /B~ Vers(r)
Integrating both sides over corresponding intervals, rduthe first part of the trip from = oo to r = rp,, dO is
negative andl r is also negative, while on the second part of the trip, from r,,;, to r = oo, d 4 is negative and r is
positive:

/Xd9:x—7r:/TMinf(r)dr—/oo f(r)ydr= -2 h f(r)dr. (2.41)

[e.e] Tmin

The scattering anglg as a function of £, b) is then written as
X=T—=2¢o (2.42)

where

(2.43)

" _b/oo dr
R S A ATIOR
r2/1 - Yeif

The argument of the square root function in the denomindttineintegrand vanishes at the lower limit of the integral,
by definition ofr,,;, (see Eq. 2.34).
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2.4 Reduction to Dimensionless Form

By choosing a length scal®, either suggested by the form of the potential or the physigime considered, we can
define a dimensionless radial distance#ia r/ag and a dimensionless impact paraméter b/ay.

A dimensionless energy can be defined in terms of the value of the potential energiuated atr = ag, or £ =
E/V(ag). A dimensionless potential energy as a functiorra$ V(7) = V(r)/V (ap), and a dimensionless effective
potential energy i¥/ () = Ver¢(r)/V (ag), in terms of whichp., becomes

oo = b / d_r _ (2.44)
Tmin 724 [1 = Vesp(7) /B
wherer,,,;,, is the value ofF at which the argument of the square root function vanishas, a
_ _ _ b2
Veps(r) = V() + £ — (2.45)

SinceF = %,wg, a natural unit of speed i) = , /%. A dimensionless component of the velocity vector can then b
defined ag,, = v, /vg. A natural unit of time is themy = ag /vy and a dimensionless timeds=t/ty = v t/ay.

We can then write the x-component of the equation of motion

dv, ~ 0V(r) _ OdrdV(r) _ xdV(r)

pum— pum— pum— 2.46
R0 dx dx dr r dr ( )
in dimensionless form: p V)
Vg T Vir
== - 2.47
dt 2ET drF ( )
We can also write the first order differential equationf6t), Eq. (2.28) in dimensionless form:
o )
P —b/T (2.48)
and the first order differential equation foft), Eq. (2.29), in dimensionless form:
O =% (1 Vigy(7)/B) (2.49)
Using Eq. (2.33) we also have
_ dr . _de . ar _do
U, = cos(6) - sin(@) 7 T W= sin(0) I + cos(0) T I3 (2.50)

The starting point for the calculation of the differenti@atiering cross section, Eqg. (2.38), is written in dimenksss
form by noting thatr has the dimensions of area, so we define a2 o to get

do_| b db
dQ  |sinxdy

(2.51)
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3 Repulsive Rutherford Scattering

Here we treat the case in which the potential energy is

o a Eb
V(T’):?, a >0, ‘/eff(T):?—F?, (31)
.1 1 E¥
V(T‘) = %, ‘/;ff(T') = % + 77—2 (32)

Since the potential energy contains no natural length, wikenaae of the fact that quantum theory predicts thatzthe
component of angular momentum is quantized and can onlythawdiscrete values, = n h, wheren = 0, +1, £2 .. ..
hvis related to the famous “Planck’s constahtby 7o = h/(2 7). If we use square brackets to denote “dimensions of”,

[A] = [rmv] = [rmv®/v] = [t mv?] = erg-sec (3.3)
(using cgs (centimeter-gram-sec) units). The measuree\al is 1.055 x 10727 erg-sec.
In cgs units, all physical quantities can be expressed adearswith units which are some combination of mass (m),
length (r), and time (t). Sincii] = [mr?/t] and[a/r] = [E] = [mv?], then[a] = [m 3 /t?]. If we then try to construct

a quantityag with the units of length out of the reduced mas®f the two particle system, representedhyfor the
balancing, the strength of the interactioapnandr, we need

[QO] _ [7“] _ [ha: mY az] _ [(m 7n2/t)x mY (m r3/t2)z] — [T2x+32 mx+y+Z/tx+2 z] (34)
Balancing dimensions between the left and right-hand dedess to three equations
2043z=1, z4+y+z2z=0, z+4+2z=0 (3.5)

Just for practice, we use Maximaslve function:

(%il) solve([2 * X+3* z=1 X+y+z=0,x+2  *Z],[X,y,Z]);
(%01) [[x = 2y = -1,z = -1]]

Then the combination
h2
= o
has the dimensions of a length, and we can defirez/ay, for example.

ap

(3.6)

3.1 Plot of Effective Potential

The functionVeff plot  (from rutherford_repulse.mac ) has the definition

Veff_plot(e,b,r0,rl,xmin,xmax,ymin,ymax) :=
block([w,r,rmin,energy_line,numer],numer:true,
w : 1/elb,
rmin @ b *(w + sqrti(4+w"2))/2,
energy_line : [discrete,[[rmin,e],[r1,e]]],
plot2d([1/r + e *b™2/r"2, energy_line],[r,r0,rl], [x,xmin,xmax],
[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff']))$
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The parametemmin is the minimum radial distance between the incident particld the scattering center. The invocation

(%i3) Veff_plot(1,1,0.9,3,0.8,3,0,2)$

choosesEl = 1, b = 1, and chooses to plot the expression defineddsf over the ranggr,0.9,3] . The canvas
horizontal extent is determined by the argumemtén andxmax. The canvas vertical extent is determined by the argu-
mentsymin andymax. This produces a plot of both the effective potential enenggt also the constant total energy of
the incident particle (in red).

2

15 ¢

Veff
—

05 f

r

Figure 4: Effective Potential foE = 1, b= 1

3.2 Analytic Scattering Angle Using Maxima

From Eq. (2.44) we then have

_ [ dr
Do = b = = . (3.7)
P T2\/1 = 1/(E7) — b2 /72
We replace the integration variabieoy » = /b, and definav = 1/(E b) to get
b= [ — (3.9

2
2min ZVZE—wz —1

in which z,,;, is the positive value ot for which the argument of the square root is zero. This gihesresult (see
Maxima session just below)

(oo = cOs <\/ﬁ> = g —sin~! <\/ﬁ> ., w=1/(Eb). (3.9)

and the scattering angje

w 1
X=7—2¢s =2sin" " <7> =25sin! | ——— | . (3.10)
VA + w? V1+4E212
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For givenE asb — oo, w — 0 andy — 0. And asb — 0, w — oo, andy — 7 = 180 deg.
We find z,,,;,, = % (w + V4 + w?) and hence,,;,, = g (w+ V4 + w?).

We letf, be the positive angle between the positive x-axis and tleztiim ofr(t) at the moment the incident particle is
at its minimum distance from the scattering center (theitid the coordinate system). From the figulg+ ¢, = m,
S00) = T — Poo-

Here is a short Maxima session to find the above results.

(%il) rs : solve(z’2 - w xz -1,2);

(%01) [z = -(sqrt(w"2+4)-w)/2,z = (sqrt(w"2+4)+w)/2]

(%i2) zmin : rhs(rs[2]);

(%02) (sqrt(w"2+4)+w)/2

(%i3) assume(w>0);

(%03) [w > 0]

(%i4) phi_inf : integrate(1/(z *sqrt(z’2 - w xz -1)),z,zmin,inf);
(%04) %pi/2-asin(w/sqrt(w"2+4))

The coordinates of the point of closest approach (C) to tlatesing center (O) ar€. = 7y, cos(fy) andy. =
Trmin SIn(6p).

The intersection (A) of the line OC and the lige= b is defined by the coordinatas, = bz./y. andy, = b.

The hyperbolic orbit is symmetric about the point of closgsproach. The asymptote of the incident particle as it
approaches is the ling = b. The asymptote of the particle as it retreats to positiveniiyfiis the line AG (in the limit
7 — 00) (Z = Z,+cos(x), ¥ = b+sin(x)) which has its origin at point A and makes an angl&ith the positive x-axis.

Scattering Angle as a Function of Impact Parameter Using Maxima

Using Eg. (3.10), we can find the scattering angle for difie(@imensionless) impact parameters, for a given (dimen-
sionless) energy. In our code we represErty e, and represerit by b.

(%il1) fpprintprec:8$
(%i2) angle_a(e,b) :=
block([numer],numer:true,
2*xasin(l/sqrt(1 + 4 *e"2 *b"2)) *180/%pi)$
(%i3) for b in [10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001] d 0
print(" ",b," ",angle_a(1,b))$
10 5.7248105
5 11.421186
15 36.869898
1 53.130102
0.8 64.010766
0.5 90.0
0.3 118.07249
0.1 157.38014
0.01 177.70847
0.001 179.77082

and we can then make a simple plot of the scattering anglegreds versus the (dimensionless) impact parameter.

(%i4) plot2d(angle_a(1,b),[b,0.001,10],[ylabel,"chi- degrees"],
[style,[lines,3])$
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which produces (roughly) the plot

180
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140
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o 1 2 3 4 5 & 7 8 9 10
Figure 5: Analytic Scattering Angle Versagor e = 1

3.3 Numerical Scattering Angle Using Maxima

Although we have analytic results for the case of Rutherfmattering, it will be instructive to pretend that no anialyt
solution can be found and develop numerical methods whichvatalculation of the numerical scattering angle as a
function of energy and impact parameter.

Here is an example functioangle_n(e,b) , which is used to make a table similar to the analytic tabm/ab

(%i1) angle_n(e,b) :=

block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,
w : 1/ *e),
rexpr : 272 -w *z -1,/ * root -> zmin */
iexpr @ 1/(z * sqrt(rexpr)), / * integrate to get phi_inf */

zmin : find_root(rexpr,z,1e-4,1€6),
phi_inf : quad_gagi(iexpr,z,zmin,inf)[1],
(%pi - 2 *phi_inf)  *180/%pi)$
(%i2) bval : [10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001]$
(%i3) for b in bval do
print(" ",b," ",angle_n(1,b))$
10 5.7248105
5 11.421186
1.5 36.869898
1 53.130102
0.8 64.010766
0.5 90.0
0.3  118.07249
0.1 157.38014
0.01 177.70847
0.001  179.77082

We can then make a plot of scattering angle as a function chatnparameter.

(%i4) chival : map(lambda([x],angle_n(1,x)),bval)$

(%i5) fll(chival);

(%05) [5.724810451867294,179.7708171875211,10]

(%i6) plot2d([discrete,bval,chival],[style,[lines,3] ].[xlabel,"b"],
[ylabel,"chi-deg"))$
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which produces the less than perfect plot:
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Figure 6: Numerical Scattering Angle Versufor £ = 1

Clearly, we can add more sample points (by choosing reegues) to get a smoother plot.

In the above calculation, we made use of Maxintarebda function which allows us to avoid defining a named function.
The alternative, “named function” method could look like:

(%i7) func(x) := angle_n(1,x)$
(%i8) chival : map(func,bval);

Both of the above methods of turning a Maxima list into anottst avoid the less efficient loop solution, which might
look like:

(%i9) chival:[]$
(%i10) for b in bval do (
chival : cons(angle_n(1,b),chival))$
(%i11) chival : reverse(chival)$
(%i12) fli(chival);
(%012) [5.724810451867294,179.7708171875211,10]

3.4 Numerical Scattering AngleUsing R

Here we will first translate the Maxima functi@ngle(e,b) into R In the filerutherford_repulse.mac we
have the Maxima code

/= some (e,b) dependent angles and rmin.
thetaO defines the angle of closest approach
(counter-clockwise from positive x axis)
phi_inf defines the rotation angle of r-vec as the
incident particle comes from theta=%pi, r = inf to
the point of closest approach, so
thetaO = %pi - phi_inf.
chi is the scattering angle
chi = %pi - 2 =*phi_inf
rmin is the distance of closest approach
to the scattering center = ( x = 0, y = 0)
*/
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angles(e,b) :=
block(Jw,phi_inf,theta0,chi,oldfp,rmin,numer],numer
oldfp : fpprintprec,
fpprintprec : 8,
w : 1l/(e *b),
phi_inf : acos(w/sqrt(4+w"2)),
print(" phi_inf = ",phi_inf," rad, or ",phi_inf

thetaO : %pi - phi_inf,

print(" thetaO = " theta0," rad, or "thetaO
chi : %pi - 2 *phi_inf,

print(" chi = ",chi," rad, or ",chi

rmin @ b *(w + sqrti(4+w"2))/2,

print(" rmin = ",rmin),

fpprintprec : oldfp,

done)$

* 180/%pi," deg"),

‘true,

*180/%pi," deg"),

* 180/%pi," deg"),

To translate this function, which makes use of the analg@sulits derived using Maxima above, we can follow the steps

in the code: 1.) replace with =, 2.) remove commas at the ends of complete statements pBageprint(...) with
cat(... "\n") , 4.) replaceopi with pi .
Of course, there is the more basic replacemangles(e,b) := block([local variables], code)$ re-

placed withangles = function(e,b) {code }

We don’t need to declare local variables in fRdunction definition, and the default number of digits prohteut for

floating point numbers needs no attention.

We write this translation inside Notepad2 (or Notepad+-s}.fiand then paste the result into Rgui.

> angles = function(e,b) {

+ w = 1/e/b

+ phi_inf = acos(w/sqrt(4+w"2))

+ cat(" phi_inf = ",phi_inf," rad, or ",phi_inf
+ thetaO = pi - phi_inf

+ cat(" thetaO = "theta0," rad, or ";thetaO
+ chi = pi - 2 *phi_inf

+ cat(" chi = ",chi," rad, or ",chi

+ rmin = b *(w + sqrt(4+w"2))/2

+ cat(" rmin = ",rmin,"\n")}

> angles(1,1)

phi_inf = 1.107149
theta0 = 2.034444
chi = 0.9272952
rmin = 1.618034

rad, or
rad, or
rad, or

63.43495 deg
116.5651 deg
53.1301 deg

*180/pi," deg\n")

*180/pi," deg\n")

*180/pi," deg\n")

Next we translatangle_n(e,b)

, which produces, using numerical means, the scatterinig angverted into degrees,

into R syntax and paste it inf We can then print out a simple table of corresponding vatiiésandy.

> angle_n = function(e,b) {

+ w = 1/(b *e)

+ fr = function(z) 272 - w xz -1 #

+ zmin = uniroot(fr, c(le-4, 1e6),tol=1e-10)$root

+ phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin,
+ (pi - 2 =phi_inf)  *180/pi}

> angle_n(1,1)
[1] 53.1301

root -> zmin

Inf)$val
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> bval = ¢(10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001)
> for (b in bval) cat(" ",b,"” ",angle_n(1,b),"\n")

10 5.72481
5 11.42119
15 36.8699
1 53.1301
0.8  64.01077
0.5 90

0.3  118.0725
0.1 157.3801
0.01 177.7085
0.001 179.7709

We can then make a simple plot of the above values of the sogttangles, using th® function sapply to apply a
function to a vector, returning a vectongwvec = sapply (oldvec, func) )

> chival = sapply(bval,function(x) angle_n(1,x))

> head(chival)

[1] 5.723923 11.420227 37.289532 53.351958 64.009976 90.2 53342
> angle_n(1,10)

[1] 5.723923

> angle_n(1,5)

[1] 11.42023

> tail(chival)

[1] 64.00998 90.25334 118.07137 157.37981 177.70850 179.7 7094
> plot(bval,chival,type="I",lIwd=3,col="blue" xlab = "b

+ ylab = "chi")

> abline(v=0)

which produces the same crude plot (because we don't hawugkersamples)

150
|

chi-deg
100
|

Figure 7:yin degrees versus F = 1
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3.5 Review of Maxima's Runge-Kutta rk() with the Simple Harmonic Oscillator

We will use Maxima’s Runge-Kutta integratok() for plotting the scattering trajectory. Here we review tlse wf
rk() inthe context of the simple harmonic oscillator with unitipd and intial conditions:(0) = 1 andv,(0) = 0. The
utility functionsfll , head, tail , andtake are loaded bynaxima-init.mac and are in the fil&lutil.mac

The syntax used withk here to describe the pair of first order differential equaioz /dt = v,, dv,/dt = —4 7%z is

rk( [dx/dt,dvx/dt],[x,vx],[x0,vx0], [t,t0,tmax,dt] )

and in this examplek() returns a list of the fornj [tO, x0, vxO],[t0 + dt, x1, vx1],...]

(%i1) pts : rk(Jvx,-4 *%pi“2 *x],[x,vx],[1,0],[t,0,1,0.01])$
(%i2) fll(pts);
(%02) [[0.0,1.0,0.0],[1.0,0.99999995729235,5.1201813 129342355E-6],101]

(%i3) tL : take(pts,1)$
(%id) fll(tL);
(%04) [0.0,1.0,101]

Here we make a plot of(¢) versust.

(%i5) xL : take(pts,2)$

(%i6) fll(xL);

(%06) [1.0,0.99999995729235,101]

(%i7) plot2d([discrete,tL,xL],[x,0,1],[xlabel,"T"],[ ylabel,"X"],
[style,[lines,3]])$

Here we make a plot af,(¢) versust.

(%i8) vxL : take(pts,3)$

(%i9) fll(vxL);

(%09) [0.0,5.1201813129342355E-6,101]

(%i10) plot2d([discrete,tL,vxL],[x,0,1],[xlabel,"T"] J[ylabel,"Vx"],
[style,[lines,3])$

3.6 Scattering Trajectory Plot Using Maxima

The filerutherford_repulse.mac contains the function
orbit_plotl(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax) which provides maximum flexibility for the task of
drawing a scattering orbit. The code uses the Maxima footler Runge-Kutta integratok .

Here are three examples of use, first for the ecasel andb = 1 ( x, the scattering angle, is representedchiy in the
code).

(%i1) orbit_plot1(1,1,5,5,0.01,5,-4.54,1.87,0,4)$
rmin = 1.618034

phi_inf = 1.1071487 rad or 63.434949 deg
thetaO = 2.0344439 rad or 116.56505 deg
chi = 0.927295 rad, or 53.130102 deg

xc = -0.723607 yc = 1.4472136

vex = 0.552786 vey = 0.276393

xa = -05

backwards from xc, yc

xfirst = -4.536487

forwards from xc, yc

xlast = 1.8729016 ylast = 4.2659325
vx_last = 0.54218 vy last = 0.701

xf = 25 yf = 50




which produces:
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Figure 8:e =1,b=1, x =53 deg

Next fore = 1 andb = 0.6

18

(%i2) orbit_plot1(1,0.6,5.4,5,0.01,5,-4.54,1.87,0,4)
rmin = 1.281025

phi_inf = 0.876058 rad or 50.194429 deg
thetaO = 2.2655346 rad or 129.80557 deg
chi = 1.3894766 rad, or 79.611142 deg
xc = -0.820092 yc = 0.984111

vex = 0.359816 vecy = 0.299846

xa = -05

backwards from xc, yc

xfirst = -4.7366598

forwards from xc, yc

xlast = 0.162247 ylast = 4.4261007
vx_last = 0.167226 vy last = 0.86386

xf = 0.401639 yf = 5.5180328

which produces

35

25 -

15 ¢

05 r

Figure 9:e = 1,b = 0.6, x = 79.6 deg
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Next fore = 1 andb = 0.3

(%i3) orbit_plot1(1,0.3,5.4,5.5,0.01,5,-4.54,1.87,0, 4)$
rmin = 1.0830952

phi_inf = 0.54042 rad or 30.963757 deg
thetaO = 2.6011732 rad or 149.03624 deg
chi = 2.0607537 rad, or 118.07249 deg
xc = -0.928746 yc = 0.557248

vex = 0.142507 vey = 0.237512

xa = -05

backwards from xc, yc

xfirst = -4.6088375

forwards from xc, yc

xlast = -2.4910817 ylast = 3.9952223
vx_last = -0.414274 vy last = 0.784846

xf = -2.8529412 yf = 4.7117647

which produces

35t

25

15

05 r

X

Figure 10:e = 1,b = 0.3, x = 118 deg

The code used to plot the Rutherford scattering trajectivgrga value ofE (represented by in the code) and
(represented bl in the code), first calliit(e,b) to calculate local (to the calling function) values)ofrepresented
by chi ), the cartesian coordinatés., 7.) of the point of closest approach (C), the x-coordinatef the intersection of
the lineg = b and the line OC, and finally the cartesian velocity compomanipoint C (the point of closest approach).
Sinced7/dt = 0 at the point C, Eq. (2.50) then implies that

Vey = b sin(6y) /Fonin, Vey = —b cos(0y) /Trmin (3.11)

The code then uses Maximals function to integrate both forward in time from point C foetpart of the orbit in which
d7/dt > 0 and also backward in time from point C for the part of the airbivhichd 7/d ¢ < 0.
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Thus, inside the functionrbit_plotl are the lines{ is represented by, etc.)

init(e,b),

/ = symbolic expressions for acceleration components */

rmag : sqrt(x’2 + y'2), / * rmag in terms of x and y */

dvxdt : x/2/e/rmag’3, / * dvx/dt repulsive rutherford case */
dvydt : y/2/e/rmag3, / * dvy/dt =/

/ = integrate backwards from xc, yc */

rkpts : rk([vx, dvxdt, vy, dvydt ],
[x,vx,y,wy],[xc,vex,ye,veyl,[t,0,-tm,-dt]),

xL : take(rkpts,2),

yL : take(rkpts,4),

pm : [discrete, xL, yL],

which will be the points plotted for the earlier part of thajéctory, and then the lines

/ = integrate forwards from xc,yc */

rkpts : rk([vx, dvxdt, vy, dvydt ],
[x,vx,y,vy],[xc,vex,ye,veyl,[t,0,tp,dt]),

xL : take(rkpts,2),

yL : take(rkpts,4),

pp : [discrete, xL, yL],

which will be the points plotted for the later part of the &etory. In both functions(xc, yc) representz.,y.) and
( vex, vey)  representi.., U.,) and these are locally available after calling(e,b)

In this function, a homemade functidake(mlist,n) is used to create a liglL of the x coordinates and a ligt. of
the y coordinates, using the syntelx : take(pts, 2) andyL : take(pts, 4) sincerk() , in this example,

returns a list with elements of the forfip X, vx, y, vy]

The functiontake(mL,n)  has the definition

take(%al,%nn) = (map(lambda([x],part(x,%nn)), %al))$

The syntax used withk here is

rk( [dx/dt,dvx/dt,dy/dt,dvy/dt],[x,vX,y,vy],[x0,vX0, y0,vy0], [t,t0,tmax,dt] )

in which the first argument is the list of the right-hand sidédour first-order differential equations and is based on
Egs. (2.47) and (3.2), leading to, for example

d v, T x
e 3.12
dt 2E73 2E(f2+g2)3/2 ( )
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3.7 Review of R’s odeg() with the Simple Harmonic Oscillator

The fileshol.R containsRk code to integrate the simple harmonic oscillator systerh wiiit period and intial conditions
x0 = 1, vxO = 0 and make a plot of both the positianand the velocity componenk as functions of the time.

## shol.R
## simple harmonic oscillator with period = 1
## produces side by side plots of
# x vs t and vx vs t
yini = ¢(x = 1, vx = 0)
times = seq(0, 1, 0.001)
sho = function(t, y, parms) {
with( as.list(y), {

dx = vx

dvx = -4 *pi"2 *x

list( c(dx, dvx) ) } ) }
out = ode(times = times, y = yini, func = sho, parms = NULL)
plot(out, lwd = 2)

We first load in thedeSolve package, and then load and run this script wsiblirce , as usual:

> library(deSolve)
> source("c:/kl/shol.R")
> head(out)
time X VX
[1,] 0.000 1.0000000 0.00000000
[2,] 0.001 0.9999803 -0.03947803
[3,] 0.002 0.9999210 -0.07895450
[4,] 0.003 0.9998224 -0.11842785
[5,] 0.004 0.9996842 -0.15789672
[6,] 0.005 0.9995066 -0.19735930

which produces the plot

1.0

0.5
|

0.0

-1.0
|

00 02 04 06 08 10 00 02 04 06 08 10

time time

Figure 11: Position and Velocity for SHO with Unit Period
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The side effect of loading in the packadeSolve is to set up some plot defaults which have been accepted iabitne

example.

We can then return to one plot per row, and plot the velocityponent versus the position (a phase space plot) with

> par(mfrow = c(1,1))
> plot(out[,"x"], out[,"vx"],type = "I",lwd = 3,col = "blue
+ xlab = "X", ylab = "Vx")

which produces the single plot

-1.0 -0.5 0.0 0.5 1.0

Figure 12: Velocity vs. Position for SHO with Unit Period

R vectors containing the discrete positions and velocity ponents can be extracted from tiega.frame
ode.

produced by

> xL = out[,"x"]

> head(xL)

[1] 1.0000000 0.9999803 0.9999210 0.9998224 0.9996842 0.9 995066
> vxL = out[,"vx"]

> head(vxL)

[1] 0.00000000 -0.03947803 -0.07895450 -0.11842785 -0.15 789672
[6] -0.19735930

TheRvector containing the discrete times can also be extracted

> tL = out[,1]
> head(tL)
[1] 0.000 0.001 0.002 0.003 0.004 0.005

and we could have usealit[,2]  to get the positions, etc.
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## sho3.R
## simple harmonic oscillator with period = 1
## produces side by side plots of
# y vs tand vy vst
yini = c(y = 1, vy = 0)
times = seq(0, 1, 0.001)
sho = function(t, y, parms) {
with( as.list(y), {
dy = vy
dvy = -4 *pi"2 *y
list( c(dy, dvy) ) } ) }

out = ode(times = times, y = yini, func = sho, parms = NULL)
plot(out, lwd = 2)

We get the same plots as before, and we can access the el@htém@data.frame  as before. Here we also define the

R functionfll  for use.

> library(deSolve)

> source("c:/k1/sho3.R")

> fll = function(xL) {

+ xlen = length(xL)

+ cat(" ",xL[1]," ",xL[xlen]," "xlen,"\n") }
> head(out)

time y vy
[1,] 0.000 1.0000000 0.00000000
[2,] 0.001 0.9999803 -0.03947803
[3,] 0.002 0.9999210 -0.07895450
[4,] 0.003 0.9998224 -0.11842785
[5,] 0.004 0.9996842 -0.15789672
[6,] 0.005 0.9995066 -0.19735930
> tL = out[,1]
> fli(tL)
0 1 1001
yL = out[,"y"]
fll(yL)
1 1 1001
vyL = out[,"vy"]
fll(vyL)
0  3.247125e-07 1001
> tail(yL,n=2)
[1] 0.9999803 1.0000000

vV VvV

vV VvV

3.8 Scattering Trajectory Plot Using R

The filerutherford_repulse.R contains the function

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax)

which provides much flexibility for the task of drawing a deaing orbit. The code uses theSolve R package integrator

ode() , and thedeSolve package must be loaded, usiligary(deSolve)
callsode() .

before using the part of the code which
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> source("c:/k1/rutherford_repulse.R")

> library(deSolve)

> orbit_plot1(1,1,5.5,5,0.01,5,-4.54,1.87,0,4)
rmin = 1.618034

phi_inf = 1.107149 rad or 63.43495 deg
thetaO = 2.034444 rad or 116.5651 deg
chi = 0.9272952 rad, or 53.1301 deg
xc = -0.7236068 yc = 1.447214

vex = 0.5527864 vcy = 0.2763932

xa = -0.5

backwards from xc, yc

xfirst = -4.982187

forwards from xc, yc

xlast = 1.872902 ylast = 4.265932
vx_last = 0.5421801 vy last = 0.7009998
xf= 25 yf= 5

which produces the scattering trajectory plot

Figure 13.e = 1,b =1, x = 53 deg

See the discussion in Sec. ( 3.6), in which Maxima is used|fus pf trajectories, for some details, which still form the
basis for theR code, with some obvious translations and differences,cepein how the final plot is built up in stages.

The R version ofinit(e,b) defines some parameters and makes them visible to the catiigpnment (in this case
orbit_plotl ) by using the special assignment syntax<- 10 , for example. (In the code comments, the word
‘global’ refers to parameter visibility in the calling emenment.)

## init(e,b) specific to repulsive rutherford case,

#t uses analytic expressions to produce global definitions
#t of chi,xc,yc, vex,vey,and xa. Besides printing out

#it these values, init(e,b) also prints

#it out the values of rmin, phi_inf, and thetaO.
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init = function(e,b) {
w = 1l/elb
rmin = b *(w + sqrt(4+w"2))/2  # repulsive case
cat(" rmin = ",rmin,"\n")
phi_inf = acos(w/sqrt(4+w"2))  # repulsive case
cat(" phi_inf = ", phi_inf," rad or ", phi_inf * 180/pi," deg\n")
thetaO = pi - phi_inf
cat(" thetaO = "/theta0," rad or ", thetaO * 180/pi," deg\n")
chi <<- pi - 2 «phi_inf  # global parameter chi in radians
cat(" chi = ", chi, " rad, or ", chi * 180/pi," deg\n")
# point of closest approach
XC <<- rmin *cos(theta0O) # global
yC <<- rmin  *sin(theta0) # global
VCX <<- b *sin(theta0)/rmin # global
vey <<- -b  *cos(thetaO)/rmin # global
cat(" xc = ", xc," yc =", yc,"\n")
cat(" vex =", vex," vey = ", vecy,"\n")
#  x-intersection of rmin line with y=b line
Xxa <<-  xc *blyc # global
cat(" xa = "xa,"\n") }

Then, inside théR function orbit_plotl are the lines:

# define local xc, yc, vex, vey, xa, chi
init(e,b)

trajec = function(t, y, parms) {
with( as.list(y), {
r = sqgrt(x’2 + y'2)

dx = vx
dvx = x/2/elr"3  # repulsive case
dy = vy

dvy = y/2/e/lr"'3  # repulsive case
list( c(dx, dvx, dy, dvy) ) } ) }

#  integrate backwards from xc, yc

yini = ¢(X = Xc, VX = VCX, Y = YyC, Vy = vcy)

times = seq(0, -tm, -dt)

out = ode(times = times, y = yini, func = trajec, parms = NULL)
xL = out[,"x"]

yL = out[,"y"]

plot(xL, yL, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
type = "I", col = "blue", lwd = 3, xlab = "X",
ylab = "Y")

#  integrate forwards from xc,yc

times = seq(0, tp, dt)

out = ode(times = times, y = yini, func = trajec, parms = NULL)
xL = out[,"x"]

yL = out[,"y"]

lines(xL, yL, lwd = 3, col = "blue")

as well as lines for other graphic elements and orbit detaitquts.
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3.9 Analytic Differential Cross Section vs. Scattering Angle Using Maxima

Using Egs. (2.51) and (3.10), we have

. B 1
sin(x/2) = (114 (EE)2)1/2 (3.13)

1/2

so a right triangle has on the side oppositg/2 and (1 + 4 (E'b)?)/~ on the hypotenuse, and herz& b on the side

adjacent toy/2. Hence

_ t(x/2
cot(y/2) = 2Eb, b= % (3.14)
We then need the first derivativih/d .

(@i7) diff(cot(x/2)/2/e x);

(%07) -csc(x/2)2/(4 *e)
v ab
1
—= (3.15)
dx 4 F sin®(x/2)
Hence . . y , .
o o Q
S or = 3.16
dQ 16 E? sin?(y/2)’ d§2 <4 E) sint(y/2) (3.16)

If we plot the natural log of the differential scattering sscsection (using dimensionless units) versus the scgjtarigle
X, with £ = 1, using the code

(%i6) plot2d(log(1/(16 *sin(x/2)"4)),[x,0.01,1],[xlabel,"chi"],
[ylabel,"In(dsigma/do)"],[style,[lines,3]])$

we get:

20

In(dsigma/do)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
chi

Figure 14:In(d o /d ) versusy, E = 1
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3.10 Numerical Differential Cross Section vs. Scattering Angle Using Maxima

We pretend we do not have the analytic result for the scaggeangle as a function of the energy and impact parameter,
and use numerical methods to plot the natural logarithmeptiedicted (dimensionless) differential cross sectiosuse
the scattering angle. This provides an opportunity to useesults for the numerical approximation of a first derivati

sigma_points  calls achi(e,b)  to construct a listhiL of scattering angles (in radians) corresponding to a set of
values of the dimensionless impact paramételhe energye, the starting impact parameter valbe, the maximum
impact parameter valuamax, and the impact parameter incremdhtare inputs. The functiofid(num,dx,funcL) is
called with the syntaxid(nb,db,chilL) to obtain a list of first derivativeg y/d b at the impact parameter grid points
and stored in the ligichi_dbL . sigma_points  returns a list of lists[chi-list, log(dsig)-list] . The value of
each element dfigL in the code is based on

b 1
sin(x) |dx/db]|

The three functions just mentioned are definedlitherford_repulse.mac

d5/dS) = (3.17)

/ = sigma_points(e,b0,bmax,db) produces a list of two lists:
[chi-list, log(d_sig/d_omega)-list] using numerical met hods.
Typical list arithmetic Maxima methods replace
conventional loop methods here.
calls achi() and f1d() */

sigma_points(ee,b0,bmax,db):=
block([nb,bL,chiL,dchi_dbL,sigL,numer],numer:true,
bL : makelist(b,b,b0,bmax,db),
nb : length(bL),
chiL : map(lambda([x], achi(ee,x)), bL),
dchi_dbL : fld(nb,db,chiL),
sigL : abs(bL/sin(chiL)/dchi_dbL),
[chiL,log(sigL)])$

/ = achi(e,b) returns the scattering angle in radians

using numerical, rather than analytical, methods. */
achi(e,b) =
block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,
w : 1/(b *e),
rexpr : 272 -w *z -1,/ * root -> zmin */
iexpr : 1/(z * sgrt(rexpr)), / * integrate to get phi_inf */

zmin : find_root(rexpr,z,1e-4,1e6),
phi_inf : quad_gagi(iexpr,z,zmin,inf)[1],
(%pi - 2 *phi_inf))$

| *

(%i7) achi(1,1);
(%07) 0.927295
(%i8) deg(%);
(%08) 53.130102
*/
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[ = fld(nv,hh,gL) returns a list of first derivatives
at the grid points for a function whose
nv values at the grid points separated by hh
are in the list gL */

fid(nv,hh,gL) =
block([j,fpL:[],fp0,fpl,numer],numer:true,
for j:2 thru nv-1 do
fpL : cons( (gL[j+1] - gL[j-1])/2/hh,fpL),
fpL : reverse(fpL),
/= use linear interpolation to define first and
last elements of fpL */
fp0O : 2 =fpL[1] - fpL[2],
fpl : 2 *fpL[nv-2] - fpL[nv-3],
fpL : cons(fp0,fpL),
fpL : append(fpL,[fpl]),
fpL)$

Here is an example of use which compares the strictly nuesjgproach to the analytic.

(%il) load(rutherford_repulse);

(%01) "c:/k1/rutherford_repulse.mac"

(%i2) [chival,sigval] : sigma_points(1,0.1,50,0.1)$

(%i3) time(%);

(%03) [15.44]

(%i4) fli(chival);

(%04) [2.7468015,0.0199993,500]

(%i5) fli(sigval);

(%05) [-2.712689,15.648312,500]

(%i6) chi_min : Imin(chival);

(%06) 0.0199993

(%i7) chi_max : Imax(chival);

(%07) 2.7468015

(%i8) plot2d([[discrete, chival,sigval], log(1/16/sin( x/2)°4)],
[x,chi_min,chi_max],[xlabel,"chi"],
[ylabel,"In(dsigma/do)"],[style,[lines,3]],
[legend,"numerical”,"analytic"])$

produces the plot

16 . . . . S
numerical

analytic

14

12 H

10 r

o)
T

In(dsigma/do)
(o))

0.5 1 15 2 25

Figure 15:In(d o /d ) versusy, E = 1

We see that if we sample enough points, we get agreement dretive analytic result and the numerical method.
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3.11 Numerical Differential Cross Section vs. Scattering AngleUsing R

We use numerical methods wikhto calculate the scattering angle as a function of the eremgyimpact parameter, and
use numerical methods to plot the natural logarithm of tleglisted (dimensionless) differential cross section \etha
scattering angle.

sigma_points  callsachi(e,b)  to construct &R vectorchiL of scattering angles (in radians) corresponding to a set
of values of the dimensionless impact paramétefhe energye, the starting impact parameter valo@, the maximum
impact parametdsmax, and the impact parameter incremehtare inputs. The functiofid(num,dx,funcL) is called
with the inputsfid(nb,db,chilL) to obtain aR vector of first derivatives! x /d b at the impact parameter grid points
and stored in the vectaichi_dbL . sigma_points  returns aR list of two R vectors:

{chi-vec, log(dsig)-vec} . The value of each element sifjL in the code is based on

b 1
sin(x) |dx/db]|

The following four functions are defined intherford_repulse.R

d5/dS) = (3.18)

#it sigma_points(e,b0,bmax,db) produces a list of two lists :

#it [chi-list, log(d_sig/d_omega)-list] using numerical m ethods.
#it Typical list arithmetic Maxima methods replace

#it conventional loop methods here.

#it calls achi() and f1d()

sigma_points = function(ee,b0,bmax,db) {
bL = seq(from=b0, to=bmax, by=db)
nb = length(bL)
chiL = sapply(bL, function(x) achi(ee,x))
dchi_dbL = fld(nb, db, chilL)
sigL = abs(bL/sin(chiL)/dchi_dbL)
list( chilL,log(sigL))}

## scattering angle in radians

achi = function(e,b) {

w = 1/(b *e)
fr = function(z) 2’2 - w xz -1 # root -> zmin
zmin = uniroot(fr, c(le-4, 1e6),tol = 1le-10)$root
phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin, | nf)$val
pi - 2 *phi_inf}

#it fid(nv,hh,gL) returns a vector of first derivatives

#it at the nv grid points for a function whose

#it nv values at the grid points separated by hh

#it are in the vector gL. Would be more accurate if

#it we used quadratic interpolation to define the

#it end of grid derivatives.

fid = function(nv,hh,gL) {
fpL = vector(mode = "numeric", length = nv)
for (j in 2:(nv-1)) fpL[j] = (gL[j+1] - gL[j-1])/2/hh
fpL[l] = 2 =fpL[2] - fpL[3]
fpL[nv] = 2 *fpL[nv-1] - fpL[nv-2]
fpL}
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## print out first, last and length of a vector

fll = function(xL) {
xlen = length(xL)
cat(" ",xL[1]," "xL[xlen]," ",xlen,"\n") }

Here is an example of using these functions to make a ploteoh#ttural log of the differential scattering cross-section
versus the scattering angle

source("rutherford_repulse.R")

spts = sigma_points(1,0.1,50,0.1)

chival = spts[[1]]

sigval = spts[[2]]

fli(chival)

2.746802  0.01999933 500

> fli(sigval)

-2.712689  15.64831 500

> chi_min = min(chival); chi_min

[1] 0.01999933

> chi_max = max(chival); chi_max

[1] 2.746802

plot(chival, sigval, xlim = c(chi_min,chi_max),
type="I", col = "blue", lwd = 3,
xlab="chi", ylab="log(sigma)")

abline(h=0,v=0)

curve(log(1/16/sin(x/2)"4),chi_min,chi_max,n=200,
add=TRUE,col = "red"lwd = 3)

VVV VYV

\%

+V V + +

which produces the plot
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log(sigma)
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chi

Figure 16:In(d o /d ) versusy, E = 1

The analytic curve (in red) lies on top of the numerical cuiveblue), provided we take enough samples using the
numerical method.
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4 Attractive Rutherford Scattering

Here we treat the case in which the potential energy is

a EV?
V(r)=—— >0, V, =—+ — 4.1
(r) — a>0, er (1) e (4.1)
_ T o 1 Eb?
V() ==, Vers(r) = —— + —5- (4.2)
4.1 Plot of Effective Potential - Attractive Rutherford
The functionVeff_plot  (from rutherford_attract.mac ) has the definition
Veff_plot(e,b,r0,r1,xmin,xmax,ymin,ymax) :=
block(Jw,rmin,energy_line,numer],numer:true,
w : 1/elb,
rmin : b *(-w + sqrt(4+w"2))/2, |/ * attractive case */
print(" rmin = ",rmin),

energy_line : [discrete,[[rmin,e],[r1,e]]],

plot2d([-1/r + e *b™2/r"2, energy_line],[r,r0,rl], [x,xmin,xmax],
[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff']))$

The parametamin is the minimum radial distance between the incident parcid the scattering center. The invocation

(%il) Veff plot(1,1,0.4,8,0.4,8,-1,2)$
rmin = 0.618034
plot2d: some values were clipped.

choosesEl = 1, b = 1, and chooses to plot the expression defineddsf over the rangér,0.4,8] . The canvas

horizontal extent is determined by the argumemién andxmax. The canvas vertical extent is determined by the argu-

mentsymin andymax. This produces a plot of both the effective potential enexgg also the constant total energy of
the incident particle (in red).

2

15

Veff

05 r

-05 +

1 2 3 4 5 6 7 8
r

Figure 17: Effective Potential faf =1, b =1
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4.2 Analyticand Numeric Scattering Angle Using Maxima - Attractive Rutherford

Continuing with the attractive Rutherford case, from Eq442 we then have

o0 dr

hoo = b _ S (4.3)
Fin T2/ 1+ 1/(ET) — b2 /72
We replace the integration variabieoy » = /b, as before, and define = 1/(E b), as before, to get
o dz
¢oo = (4-4)

zmin 2V 22+ wz—1

in which z,,;, is the positive value ot for which the argument of the square root is zero. This gihesresult (see
Maxima session just below)

oo = g +sin~! <ﬁ> , w=1/(Eb). (4.5)
For attractive scatteringj., > 7/2 and
¢oo+(¢oo_|X|):7Ta X:W_2¢oo<0 (46)
w
= —2sin"! [ —— 4.7
X () &0

We takey to be a negative number here with the magnitudg tie deviation below the forward ling = b (or the line
y =b).

We find z,,,;,, = % (V4 + w? — w) and hence,,,;,, = g (V4 + w? — w).

We letf, be the positive angle between the positive x-axis and treetiim ofr(t) at the moment the incident particle
is at its minimum distance from the scattering center (thgmof the coordinate system). As befof®,+ ¢, = m, SO
90 =T — (;500.

Here is a short Maxima session to find the above results.

(%il) rs : solve(z’2 + w xz -1,2);

(%01) [z = -(sqrt(w"2+4)+w)/2,z = (sqrt(w"2+4)-w)/2]

(%i2) zmin : rhs(rs[2]);

(%02) (sqrt(w"2+4)-w)/2

(%i3) assume(w>0);

(%03) [w > 0]

(%i4) phi_inf : integrate(1/(z *sqrt(z’2 + w *z -1)),z,zmin,inf);
(%04) asin(w/sqrt(w"2+4))+%pi/2

Using the functiorangles(e,b)  from rutherford_attract.mac ,

(%i5) angles(1,1)$

phi_inf = 2.0344439 rad, or 116.56505 deg
thetaO = 1.1071487 rad, or 63.434949 deg
chi = -0.927295 rad, or -53.130102 deg
rmin = 0.618034

Since the magnitude of the scattering angle as a functidreadimensionless parametdiandb is the same as

in the case of repulsive Rutherford scattering, the plote®@magnitude of the scattering angle as a function of
b for given E are the same, and the plots of the natural logarithm of thenihade of the differential scattering
cross section as a function of the magnitude of the scagtamgle are the same as the repulsive case.
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In rutherford_attract.mac is the functionangle_a(e,b)

33

which incorporates the analytic formula for the scatter-

ing angle:

[ = analytic scattering angle in degrees for given
values of Ebar and bbar */

angle_a(e,b) =

block([numer],numer:true,
-2 *asin(l/sqrt(1 + 4 *e"2 *b"2)) *180/%pi)$

Using this function, we can make a simple plot of scatteringl@versus impact parameter for the case- 1.

(%i6) plot2d(angle_a(1,b),[b,0.01,6],[ylabel,"chi-de g,

[style,[lines,3]])$

which produces the plot

chi-deg

b

Figure 18: Scattering Angle Versagor E = 1

are the three numerical functions:

Also in the filerutherford_attract.mac
deg(z) := block([numer],numer:true, z *180/%pi)$
achi(e,b) =
block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,
w : 1(b *e),
rexpr : 272 + w +*z -1,/ * root -> zmin for attractive case */
iexpr : 1/(z * sqrt(rexpr)), / * integrate to get phi_inf */

zmin : find_root(rexpr,z,1e-4,1e6),
phi_inf : quad_gagi(iexpr,z,zmin,inf)[1],
(%pi - 2 *phi_inf))$

angle_n(e,b) := (deg(achi(e,b)))$

Using this numerical approach instead, we can also maketamaons plot by using theambda function:

(%i7) plot2d(lambda([b],angle_n(1,b)),[b,0.01,6],[yl abel,"chi-deg"],

[style,[lines,3]])$
(%i8) time(%);
(%08) [25.86]

which produces the same plot as produced usinige_a(e,b) , but takes a longer time.
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Of course a faster method would be to define a list of valueseirhpact parameter, and map the conversion to scattering
angle onto that list, producing a list of corresponding tecattg angles in a shorter time, as in

(%i9) bL : makelist(b,b,0.1,5,0.1)$

(%i10) fli(bL);

(%010) [0.1,5.0,50]

(%i11) chiL : map(lambda([b],angle_n(1,b)), bL)$

(%i12) time(%);

(%012) [1.61]

(%i13) fli(chiL);

(%013) [-157.38014,-11.421186,50]

(%i14) plot2d([discrete,bL,chil],[x,0,5],[xlabel,"b" ].[ylabel,"chi-deg"],
[style,[lines,3])$

which produces

-20 +

-40 |

-60 +

-80 +

chi-deg

-100

-120

-140 -

-160

b

Figure 19: Scattering Angle Versador E = 1

4.3 Numerical Scattering Angle Versus I mpact Parameter Using R - Attractive Rutherford

In the filerutherford_attract.R are the three functions

## convert radians to degrees
deg = function(z) z * 180/pi

## scattering angle in radians via numerical methods
## for attractive Rutherford scattering
achi = function(e,b) {

w = 1/(b *e)
fr = function(z) 272 + w *xz -1 # root -> zmin
zmin = uniroot(fr, c(le-4, 1le6),tol = le-10)$root
phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin, | nf)$val
pi - 2 =*phi_inf}
## angle_n(e,b) attractive rutherford case
#it numerical scattering angle in degrees for given
#it values of Ebar and bbar

angle_n = function(e,b) deg(achi(e,b))
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Using these functions, we can make a simple plot of scaffeaitgle versus impact paramter for the case of attractive
Rutherford scattering.

> bL = seq(0.01,6,0.1)
> fli(bL)
0.01 5.91 60
> chiL = sapply(bL,function(x) angle_n(1,x))

> fli(chiL)

-177.7085 -9.671686 60
> plot(bL,chiL,type="I",col="blue",lwd=3,ylab="chi-d eg",xlab="b")
> abline(v=0)

which produces the plot
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Figure 20: Scattering Angle Versagor £ = 1

4.4 Scattering Trajectory Plot Using Maxima and R - Attractive Rutherford

The filerutherford_attract.mac contains the function

orbit_plotl(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax,n extend)

which provides much flexibility for the task of drawing a geaihg orbit. The code uses the Maxima fourth-order Runge-
Kutta integratorrk .

A translation into R with the syntax

orbit_plotl(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax)

is in the file rutherford_attract.R and produces the same plots illustrated here using the Maxansion. The
Maxima version uses the small integeixtend to determine the number of points to use for the extensioheofed line
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which joins the origin to the closest point of the trajectorere are three examples of use of the Maxima version, first
for the casee = 1 andb = 1 ( x, the scattering angle, is representedchiy in the code). The code farbit_plotl
causes printouts (to the screen) of much diagnostic infeomabout the trajectory.

(%i1) orbit_plot1(1,1,5,5,0.01,5,-3,3.4,-2,2,5,1)$
rmin = 0.618034

phi_inf = 2.0344439 rad or 116.56505 deg
thetaO = 1.1071487 rad or 63.434949 deg
chi = -0.927295 rad, or -53.130102 deg
xc = 0.276393 yc = 0.552786

vex = 1.4472136 vey = -0.723607

xa = 0.5

backwards from xc, yc

xfirst = -5.7276639

forwards from xc, yc

xlast = 4.2046373 ylast = -4.0061018
vx_last = 0.655096 vy last = -0.861996

xf = 35 yf = -30

produces
2
15 ]
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Figure 21:E = 1,b =1

and then forE = 1 andb = 0.6,

(%i2) orbit_plot1(1,0.6,5,5,0.01,5,-3,3.4,-2,2,5,1)$
rmin = 0.281025

phi_inf = 2.2655346 rad or 129.80557 deg
thetaO = 0.876058 rad or 50.194429 deg
chi = -1.3894766 rad, or -79.611142 deg
xc = 0.179908 yc = 0.215889

vex = 1.6401844 wvcy = -1.3668203

xa = 0.5

backwards from xc, yc

xfirst = -5.9196184

forwards from xc, yc

xlast = 1.6346676 ylast = -5.7185896
vx_last = 0.198759 vy last = -1.0623693
xf = 1.4016393 yf = -4.3180328
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produces

and forE = 1 andb = 0.3,

15

0.5 \ o
N
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Figure 22:F = 1,b = 0.6

37

rmin 0.0830952

thetaO 0.54042 rad or
chi = -2.0607537 rad, or
XC =

xa = 05

backwards from xc, yc
xfirst = -6.0729577
forwards from xc, yc

phi_inf = 2.6011732 rad or
= 30.963757 deg

-118.07249 deg

0.0712535 yc = 0.0427521

vex = 1.8574929 vey = -3.0958215

xlast = -2.6061534 ylast =
vx_last = -0.506288 vy last = -0.951945
xf = -1.8529412 yf = -4.1117647

(%i3) orbit_plot1(1,0.3,5,5,0.01,5,-3,3.4,-2,2,5,1)$

149.03624 deg

-5.4927368

we get

15

05 r

-05

-1.5

<

Figure 23:F = 1,b = 0.3
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An example of the use of tHe version (which uses a more sophisticated adaptive algoiittan does Maxima) is:

> source("rutherford_attract.R")
> library(deSolve)
> orbit_plot1(1,1,5,5,0.01,5,-3,3.4,-2,2)

rmin = 0.618034

phi_inf = 2.034444 rad or 116.5651 deg
thetaO = 1.107149 rad or 63.43495 deg
chi = -0.9272952 rad, or -53.1301 deg
xc = 0.2763932 yc = 0.5527864

vex = 1.447214 vey = -0.7236068

xa = 0.5

backwards from xc, yc

xfirst = -5.727665

forwards from xc, yc

xlast = 4.204644 ylast = -4.006098
vx_last = 0.6550977 vy last = -0.861996
xf = 35 yf= -3

which produces the plot

Figure 24:E = 1,b=1

Using the Maxima version (which uses a fixed time step), fowargenergy, as you decrease the impact parameter, you
need to finally decrease the integration step size to ackimvect asymptotic behavior: approaching: b ast — —oo,

and thet — +oc orbital elements becoming tangent to the scattering angge We find that we must set = 0.001
whene = 1, b = 0.2 , and we must seft = 0.0001 whene = 1, b = 0.1 ,to get a resulting plot with the correct
asymptotic behavior.

45 Differential Scattering Cross Section - Attractive Rutherford Case

In Section ( 4.2) we found the negative scattering anglehferattractive Rutherford potential case:

L w
X = —2 sin 1 <7*4 n w2> (4.8)
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This implies
sin(|x|/2) = (1 + 4 E?p?)~4/2 (4.9)

Using the same argument as before, this implies that

cot([x|/2) =2Eb, b=-—% (4.10)
and hence _
L (4.11)
dx 4FE sin®(y/2)
We then get the same formal expression as in the repulsiveeRatd case, Eq.( 3.16
do L (4.12)

dQ ~ 16 E? sin?(y/2)

We will use the same approximate numerical method as usdekirepulsive Rutherford case, and compare the results
with the analytic answer. Using Maxima for the cdse= 1,

(%il) load(rutherford_attract);

(%01) "c:/k1/rutherford_attract.mac"

(%i2) [chival,sigval] : sigma_points(1,0.1,50,0.1)$

(%i3) time(%);

(%03) [16.25]

(%i4) fll(chival);

(%04) [-2.7468015,-0.0199993,500]

(%i5) fli(sigval);

(%05) [-2.712689,15.648312,500]

(%i6) chi_min : Imin(chival);

(%06) -2.7468015

(%i7) chi_max : Imax(chival);

(%07) -0.0199993

(%i8) plot2d([[discrete, chival,sigval], log(1/16/sin( x/2)°4)],
[x,chi_min,chi_max],[xlabel,"chi"],
[ylabel,"In(dsigma/do)"],[style,[lines,3]],
[legend,"numerical”,"analytic"])$

which produces the plot
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In(dsigma/do)
[}

-2.5 -2 -1.5 -1 -0.5
chi

Figure 25:F = 1,b =1

which implies agreement (again provided we use enough ssnpthe approximate numerical method).
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UsingRinstead, we get the same agreement:

40

source("rutherford_attract.R")

spts = sigma_points(1,0.1,50,0.1)

chival = spts[[1]]

fll(chival)

-2.746802  -0.01999933 500

sigval = spts[[2]]

> fli(sigval)

-2.712689  15.64831 500

> chi_min = min(chival); chi_min

[1] -2.746802

> chi_max = max(chival); chi_max

[1] -0.01999933

plot(chival, sigval, xlim = c(chi_min,chi_max),
type="I", col = "blue", lwd = 3,
xlab="chi", ylab="log(sigma)")

abline(h=0,v=0)

curve(log(1/16/sin(x/2)"4),chi_min,chi_max,n=200,
add=TRUE,col = "red"lwd = 3)

legend("topleft",col=c("blue","red"),legend=c("num erical","analytic"),

lwd = 2, cex = 1.5)

V V.V V

\%

\%

+V +VV+ 4+

which produces
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Figure 26:FE = 1,b =1
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5 Scattering by the L ennard-Jones Potential

A central potential (energy) expression which implies draative force (on the scattered particle) wheis large and a
repulsive force whenm is small is the Lennard-Jones “6-12” potential

V(r)=4VW ((a/r)12 — (a/r)6) (5.1)
which contains the adjustable parametavith the dimension of length and the adjustable paramigievith the dimen-
sion of energy. The factor of assures thatj is the depth of the potential energy minimum (below the zdrenergy).
The switch from attractive to repulsive force occurs when 2'/6 a.

Defining dimensionless variablés= r/a andV (7) = V/Vj, we get
— 1 1
The dimensionless energy s = E/V} and the dimensionless impact parametérisb/a.

The dimensionless component of acceleration is then, using Eq.(2.47)

d Uy 12 1 2
dt:‘7?<ﬁ‘ﬁﬁ 5:3)
The dimensionlesg component of acceleration is
d vy 12 (1 2
E?Z‘if(ﬁ‘ﬁﬁ (5.4)
For larger
d v, 127
ST (5-3)

and if £ < 0 (for larger) thenw, is increasing with time (attractive region) and:it> 0 (for larger) thenv,, is decreasing
with time (repulsive region). With no restriction on theesiaf 7, d v,./d t changes sign wheh= 21/6 ~ 1.122462.

(%il) 2°(1/6),numer;
(%01) 1.122462048309373

which determines the location of the minimum16f#), where the dimensionless potential (energy) takes thesvalu

(%i2) 4 *(1/X(12) - 1/X°6), x = 2°(1/6);
(%02) -1

The dimensionlessffective potential energy is

Verf(F) = V(F) + E6* /7 (5.6)
The scattering anglg is then
X =7 —2¢x] (5.7)
where - B
¢m:5/ dr | (5.8)
o 1= (= ) - B/

The lower limit7,,;, = (rmn/a) is the largest real (positive) value offor which the argument of the square root
vanishes, and hence the largest real root of the equgtion= 0, where in the code we replacedy r, b by b, and E by
e, and

f(ry=er? —eb?r'® 4+ 4,5 —4=0. (5.9)
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If we make a plot off (r) for e = 1, b = 1, using the code (this and following code islémnard_jones.mac

)

42

(%i3) fplot(e,b,xmin,xmax,ymin,ymax) :=
block([f,numer], numer : true,
f:e *x12 - e *b2*x"10 + 4 *X6 - 4,
plot2d(f,[x, xmin, xmax],[y,ymin,ymax],
[style, [lines, 3]], [ylabel, "],
[xlabel, "r"],[nticks,200]))$
(%i4) fplot(1,1,0.01,2,-10,10)$
plot2d: some values were clipped.

we get the following plot which shows one root neas 1

10

-10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
r

Figure 27: Arg. of Radical foFf = 1,0 =1

which is confirmed byind_root

(%i5) find_root(x"12 - x"10 + 4 *X'6 -4,x,0.1,2);
(%05) 1.0

andrealroots  shows that it is an exact solution:

(%i6) realroots(x"12 - x"10 + 4 *X'6 -4);
(%06) [x = -1,x = 1]

as is obvious from inspection of the expression.

UsingRinstead of Maxima, we get the same plot with (this functiomiennard_jones.R  ):

fplot = function(e,b,xmin,xmax,ymin,ymax) {
curve(e *x12 - e *b"2*x"10 + 4 *X'6 - 4, xmin, xmax,
n=200, col="blue", lwd=3, ylim = c(ymin,ymax),
xlab = "r", ylab = ")
abline(h = 0)}

>
+
+
+
+
> fplot(1,1,0.01,2,-10,10)
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Again, usingRto find rmin locations

>e =1 b=1

> uniroot (function(x) e *X12 - e *b2*x"10 + 4 *xX'6 - 4, ¢(0.1,2),
+ tol = 1e-10 )$root

[1] 1

>e =1, b =03

> uniroot (function(x) e *X'12 - e *h2*x10 + 4 *x6 - 4, c(0.1,2),
+ tol = 1e-10 )$root

[1] 0.9714185

5.1 Effective Lennard-Jones Potential Plots

A Maxima funciton, for the Lennard-Jones case, for a plothefeffective potential energy together with a line for the
energy of the incident particle (in red) endingmain is:

Veff_plot(e,b,r0,r1,xmin,xmax,ymin,ymax) :=
block([r,veff,root_expr,rmin,energy_line,numer],num er:true,
veff : 4 =(r'(-12) - r'(-6)) + e *D"2/r"2,
root expr : 1 - 4 * (/12 - 1/r6)le - b™2/r2,
rmin : map(rhs, realroots(root_expr,1le-15)),
rmin : apply('max, rmin),
energy_line : [discrete,[[rmin,e],[r1,e]]],
plot2d([veff, energy_line],[r,rO,rl], [X,xmin,xmax],
[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff']))$

Here are a few examples of use. Firstéor= 1 andb = 1,

(%i1) Veff_plot(1,1,0.9,3,0.8,3,-0.5,2)$

which produces the plot

15 r

Veff

05

o\

-0.5

r

Figure 28: Effective Potential Energy fér = 1,6 = 1
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A second example at a value of the impact parameter whiclitsésia “wrap-around” orbit is

(%i2) Veff_plot(1,1.66597,1,5,1,5,-0.5,2)$

which produces the plot

15 r

Veff

05

-0.5

1 15 2 25 3 3.5 4 4.5 5
r

Figure 29: Effective Potential Energy fé = 1,b = 1.66597

5.2 Lennard-Jones Trajectory Plots

The Maxima function

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax,n extend,psize)

in the file lennard_jones.mac provides much flexibility in producing a plot of the trajestdor the Lennard-Jones
potential.

Here is an example which prints to the screen diagnosticrimdition about the details of the trajectory.

(%il) orbit_plot1(1,1,5,5,0.01,5,-2,1.2,0,2,4,0.4)$
rmin = 1

phi_inf = 1.0723305 rad or 61.440014 deg
thetaO = 2.0692621 rad or 118.55999 deg
chi = 0.996932 rad, or 57.119973 deg

xc = -0.478079 yc = 0.878317

vex = 0.878317 vecy = 0.478079

xa = -0.544312

backwards from xc, yc

xfirst = -5.6624496

forwards from xc, yc

xlast = 2.2342414 ylast = 5.2982522
vx_last = 0.542905 vy last = 0.839859

xf = 2.1700966 yf = 5.1990458
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and produces the plot

15

05 r

Figure 30: Lennard-Jones Trajectory for=1,b = 1

A case in which the trajectory wraps around the scatteringeceand has a negative scattering angle of abeli5
degrees is produced by the parameters 1 andb = 1.66597 .

%i2) orbit_plot1(1,1.66597,5,13,0.01,5,-4.9,1.5,-2, 4,0.4
(%i2) orbit_plot1(1,1.6659 3,0.0 9 2 2,4,04)%
rmin = 1.256028

phi_inf = 3.1889565 rad or 182.71375 deg

thetaO -0.0473639 rad or -2.7137495 deg
chi = -3.2363204 rad, or -185.4275 deg
xc = 1.2546194 yc = -0.0594681

vex = -0.062799 vcy = -1.3248922

xa = -35.147555

backwards from xc, yc

xfirst = -3.3460942

forwards from xc, yc

xlast = -11.453391 ylast = -0.585262
vx_last = -0.995518 vy last = 0.0945861
xf = -40.125139 yf = 2.1389006

which produces

15

05 r

-05

Figure 31:F = 1, b = 1.66597, x = —185.4 degrees
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5.3 Lennard-Jones Scattering Angle Plots

The Maxima functiorangle_n(e,b)  for the Lennard-Jones case uses numerical methods to te&usnattering angle (in degrees),

given the dimensionless energyand impact parametér. The scattering angle can be either positive or negative.

angle_n(e,b) =
block([root_expr,rmin,phi_inf,numer],numer:true,
root_expr : 1 - 4 *(1/r12 - 1/r6)le - b™2/r"2,
rmin : map(’rhs, realroots(root_expr,le-15)),
rmin : apply('max, rmin),
phi_inf : b *quad_gagi(1/r"2/sgrt(root_expr),r,rmin,inf)[1],
(%pi - 2 *phi_inf)  *180/%pi)$

with the behavior:

(%il) angle_n(1,1);
(%01) 57.119973

For given energe = 1, we can use the Maximaap function withangle_n (provided we also use tHambda function) the
produce a list of scattering angles from a list of values efdlmensionless impact paramker

(%i2) bval : [1,0.8];

(%02) [1,0.8]

(%i3) map(’lambda([x],angle_n(1,x)),bval);
(%03) [57.119973,85.630912]

We can use the Maxima functionakelist to make a list of values df in an organised manner, and then a list of the corresponding

scattering angles (in degrees).

(%i4) bval : makelist(b,b,0.1,3,0.5);

(%04) [0.1,0.6,1.1,1.6,2.1,2.6]

(%i5) chival : map(lambda([x],angle_n(1,x)),bval);

(%05) [168.87958,111.16737,41.099183,-109.10721,-9.3 447236,-2.2820441]

and then make a simple plot which shows both the discreteagaird also joins the points with straight lines:

(%i6) plot2d([[discrete,bval,chival],[discrete,bval, chival],
[discrete,[[0,0],[3,0]]] 1,
[x,0,3],ly,-180,180],[xlabel,"b"],[ylabel,"chi"],
[style,[lines,3,1],[points,2,2,1],[lines,3,5] ],
[legend, false])$

which produces the plot
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Figure 32: Scattering Angles fdt = 1
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The region of impact parameters frdm= 0.4 tob = 2 can then be looked at more carefully:

(%i7) bval : makelist(b,b,0.4,2,0.1);

(%07) [0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1 .5,1.6,1.7,1.8,1.9,2.0]

(%i8) chival : map(lambda([x],angle_n(1,x)),bval);

(%08) [134.94076,123.22066,111.16737,98.679851,85.63 0912,71.853809,57.119973,
41.099183,23.282176,2.8123902,-21.942679,-54.792783 ,-109.10721,
-93.021101,-35.226049,-20.509053,-13.435124]

(%i9) plot2d([[discrete,bval,chival],[discrete,bval, chival],

[discrete,[[0.3,0],[2.2,0]]] 1.
[x,0.3, 2.2],[y,-180,180],[xlabel,"b"],[ylabel,"chi" 1,
[style,[lines,3,1],[points,2,2,1],[lines,3,5] ],
[legend, false])$

which produces the plot
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Figure 33: Scattering Angles fdt = 1

It is also possible to use the functiamgle n(e,b) with thelambda function to get a continuous plot of scattering angle
versus impact parameter, as in

(%i10) plot2d(lambda([x],angle_n(1,x)),[x,0.3,2.5], y,-200,180],
[xlabel,"b"],[ylabel,"chi"],
[style,[lines,3,1]))$

(%ill) time(%);

(%011) [33.62]

which produces the plot
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Figure 34: Scattering Angle Versagor £ = 1
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5.4 Lennard-Jones Differential Scattering Cross Section

The scattering angle in radians is returned by the Maximatfom achi(e,b) , edited to describe the Lennard-Jones
case:

achi(e,b) =
block([root_expr,rmin,phi_inf,numer],numer:true,
root expr : 1 - 4 *(1/r12 - 1/r6)le - b™2/r2,
rmin : map(’rhs, realroots(root_expr,le-15)),
rmin : Imax(rmin),
phi_inf : b *quad_qagi(1/r"2/sqrt(root_expr),r,rmin,inf)[1],
(%opi - 2 *phi_inf))$

For example,

(%i1) achi(1,1);

(%01) 0.996932

(%i2) map(lambda([x],achi(1,x)),[0.8,1,1.2]);
(%02) [1.4945414,0.996932,0.406351]

As another example, we can calculate the finite valuefof which the scattering angle is zero (see Figure 34):

(%i3) find_root(lambda([x],achi(1,x)),x,1.3,1.4);
(%03) 1.3124992

(%i4) achi(1,%);

(%04) 1.27897692E-13

Thus, forE = 1, the scattering angle is approximately zeroffes 1.3124992.

In our plots of the scattering angle as a function of impacapeeter, we have seen that there is a sharp negative minimum
in the scattering angle for an impact parameter in the neigidod ofb = 1.6.

A useful function here ifind_b(b_list, chi_list) , which, given two equal length lists, a list bialues and a list
of the corresponding values, finds the value éfcorresponding to the minimum value of

which_min(alL) :=
block([amin,j,jval:0,numer ],numer:true,
amin:Imin(aL),
for j thru length(al) do
if is(equal(aL[j], amin)) then (
jval : j,
return()),
jval)$

find_b(xL,yL) := (xL[which_min(yL)])$

As a simple test example with a small number of elements:

(%i5) bL : makelist(b,b,0.1,0.6,0.1);

(%05) [0.1,0.2,0.3,0.4,0.5,0.6]

(%i6) chiL : map(lambda([x],achi(1,x)), bL);

(%06) [2.9475046,2.752433,2.5553542,2.3551605,2.1506 062,1.9402366]
(%i7) Imin(chiL);

(%07) 1.9402366

(%i8) find_b(bL, chiL);

(%08) 0.6
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To useR, we can define:

find_b = function(bvec,chi_vec) bvec[which.min(chi_vec )

with the behavior

> bL = seq(0.1,0.6,0.1); bL

[1] 0.1 0.2 0.3 0.4 0.5 0.6

> chiL = sin(bL); chiL

[1] 0.09983342 0.19866933 0.29552021 0.38941834 0.479425 54 0.56464247
> min(chilL)

[1] 0.09983342

> find_b(bL,chilL)

[1] 0.1

We use two different methods to make cross section plots.

We first use the more efficiestgma_points(e,b0,bmax,db) andfld(nb,db,chil) method to generate a list of
scattering angles and the corresponding natural logasithfithe absolute value of the differential scattering cezsgion
implied by the range of impact parameté®, bmax) . This method was used for the Rutherford scattering cases.

We use first uséind_b( b_list, chi_list ) to get the approximate location of the impact parameter hvbar-
responds to the steep minimum of the scattering angle.

(%i9) bval : makelist(b,b,0.1,3,0.1)$

(%i10) fli(bval);

(%010) [0.1,3.0,30]

(%i11) chival : map(lambda([x], achi(1,x)), bval)$
(%i12) fli(chival);

(%012) [2.9475046,-0.016455,30]

(%i13) Imin(chival);

(%013) -1.9042801

(%i14) find_b(bval,chival);

(%014) 1.6

We then work toward a plot corresponding to the small valdémpact parameters, from = 0.1 up tob = 1.6. The
values ofy indicated on the plots are in radians. In this range of impacameters, the scattering angle starts off at a
large positive value.9475046 (approximatelyl 69 deg) whenb = 0.1, steadily decreases in value, becomes negative and
reaches-1.9042801 (approximately—109 deg) whenb = 1.6.

(%i15) achi(1,0.1);

(%015) 2.9475046

(%i16) deg(%);

(%016) 168.87958

(%i17) achi(1,1.6);

(%017) -1.9042801

(%i18) deg(%);

(%018) -109.10721

(%i19) [chival,sigval] : sigma_points(1,0.1,1.6,0.02)$

(%i20) time(%);

(%020) [1.8]

(%i21) chi_min : Imin(chival);

(%021) -1.9042801

(%i22) chi_max : Imax(chival);

(%022) 2.9475046

(%i23) plot2d([discrete,chival,sigval],[x,chi_min,ch i_max],
[xlabel,"chi"],[ylabel,"In(dsigma/do)"],
[style,[lines,3]])$
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which produces the plot

25

In(dsigma/do)

-15 -1 -0.5 0 0.5 1 15 2 2.5
chi

Figure 35: Log of Cross Section vg.for £ = 1 andb = (0.1, 1.6)

In the above figure, the peak in the natural logarithm of thephtte value of the cross section occurs for= 0, cor-
responding td ~ 1.3124992, due to the presence sifa(y) in the denominator of the formula for the differential cross
section.

We then make a separate plot foin the rangg(1.7, 3). In this range of impact parameters, the scattering anghessat
a large negative valug = —1.6235245 = —93 deg whenb = 1.7, and then becomes less negative steadily, ending at
x = —0.016455 = —0.94 deg whenb = 3.

(%i24) achi(1,1.7);

(%024) -1.6235245

(%i25) deg(%);

(%025) -93.021101

(%i26) achi(1,3);

(%026) -0.016455

(%i27) deg(%);

(%027) -0.942803

(%i28) [chival,sigval] : sigma_points(1,1.7,3,0.02)$

(%i29) time(%);

(%029) [1.54]

(%i30) chi_min : Imin(chival);

(%030) -1.6235245

(%i31) chi_max : Imax(chival);

(%031) -0.016455

(%i32) plot2d([discrete,chival,sigval],[x,chi_min,ch i_max],
[xlabel,"chi"],[ylabel,"In(dsigma/do)"],
[style,[lines,3]])$
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which produces the plot
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Figure 36: Log of Cross Section vg.for £ = 1 andb = (1.7, 3)

Since the behavior of the scattering angle and different@ds section (as a function of the energy and impact paesjnet
is more complicated than the pure Rutherford scatterings;ase create a second somewhat slower and less efficient
method of calculation here, which is able to produce smagiluts.

Instead of usingigma_points  andfld (used in the Rutherford scattering cases) as above, we @dgithase a function
chi_sigmal(e,b,db) , which evaluates the approximate numerical first derieatify with respect to a single value of
b and returns a list of the value qfimplied by the input value of, together with the natural logarithm of the absolute
value of the differential cross section for that scattedngle.

chi_sigmal(e,b,db):=
block([chival,dchi_db,sig,numer],numer:true,
chival : achi(e,b),
dchi_db : (achi(e,b+db) - achi(e,b-db))/2/db,
sig : abs(b/sin(chival)/dchi_db),
[chival,log(sig)])$

For example,

(%il) chi_sigmal(1,0.1,0.01);

(%01) [2.9475046,-1.3216832]

(%i2) bL : [0.1,0.2]$

(%i3) map('lambda([x],chi_sigmal(1,x,0.01)), bL);
(%03) [[2.9475046,-1.3216832],[2.752433,-1.3127418]]
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Finally, we have constructesigma_plot(e,b0,bmax,db) , Which, given the energy, the interval ofb values to use
(b0 is lower limit, bmax is upper limit), and the separatiai of b values used, makes a plot of the natural logarithm of
the absolute value of the dimensionless differential sgat) cross section as a function of the correspondingesaait
angles.

sigma_plot(e,b0,bmax,db) =
block([bL,pts,chiL,chi_min,chi_max, numer],numer:tru e,
bL : makelist(b,b,b0,bmax,db),
pts : map(lambda([x],chi_sigmal(1,x,db)), bL),
chiL : take(pts,1),
chi_min : Imin(chiL),
chi_max : Imax(chilL),
plot2d([discrete, pts],[x,chi_min,chi_max],
[xlabel,"chi"], [ylabel,"In(dsigma/do)"],
[style,[lines,3]]))$

We again make a separate plot édn the rangg0.1, 1.6).

(%i4) sigma_plot(1,0.1,1.6,0.01);
(%i5) time(%);
(%05) [152.06]

which produces
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Figure 37: Log of Cross Section vg.for £ = 1 andb = (0.1, 1.6)

We then make a separate plot fan the rangg1.7, 3).

(%i6) sigma_plot(1,1.7,3,0.01)$
(%i7) time(%);
(%07) [119.9]
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which produces
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Figure 38: Log of Cross Section vg.for £ = 1 andb = (1.7, 3)

6 R ScriptsFor TheFirst Three Figures

The center of mass diagram (see 2.1) was produced witR Hoeiptcmass.R .

53

## cmass.R
plot(0:3,0:3,type="n" xlab="",ylab="",

points(0.5,0.5,pch=20)
points(0.5,2.5,pch=19,cex=2)
text(0.3,2.5,expression(m[1]),cex=1.5)
arrows(0.5,0.5,0.5,2.5,code=2,cex=1.2)
text(0.4,1.5,expression(r[1]),cex=1.5)
text(0.4,0.5,"0")
points(2.5,2.5,pch=19,cex=2)
arrows(0.5,0.5,2.5,2.5,code=2,cex=1.2)
text(1.7,1.5,expression(r[2]),cex=1.5)
text(2.65,2.5,expression(m[2]),cex=1.5)
arrows(0.5,0.5,1.4,2.5,code=2,cex=1.2)
text(1,2,"R",cex=2)
arrows(0.5,2.5,2.5,2.5,code=2,cex=1.2)
text(1.4,2.6,"C. M.",cex=1.2)
text(1.2,2.8,expression(r[rel]),cex=1.5)
text(1.35,2.8,"=",cex=1.5)
text(1.45,2.8,expression(r[2]),cex=1.5)
text(1.55,2.8,"-",cex=1.5)
text(1.65,2.8,expression(r[1]),cex=1.5)

Xaxt="n",yaxt="n",bty="n") # no axes, no box

and executed via

> source("c:/kl/cmass.R")
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The coordinate system diagram (see 2.1) was produced véfR $hriptcoord.R

## coord.R

plot(0:3,0:3,type="n" xlab="",ylab="",
xaxt="n",yaxt="n",bty="n") # no axes, no box

arrows(0.25,0.25,2.75,0.25,code=2,lwd=2) # x axis
arrows(0.25,0.25,0.25,2.75,code=2,lwd=2) # y axis
arrows(0.25,0.25,1.536,1.782,code=2,lwd=3,col="blue ") # position vector r
text(2.9,0.25,"+x",cex=2)

text(0.25,2.9,"+y",cex=2)

text(0.9,1.5,"r",cex=3)

points(1.536,1.782,pch=20,cex=1.75)

points(0.25,0.25,cex=2,pch=19)

text(0.12,0.12,"0",cex=2)

## arc of a circle with an arrow

plotcircle(r=1,mid=c(0.25,0.25),from=0,t0=0.75,arro w=TRUE)
text(1.4,0.9,expression(theta),cex=3) # greek letter th eta
The functionplotcircle is from theshape package which must be loaded before using the script.

> library(shape)
> source("c:/kl/coord.R")

The scattering angle definition Figure 3 was created usitigrford_repulse.R , scatt.R , and thedeSolve and
shapelibraries (see the end comment in twatt.R  file, which is shown here:)

## scatt.R generic scatt angle plot

##  scatt_plotl for generic scattering plot

#it repulsive rutherford potential.

##  calls init(e,b) to define local values of

#it XC,yc,xa,vex,vey, chi.

scatt_plotl = function(e,b,tm,tp,dt,rchi,xmin,xmax,ym in,ymax) {

nl = 150 # vector element for incident rvec arrow
# define local xc, yc, vex, vey, xa, chi

init(e,b)

# symbolic expressions for acceleration components
trajec = function(t, y, parms) {

with( as.list(y), {
r = sgri(x’2 + y'2)

dx = vx
dvx = x/2/elr"3  # repulsive case
dy = vy

dvy = y/2/elr"3  # repulsive case
list( c(dx, dvx, dy, dvy) ) } ) }

#  integrate backwards from xc, yc

cat(" backwards from xc, yc \n")

yini = ¢(X = XC, VX = VCX, Y = yC, Vy = vcy)

times = seq(0, -tm, -dt)

out = ode(times = times, y = yini, func = trajec, parms = NULL)
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## make xLb and yLb global so they can be looked at outside prog ram
xLb <<- out[,"x"]
yLb <<- out[,"y"]

x1 = xLb[n1]

yl = ylLb[n1]

cat(" x1 = "x1," yl = "yl1,"\n")
xfirst = tail(xLb, n=1)

cat(" xfirst = ", xfirst,” \n")

plot(xLb, yLb, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
type = "I", col = "blue", lwd = 3, xlab = "X",
ylab = "Y")

#  integrate forwards from xc,yc

cat(" forwards from xc, yc \n")
times = seq(0, tp, dt)
out = ode(times = times, y = yini, func = trajec, parms = NULL)

xL = out[,"x"]
yL = outl,"y"]
cat(" xlast = ", tail(xL, n=1)," ylast = "tail(yL, n=1),"\n ")

vxf = tail(out[,"vx"], n=1)
vyf = tail(out],"vy"], n=1)
cat (" vx_last = ",wxf," vy last = ",vyf,"\n")

lines(xL, yL, lwd = 3, col = "blue")

# add liney = b

abline(h = b, lwd=2)

abline(h = 0)

# add tick mark at origin

lines ( ¢(0,0), c(- 0.05,0.05), lwd=2)

# add point at end of rvec arrow
points(x1,yl,pch=19,col="blue",cex=2)

# add rvec arrow
arrows(0,0,x1,y1, code=2, length=0.1, Iwd = 2 )

# add rmin vector
arrows(0,0,xc,yc,code=2, length=0.1, col="red",lwd = 2)
text(0,0.8,expression(r[min]),cex=1.5)

# show angle theta to rvec line, trial and error:

plotcircle(mid=c(0,0), from=0, to= 2.1, r=0.5, lwd = 2, arr ow=TRUE)
text(0.8, 0.3, expression(theta),cex=2)

text(-1.2,0.6,"r",cex=2)

# add chi line

yf = b + rchi =*sin(chi)

xf = xa + rchi *cos(chi)
cat(" xf = "xf," yf = "yf"\n")
lines ( c(xa,xf), c(b, yf), lwd=2)

# show angle chi
plotcircle(r=1,mid=c(xa,b), from=0,to=chi, arrow=TRUE )
text(0.8, 1.4, expression(chi),cex=2)
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##
#it
#it
##
#it
#it
##

# show impact parameter b
arrows(-4.2,0,-4.2,1,code=3,length=0.1,lwd=2)
text(-4,0.5,"b",cex=1.7)

}

production of Fig.3, Scattering Angle lllustrated:

source("c:/k1/rutherford_repulse.R")
library(deSolve)

library(shape)

source("c:/kl/scatt.R")
scatt_plot1(1,1,5.5,5,0.01,5,-4.54,1.87,0,4)

V V.V VYV




