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project1.pdf describes the major project proposed in
Chapter 1 of Computational Physics with Maxima or R,
and is made available to encourage the use of the R and
Maxima languages for computational physics projects of mod est size.

R language free and open-source software:
http://www.r-project.org/

Maxima language free and open-source software:
http://maxima.sourceforge.net/

Code files available on the author’s webpage are

1. rutherford_repulse.mac :use in Maxima: e.g., load("c:/ k1/rutherford_repluse.mac") to load
2. rutherford_repulse.R :use in R: e.g., source("c:/k1/ru therford_repulse.R") to load
3. rutherford_attract.mac
4. rutherford_attract.R
5. lennard_jones.mac
6. lennard_jones.R
7. cmass.R
8. coord.R
9. scatt.R
10. k1util.mac
11. sho1.R

The author uses the XMaxima interface to Maxima exclusively , with the startup
file setting: display2d:false$, which allows denser scree n output.

The author normally uses the default RGui interface when cod ing in R.

COPYING AND DISTRIBUTION POLICY:
NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Keeping a set of notes about using Maxima up to date is easier
than keeping a published book up to date, especially in view o f
the regular changes introduced in the Maxima software updat es.

Feedback from readers is the best way for this series of notesto become more helpful to users ofR andMaxima. All
comments and suggestions for improvements will be appreciated and carefully considered.
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1 Introduction

The major project proposed in Chapter 1 of Steven Koonin’s text Computational Physics applies root finding and quadrature meth-
ods to the task of finding the values of the scattering angle (in classical scattering by a central potential) as functionsof the energy
and impact parameter of the scattered particle.

We use the resources of the free and open source softwareR (http://www.r-project.org/ ) and Maxima
(http://maxima.sourceforge.net/ ) to write code which helps to solve this type of problem.

The use of such modern powerful “command interpreters” encourages a “bottom-up” style of code development, in which small jobs
are coded first, checked interactively for correct behavior, and then used as part of slightly larger coding jobs in an iterative fashion.
Our discussion provides explicit examples (in both languages) of this coding style.

The firstproject1.pdf section explains our notation for classical scattering. The following two sections consider two examples
which can be solved analytically, classical Rutherford scattering, both repulsive and attractive cases. When developing numerical
approaches, it is always good to start with an exactly soluble case since when your numerical methods are producing the wrong
answers, it will be obvious. The following section considers scattering by the Lennard-Jones potential. The last section displays the
Rcode used to create the first three figures.

2 Classical Scattering Kinematics and Dynamics

2.1 Decomposition into Relative and Center of Mass Motion

We includeRscripts used to draw some of the diagrams in Sec 6.

m1

r1

0

r2

m2

R

C. M.

rrel = r2 − r1

Figure 1: Center of Mass Diagram

Given two particles: massm1 with position vectorr1 and massm2 with position vectorr2, the position vectorR of the
location of the center of mass of the two particle system is defined by

R =
1

M
(m1r1 +m2r2), (2.1)
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whereM = m1 +m2 is the system mass. The position of particle 2 relative to particle 1 is defined by

r = rrel = r2 − r1. (2.2)

We define the position of particle 1 relative to the location of the system center of mass by

r′1 = r1 −R, (2.3)

which can be written, using Eqs. (2.1) and (2.2), as

r′1 = −m2

M
r. (2.4)

Likewise, the position of particle 2 relative to the center of mass is

r′2 = r2 −R, (2.5)

which becomes
r′2 =

m1

M
r. (2.6)

From Eqs. (2.3) and (2.4) the velocity of particle 1 can be written

v1 = ṙ′1 + Ṙ = V − m2

M
v (2.7)

in terms of the velocity of the center of massV = dR/d t and the velocity of particle 2 relative to particle 1v = d r/d t.
In a similar manner, the velocity of particle 2 can be writtenas

v2 = ṙ′2 + Ṙ = V +
m1

M
v. (2.8)

We can now transform the kinetic energy of the system

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 (2.9)

into the form

T =
1

2
MV2 +

1

2
µv2 (2.10)

which exhibits a clean separation of the kinetic energy associated with motionV of the location of the center of mass, and
a kinetic energy associated with the relative motionv. We have introduced the symbolµ for the so-called ”reduced mass”
of the system,µ = (m1m2) /M . In the absence of external forces,V is a constant vector, and a reference frame with
origin at the center of mass is an inertial frame in whichV = 0. In such a frame, the original lagrangian of the system

L =
1

2
m1v

2
1 +

1

2
m2v

2
2 − V (|r2 − r1|) (2.11)

becomes

L =
1

2
µv2 − V (r) (2.12)

wherer = |r|.
Once a solutionr(t) has been found using the lagrangian Eq. (2.12), solutions for r1(t) and forr2(t) can be written

down using Eqs. (2.4) and ( 2.6) (bearing in mind that, once wehave adopted the center of mass frame,r1 = r′1 and
r2 = r′2). In this sense, the two-body problem has been reduced to a fictitious problem of a single particle of massµ and
position vectorr which experiences a potential (energy)V (r) with the associated ”force” given byf = −∇V (r). The
solution involves motion in a plane with two degrees of freedom, which can be taken to be plane polar coordinatesr(t)
andθ(t).

In the same center of mass frame, the system angular momentumvector

L = r1 × p1 + r2 × p2 (2.13)
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where the momenta arep1 = m1v1 andp2 = m2v2, can be written as

L = r× p = µr× v. (2.14)

The system angular momentum vectorL is a constant vector since

dL

d t
= µv × v + r× ṗ, (2.15)

and the lagrange equation of motion
d

d t

∂ L

∂ v
=
∂L

∂ r
(2.16)

which is used with the lagrangian form Eq. (2.12) implies that

ṗ = −∇V (r) ∝ r. (2.17)

SinceL is a fixed vector with a fixed direction in space, Eq. (2.14) implies thatr is always perpendicular toL and thus
lies in a fixed plane, which we take to be the(x,y) plane, with initial velocity vector of the incident particle in the+x

direction.

+x

+y

r

0

θ

Figure 2: Coordinates Used Here

Taking plane polar coordinates(r, θ) in this fixed plane, with

r(t) = r(t) r̂(t), (2.18)

and the orthogonal time dependent unit vectors

r̂(t) = î cos θ(t) + ĵ sin θ(t), θ̂(t) = −î sin θ(t) + ĵ cos θ(t), r̂ · θ̂ = 0, (2.19)

and the resulting unit vector derivatives
d r̂

d t
= θ̇ θ̂,

d θ̂

d t
= −θ̇ r̂, (2.20)

we find for the relative velocityv

v =
d r

d t
= ṙ r̂+ r θ̇ θ̂, v2 = ṙ2 + r2 θ̇2. (2.21)
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We can expresṡθ in terms of the magnitude of the relative angular momentum and r using Eq. (2.14) and̂r× θ̂ = k̂:

L = µ r× v = µ r2 θ̇ k̂. (2.22)

θ is initially equal toπ, and continuously decreases with time:

θ̇ = − |L|
µ r2

. (2.23)

We see that in general, asr → ∞, at the end of the scattering event,θ̇ → 0, andθ → some constant. Eliminatinġθ in Eq.
(2.21), we get

v2 = ṙ2 +
|L|2
µ2 r2

. (2.24)

The total relative energyE is then

E =
1

2
µv2 + V (r) =

1

2
µ ṙ2 + Veff , (2.25)

where

Veff = V (r) +
|L|2
2µ r2

. (2.26)

Before the collision event, the incident particle has only kinetic energy, and the total constant energyE has the value
1
2 µ v

2
0, wherev0 is the initial speed. The constant angular momentumL of this particle of massµ is given by (decompos-

ing r along and perpendicular to thez axis and using|r⊥| → b before the incident particle feels the central force, where
b is the impact parameter of the particle considered).

L = µ r× v0 = µ (r‖ + r⊥)× v0 = µ r⊥ × v0 = −µ b v0 k̂ = −b
√

(2µE) k̂. (2.27)

Thus|L| = b µ v0. Usingv0 =
√

2E/µ, we then get

θ̇ = −
√

2E

µ

b

r2
= −v0

b

r2
(2.28)

Solving Eq. (2.25) ford r/d t = ṙ
ṙ = ± v0 (1− Veff (r)/E)1/2. (2.29)

From Eq. (2.23) we then have

d θ = −
( |L|
µ r2

)

d t = −
( |L|
µ r2

)

d r

ṙ
. (2.30)

Combining Eqs. (2.29) and (2.30) yields

d θ = ∓
( |L|√

2µ

)

d r

r2
√

E − Veff (r)
(2.31)

We will later need to use the relation of the x and y componentsof the vector velocity to the radial and theta components,

so we discuss that relation here. Using Eq. (2.19) and Eq. (2.21), and the equality

v = î vx + ĵ vy = r̂ ṙ + θ̂ r θ̇ (2.32)

we find

vx = ṙ cos(θ)− r θ̇ sin(θ), vy = ṙ sin(θ) + r θ̇ cos(θ) (2.33)
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2.2 The Differential Scattering Cross Section

We here specialize the two body problem to the case of scattering, in which one of the pair of particles is at rest atr = 0,
and the other particle approaches the scattering center with some intial speed and hence initial energy equal to the inital
kinetic energy. In general, as the incident particle approaches the scattering center, the particle will have both a radial
velocity ṙ and an angular velocityr θ̇. We see from Eq. (2.29) that the radial velocityṙ is zero at a radiusrmin defined
by the equation

E = Veff (rmin). (2.34)

Forr > rmin, E > Veff , and sinceVeff (r) → 0 asr → ∞, a positive energy particle will approach the scattering center,
reaching a minimum radial distancermin and (in the absence of a capture mechanism) return to radial infinity. The polar
angleθ is measured from the forward direction (the positivex axis).

−4 −3 −2 −1 0 1 2

0
1

2
3

4

X

Y

rmin

θ
r

χ

b

Figure 3: Scattering Angleχ Illustrated

Since the scattering of a given particle in a central potential takes place in a plane, we are free to choose thez = 0 plane,
and the position of a incident particle can be described in terms of the coordinates(x, y), in whichy is the perpendicular
distance of the incident particle from thex axis. When the incident particle is atx = −∞, y = b (the particle’s
impact parameter), r = ∞, θ has a value arbitrarily close toπ, and the value ofθ decreases with time, with the scattered
particle finally having either a positive value ofθ, as shown in the figure, or a negative value ofθ, in which case the
asymptotic direction of the trajectory is below the forwarddirection.

We will denote the scattering angle (the final value ofθ) by χ, which can be either positive or negative. Consider a
beam of identical particles which approach the scattering center. We consider first only those particles which have the
same kinetic energy when far away, (ie., a monoenergetic beam). We assume that the beam has a large diameter cross
section; the relations derived will be correct for particles with small enough values of impact parametersb. We assume
the number of beam particles per unit area (atx→ −∞) is independent ofρ, the perpendicular distance from the x-axis;
this assumption is clearly related to the previous one. IfJ is the incident beam flux density with unitsnumber/(cm2sec),
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then we are assuming thatJ is independent of the distanceρ from the beam axis.

We locate each beam particle during the scattering process using two different coordinate systems. We tag each beam
particle with the pair of numbers(b, φ), choosing the positivex axis to be in the initial direction of motion of the beam
particles and passing through the scattering center. The impact parameterb is the initial distance of the beam particle from
thex axis, andφ is a cylindrical angle around the beam axis. A beam particle will maintain a constant value ofφ and
will be scattered into a final direction labeled by the two angles(ψ, φ). Here we are using spherical coordinates(r, ψ, φ),
with r the radial distance from the scattering center,ψ is the (positive) polar angle measured from the positivex axis in
the(x, y) plane, andφ is the azimuthal angle about thex axis.

Choosedb such that beam particles having impact parameters in the interval(b, b+ db) and also having azimuthal angles
in the interval(φ, φ+ dφ) will be scattered into a small positive solid angle

dΩ = sinψ dψ dφ (2.35)

subtended by the scattering center at the origin of coordinates. The number of beam particles scattered per second into a
particulardΩ is written asdN = J dσ and this will also be equal toJdA = J b db dφ. Hence the positive quantitydσ,
which has the dimensioncm2, can be written as

dσ = b db dφ =

(

dσ

dΩ

)

dΩ (2.36)

Using our expression fordΩ and cancellingdφ, we obtain

dσ

dΩ
=

∣

∣

∣

∣

b

sinψ

db

dψ

∣

∣

∣

∣

(2.37)

At this stage, all reference toφ has dropped out, and we replace the positive angleψ by the signed scattering angleχ, to
get

dσ

dΩ
=

∣

∣

∣

∣

b

sin χ

db

dχ

∣

∣

∣

∣

(2.38)

For those impact parameters for whichdχ/db = 0, the differential scattering cross section is infinitely large.

2.3 The Scattering Angle Integral

The effective potential (Eq. 2.26) can be written (using Eq.2.27),

Veff = V (r) +
E b2

r2
, (2.39)

and the change inθ (Eq. 2.31 ) becomes

dθ = ±
(

b
√
E
) dr

r2
√

E − Veff (r)
. (2.40)

Integrating both sides over corresponding intervals, during the first part of the trip fromr = ∞ to r = rmin, dθ is
negative andd r is also negative, while on the second part of the trip, fromr = rmin to r = ∞, d θ is negative andd r is
positive:

∫ χ

π
d θ = χ− π =

∫ rmin

∞
f(r) dr −

∫ ∞

rmin

f(r) dr = −2

∫ ∞

rmin

f(r) dr. (2.41)

The scattering angleχ as a function of(E, b) is then written as

χ = π − 2φ∞ (2.42)

where

φ∞ = b

∫ ∞

rmin

dr

r2
√

1− Veff (r)
E

. (2.43)

The argument of the square root function in the denominator of the integrand vanishes at the lower limit of the integral,
by definition ofrmin (see Eq. 2.34).
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2.4 Reduction to Dimensionless Form

By choosing a length scalea0 either suggested by the form of the potential or the physicalregime considered, we can
define a dimensionless radial distance viar̄ = r/a0 and a dimensionless impact parameterb̄ = b/a0.

A dimensionless energȳE can be defined in terms of the value of the potential energy evaluated atr = a0, or Ē =
E/V (a0). A dimensionless potential energy as a function ofr̄ is V̄ (r̄) = V (r)/V (a0), and a dimensionless effective
potential energy is̄Veff (r̄) = Veff (r)/V (a0), in terms of whichφ∞ becomes

φ∞ = b̄

∫ ∞

r̄min

dr̄

r̄2
√

1− V̄eff (r̄)/Ē
. (2.44)

wherer̄min is the value of̄r at which the argument of the square root function vanishes, and

V̄eff (r̄) = V̄ (r̄) + Ē
b̄2

r̄2
(2.45)

SinceE = 1
2 µ v

2
0 , a natural unit of speed isv0 =

√

2E
µ . A dimensionless component of the velocity vector can then be

defined as̄vx = vx/v0. A natural unit of time is thent0 = a0/v0 and a dimensionless time is̄t = t/t0 = v0 t/a0.

We can then write the x-component of the equation of motion

µ
d vx
d t

= −∂ V (r)

∂ x
= −∂ r

∂ x

dV (r)

d r
= −x

r

dV (r)

d r
(2.46)

in dimensionless form:
d v̄x
d t̄

= − x̄

2 Ē r̄

d V̄ (r̄)

d r̄
(2.47)

We can also write the first order differential equation forθ(t), Eq. (2.28) in dimensionless form:

d θ

d t̄
= −b̄/r̄2 (2.48)

and the first order differential equation forr(t), Eq. (2.29), in dimensionless form:

d r̄

d t̄
= ±

(

1− V̄eff (r̄)/Ē
)

1

2 (2.49)

Using Eq. (2.33) we also have

v̄x = cos(θ)
d r̄

d t̄
− sin(θ) r̄

d θ

d t̄
, v̄y = sin(θ)

d r̄

d t̄
+ cos(θ) r̄

d θ

d t̄
. (2.50)

The starting point for the calculation of the differential scattering cross section, Eq. (2.38), is written in dimensionless

form by noting thatσ has the dimensions of area, so we defineσ̄ = a20 σ to get

dσ̄

dΩ
=

∣

∣

∣

∣

b̄

sin χ

d b̄

dχ

∣

∣

∣

∣

(2.51)
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3 Repulsive Rutherford Scattering

Here we treat the case in which the potential energy is

V (r) =
α

r
, α > 0, Veff (r) =

α

r
+
E b2

r2
, (3.1)

V̄ (r̄) =
1

r̄
, V̄eff (r̄) =

1

r̄
+
Ē b̄2

r̄2
(3.2)

Since the potential energy contains no natural length, we make use of the fact that quantum theory predicts that thez

component of angular momentum is quantized and can only havethe discrete valuesLz = n h̄, wheren = 0, ±1, ±2 . . ..

h̄ is related to the famous “Planck’s constant”h by h̄ = h/(2π). If we use square brackets to denote “dimensions of”,

[h̄] = [rmv] = [rmv2/v] = [tm v2] = erg-sec (3.3)

(using cgs (centimeter-gram-sec) units). The measured value of h̄ is 1.055 × 10−27 erg-sec.

In cgs units, all physical quantities can be expressed as numbers with units which are some combination of mass (m),

length (r), and time (t). Since[h̄] = [mr2/t] and[α/r] = [E] = [mv2], then[α] = [mr3/t2]. If we then try to construct

a quantitya0 with the units of length out of the reduced massµ of the two particle system, represented bym for the

balancing, the strength of the interactionα, andh̄, we need

[a0] = [r] = [h̄xmy αz] = [(mr2/t)xmy (mr3/t2)z] = [r2 x+3 zmx+y+z/tx+2 z] (3.4)

Balancing dimensions between the left and right-hand sidesleads to three equations

2x+ 3 z = 1, x+ y + z = 0, x+ 2 z = 0 (3.5)

Just for practice, we use Maxima’ssolve function:

(%i1) solve([2 * x+3 * z=1,x+y+z=0,x+2 * z],[x,y,z]);
(%o1) [[x = 2,y = -1,z = -1]]

Then the combination

a0 =
h̄2

µα
(3.6)

has the dimensions of a length, and we can definex̄ = x/a0, for example.

3.1 Plot of Effective Potential

The functionVeff_plot (from rutherford_repulse.mac ) has the definition

Veff_plot(e,b,r0,r1,xmin,xmax,ymin,ymax) :=
block([w,r,rmin,energy_line,numer],numer:true,

w : 1/e/b,
rmin : b * (w + sqrt(4+wˆ2))/2,
energy_line : [discrete,[[rmin,e],[r1,e]]],
plot2d([1/r + e * bˆ2/rˆ2, energy_line],[r,r0,r1], [x,xmin,xmax],

[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff"]))$
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The parameterrmin is the minimum radial distance between the incident particle and the scattering center. The invocation

(%i3) Veff_plot(1,1,0.9,3,0.8,3,0,2)$

choosesĒ = 1, b̄ = 1, and chooses to plot the expression defined byveff over the range[r,0.9,3] . The canvas
horizontal extent is determined by the argumentsxmin andxmax. The canvas vertical extent is determined by the argu-
mentsymin andymax. This produces a plot of both the effective potential energyand also the constant total energy of
the incident particle (in red).
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Figure 4: Effective Potential for̄E = 1, b̄ = 1

3.2 Analytic Scattering Angle Using Maxima

From Eq. (2.44) we then have

φ∞ = b̄

∫ ∞

r̄min

dr̄

r̄2
√

1− 1/(Ē r̄)− b̄2/r̄2
. (3.7)

We replace the integration variablēr by z = r̄/b̄, and definew = 1/(Ē b̄) to get

φ∞ =

∫ ∞

zmin

d z

z
√
z2 − w z − 1

(3.8)

in which zmin is the positive value ofz for which the argument of the square root is zero. This gives the result (see
Maxima session just below)

φ∞ = cos−1

(

w√
4 + w2

)

=
π

2
− sin−1

(

w√
4 + w2

)

, w = 1/(Ē b̄). (3.9)

and the scattering angleχ:

χ = π − 2φ∞ = 2 sin−1

(

w√
4 + w2

)

= 2 sin−1

(

1
√

1 + 4 Ē2 b̄2

)

. (3.10)
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For givenĒ asb̄→ ∞, w → 0 andχ→ 0. And as̄b→ 0, w → ∞, andχ→ π = 180deg.

We findzmin = 1
2 (w +

√
4 + w2) and hencērmin = b̄

2 (w +
√
4 + w2).

We letθ0 be the positive angle between the positive x-axis and the direction ofr(t) at the moment the incident particle is
at its minimum distance from the scattering center (the origin of the coordinate system). From the figure,θ0 + φ∞ = π,
soθ0 = π − φ∞.

Here is a short Maxima session to find the above results.

(%i1) rs : solve(zˆ2 - w * z -1,z);
(%o1) [z = -(sqrt(wˆ2+4)-w)/2,z = (sqrt(wˆ2+4)+w)/2]
(%i2) zmin : rhs(rs[2]);
(%o2) (sqrt(wˆ2+4)+w)/2
(%i3) assume(w>0);
(%o3) [w > 0]
(%i4) phi_inf : integrate(1/(z * sqrt(zˆ2 - w * z -1)),z,zmin,inf);
(%o4) %pi/2-asin(w/sqrt(wˆ2+4))

The coordinates of the point of closest approach (C) to the scattering center (O) arēxc = r̄min cos(θ0) and ȳc =
r̄min sin(θ0).

The intersection (A) of the line OC and the lineȳ = b̄ is defined by the coordinates̄xa = b̄ x̄c/ȳc andȳa = b̄.

The hyperbolic orbit is symmetric about the point of closestapproach. The asymptote of the incident particle as it
approaches is the linēy = b̄. The asymptote of the particle as it retreats to positive infinity is the line AG ( in the limit
r̄ → ∞) (x̄ = x̄a+cos(χ), ȳ = b̄+sin(χ)) which has its origin at point A and makes an angleχ with the positive x-axis.

Scattering Angle as a Function of Impact Parameter Using Maxima

Using Eq. (3.10), we can find the scattering angle for different (dimensionless) impact parameters, for a given (dimen-
sionless) energy. In our code we representĒ by e, and represent̄b by b.

(%i1) fpprintprec:8$
(%i2) angle_a(e,b) :=
block([numer],numer:true,

2* asin(1/sqrt(1 + 4 * eˆ2 * bˆ2)) * 180/%pi)$
(%i3) for b in [10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001] d o

print(" ",b," ",angle_a(1,b))$
10 5.7248105
5 11.421186
1.5 36.869898
1 53.130102
0.8 64.010766
0.5 90.0
0.3 118.07249
0.1 157.38014
0.01 177.70847
0.001 179.77082

and we can then make a simple plot of the scattering angle in degrees versus the (dimensionless) impact parameter.

(%i4) plot2d(angle_a(1,b),[b,0.001,10],[ylabel,"chi- degrees"],
[style,[lines,3]])$
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which produces (roughly) the plot
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Figure 5: Analytic Scattering Angle Versusb for e = 1

3.3 Numerical Scattering Angle Using Maxima

Although we have analytic results for the case of Rutherfordscattering, it will be instructive to pretend that no analytic
solution can be found and develop numerical methods which allow calculation of the numerical scattering angle as a
function of energy and impact parameter.

Here is an example function,angle_n(e,b) , which is used to make a table similar to the analytic table above.

(%i1) angle_n(e,b) :=
block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,

w : 1/(b * e),
rexpr : zˆ2 - w * z -1, / * root -> zmin * /
iexpr : 1/(z * sqrt(rexpr)), / * integrate to get phi_inf * /
zmin : find_root(rexpr,z,1e-4,1e6),
phi_inf : quad_qagi(iexpr,z,zmin,inf)[1],
(%pi - 2 * phi_inf) * 180/%pi)$

(%i2) bval : [10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001]$
(%i3) for b in bval do

print(" ",b," ",angle_n(1,b))$
10 5.7248105
5 11.421186
1.5 36.869898
1 53.130102
0.8 64.010766
0.5 90.0
0.3 118.07249
0.1 157.38014
0.01 177.70847
0.001 179.77082

We can then make a plot of scattering angle as a function of impact parameter.

(%i4) chival : map(lambda([x],angle_n(1,x)),bval)$
(%i5) fll(chival);
(%o5) [5.724810451867294,179.7708171875211,10]
(%i6) plot2d([discrete,bval,chival],[style,[lines,3] ],[xlabel,"b"],

[ylabel,"chi-deg"])$
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which produces the less than perfect plot:
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Figure 6: Numerical Scattering Angle Versusb̄ for Ē = 1

Clearly, we can add more sample points (by choosing moreb̄ values) to get a smoother plot.

In the above calculation, we made use of Maxima’slambda function which allows us to avoid defining a named function.
The alternative, “named function” method could look like:

(%i7) func(x) := angle_n(1,x)$
(%i8) chival : map(func,bval);

Both of the above methods of turning a Maxima list into another list avoid the less efficient loop solution, which might
look like:

(%i9) chival:[]$
(%i10) for b in bval do (

chival : cons(angle_n(1,b),chival))$
(%i11) chival : reverse(chival)$
(%i12) fll(chival);
(%o12) [5.724810451867294,179.7708171875211,10]

3.4 Numerical Scattering Angle Using R

Here we will first translate the Maxima functionangle(e,b) into R. In the file rutherford_repulse.mac we
have the Maxima code

/ * some (e,b) dependent angles and rmin.
theta0 defines the angle of closest approach

(counter-clockwise from positive x axis)
phi_inf defines the rotation angle of r-vec as the

incident particle comes from theta=%pi, r = inf to
the point of closest approach, so

theta0 = %pi - phi_inf.
chi is the scattering angle

chi = %pi - 2 * phi_inf
rmin is the distance of closest approach

to the scattering center = ( x = 0, y = 0 )

* /
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angles(e,b) :=
block([w,phi_inf,theta0,chi,oldfp,rmin,numer],numer :true,

oldfp : fpprintprec,
fpprintprec : 8,
w : 1/(e * b),
phi_inf : acos(w/sqrt(4+wˆ2)),
print(" phi_inf = ",phi_inf," rad, or ",phi_inf * 180/%pi," deg"),
theta0 : %pi - phi_inf,
print(" theta0 = ",theta0," rad, or ",theta0 * 180/%pi," deg"),
chi : %pi - 2 * phi_inf,
print(" chi = ",chi," rad, or ",chi * 180/%pi," deg"),
rmin : b * (w + sqrt(4+wˆ2))/2,
print(" rmin = ",rmin),
fpprintprec : oldfp,
done)$

To translate this function, which makes use of the analytic results derived using Maxima above, we can follow the steps
in the code: 1.) replace: with =, 2.) remove commas at the ends of complete statements, 3.) replaceprint(...) with
cat(... "\n") , 4.) replace%pi with pi .

Of course, there is the more basic replacement:angles(e,b) := block([local variables], code)$ re-
placed withangles = function(e,b) {code } .

We don’t need to declare local variables in theR function definition, and the default number of digits printed out for
floating point numbers needs no attention.

We write this translation inside Notepad2 (or Notepad++) first, and then paste the result into Rgui.

> angles = function(e,b) {
+ w = 1/e/b
+ phi_inf = acos(w/sqrt(4+wˆ2))
+ cat(" phi_inf = ",phi_inf," rad, or ",phi_inf * 180/pi," deg\n")
+ theta0 = pi - phi_inf
+ cat(" theta0 = ",theta0," rad, or ",theta0 * 180/pi," deg\n")
+ chi = pi - 2 * phi_inf
+ cat(" chi = ",chi," rad, or ",chi * 180/pi," deg\n")
+ rmin = b * (w + sqrt(4+wˆ2))/2
+ cat(" rmin = ",rmin,"\n")}
> angles(1,1)

phi_inf = 1.107149 rad, or 63.43495 deg
theta0 = 2.034444 rad, or 116.5651 deg
chi = 0.9272952 rad, or 53.1301 deg
rmin = 1.618034

Next we translateangle_n(e,b) , which produces, using numerical means, the scattering angle converted into degrees,
into R syntax and paste it intoR. We can then print out a simple table of corresponding valuesof b̄ andχ.

> angle_n = function(e,b) {
+ w = 1/(b * e)
+ fr = function(z) zˆ2 - w * z -1 # root -> zmin
+ zmin = uniroot(fr, c(1e-4, 1e6),tol=1e-10)$root
+ phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin, Inf)$val
+ (pi - 2 * phi_inf) * 180/pi}
> angle_n(1,1)
[1] 53.1301
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> bval = c(10,5,1.5,1,0.8,0.5,0.3,0.1,0.01,0.001)
> for (b in bval) cat(" ",b," ",angle_n(1,b),"\n")

10 5.72481
5 11.42119
1.5 36.8699
1 53.1301
0.8 64.01077
0.5 90
0.3 118.0725
0.1 157.3801
0.01 177.7085
0.001 179.7709

We can then make a simple plot of the above values of the scattering angles, using theR function sapply to apply a
function to a vector, returning a vector. (newvec = sapply (oldvec, func) .)

> chival = sapply(bval,function(x) angle_n(1,x))
> head(chival)
[1] 5.723923 11.420227 37.289532 53.351958 64.009976 90.2 53342
> angle_n(1,10)
[1] 5.723923
> angle_n(1,5)
[1] 11.42023
> tail(chival)
[1] 64.00998 90.25334 118.07137 157.37981 177.70850 179.7 7094
> plot(bval,chival,type="l",lwd=3,col="blue",xlab = "b ",
+ ylab = "chi")
> abline(v=0)

which produces the same crude plot (because we don’t have enough samples)
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Figure 7:χ in degrees versus̄b, Ē = 1
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3.5 Review of Maxima’s Runge-Kutta rk() with the Simple Harmonic Oscillator

We will use Maxima’s Runge-Kutta integratorrk() for plotting the scattering trajectory. Here we review the use of
rk() in the context of the simple harmonic oscillator with unit period and intial conditionsx(0) = 1 andvx(0) = 0. The
utility functions fll , head , tail , andtake are loaded bymaxima-init.mac and are in the filek1util.mac .
The syntax used withrk here to describe the pair of first order differential equationsdx/d t = vx, d vx/d t = −4π2 x is

rk( [dx/dt,dvx/dt],[x,vx],[x0,vx0], [t,t0,tmax,dt] )

and in this example,rk() returns a list of the form[ [t0, x0, vx0],[t0 + dt, x1, vx1],...] .

(%i1) pts : rk([vx,-4 * %piˆ2 * x],[x,vx],[1,0],[t,0,1,0.01])$
(%i2) fll(pts);
(%o2) [[0.0,1.0,0.0],[1.0,0.99999995729235,5.1201813 129342355E-6],101]
(%i3) tL : take(pts,1)$
(%i4) fll(tL);
(%o4) [0.0,1.0,101]

Here we make a plot ofx(t) versust.

(%i5) xL : take(pts,2)$
(%i6) fll(xL);
(%o6) [1.0,0.99999995729235,101]
(%i7) plot2d([discrete,tL,xL],[x,0,1],[xlabel,"T"],[ ylabel,"X"],

[style,[lines,3]])$

Here we make a plot ofvx(t) versust.

(%i8) vxL : take(pts,3)$
(%i9) fll(vxL);
(%o9) [0.0,5.1201813129342355E-6,101]
(%i10) plot2d([discrete,tL,vxL],[x,0,1],[xlabel,"T"] ,[ylabel,"Vx"],

[style,[lines,3]])$

3.6 Scattering Trajectory Plot Using Maxima

The filerutherford_repulse.mac contains the function
orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax) which provides maximum flexibility for the task of
drawing a scattering orbit. The code uses the Maxima fourth-order Runge-Kutta integratorrk .

Here are three examples of use, first for the casee = 1 andb = 1 ( χ, the scattering angle, is represented bychi in the
code).

(%i1) orbit_plot1(1,1,5,5,0.01,5,-4.54,1.87,0,4)$
rmin = 1.618034
phi_inf = 1.1071487 rad or 63.434949 deg
theta0 = 2.0344439 rad or 116.56505 deg
chi = 0.927295 rad, or 53.130102 deg
xc = -0.723607 yc = 1.4472136
vcx = 0.552786 vcy = 0.276393
xa = -0.5
backwards from xc, yc
xfirst = -4.536487
forwards from xc, yc
xlast = 1.8729016 ylast = 4.2659325
vx_last = 0.54218 vy_last = 0.701
xf = 2.5 yf = 5.0
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which produces:
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Figure 8:e = 1, b = 1, χ = 53deg

Next for e = 1 andb = 0.6

(%i2) orbit_plot1(1,0.6,5.4,5,0.01,5,-4.54,1.87,0,4) $
rmin = 1.281025
phi_inf = 0.876058 rad or 50.194429 deg
theta0 = 2.2655346 rad or 129.80557 deg
chi = 1.3894766 rad, or 79.611142 deg
xc = -0.820092 yc = 0.984111
vcx = 0.359816 vcy = 0.299846
xa = -0.5
backwards from xc, yc
xfirst = -4.7366598
forwards from xc, yc
xlast = 0.162247 ylast = 4.4261007
vx_last = 0.167226 vy_last = 0.86386
xf = 0.401639 yf = 5.5180328

which produces
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Figure 9:e = 1, b = 0.6, χ = 79.6 deg
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Next for e = 1 andb = 0.3

(%i3) orbit_plot1(1,0.3,5.4,5.5,0.01,5,-4.54,1.87,0, 4)$
rmin = 1.0830952
phi_inf = 0.54042 rad or 30.963757 deg
theta0 = 2.6011732 rad or 149.03624 deg
chi = 2.0607537 rad, or 118.07249 deg
xc = -0.928746 yc = 0.557248
vcx = 0.142507 vcy = 0.237512
xa = -0.5
backwards from xc, yc
xfirst = -4.6088375
forwards from xc, yc
xlast = -2.4910817 ylast = 3.9952223
vx_last = -0.414274 vy_last = 0.784846
xf = -2.8529412 yf = 4.7117647

which produces
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Figure 10:e = 1, b = 0.3, χ = 118deg

The code used to plot the Rutherford scattering trajectory given a value ofĒ (represented bye in the code) and̄b

(represented byb in the code), first callsinit(e,b) to calculate local (to the calling function) values ofχ (represented

by chi ), the cartesian coordinates(x̄c, ȳc) of the point of closest approach (C), the x-coordinatex̄a of the intersection of

the lineȳ = b̄ and the line OC, and finally the cartesian velocity components at point C (the point of closest approach).

Sinced r̄/d t̄ = 0 at the point C, Eq. (2.50) then implies that

v̄c x = b̄ sin(θ0)/r̄min, v̄c y = −b̄ cos(θ0)/r̄min (3.11)

The code then uses Maxima’srk function to integrate both forward in time from point C for the part of the orbit in which
d r̄/d t̄ > 0 and also backward in time from point C for the part of the orbitin whichd r̄/d t̄ < 0.
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Thus, inside the functionorbit_plot1 are the lines (̄x is represented byx , etc.)

init(e,b),

/ * symbolic expressions for acceleration components * /
rmag : sqrt(xˆ2 + yˆ2), / * rmag in terms of x and y * /
dvxdt : x/2/e/rmagˆ3, / * dvx/dt repulsive rutherford case * /
dvydt : y/2/e/rmagˆ3, / * dvy/dt * /

/ * integrate backwards from xc, yc * /
rkpts : rk([vx, dvxdt, vy, dvydt ],

[x,vx,y,vy],[xc,vcx,yc,vcy],[t,0,-tm,-dt]),
xL : take(rkpts,2),
yL : take(rkpts,4),
pm : [discrete, xL, yL],

which will be the points plotted for the earlier part of the trajectory, and then the lines

/ * integrate forwards from xc,yc * /

rkpts : rk([vx, dvxdt, vy, dvydt ],
[x,vx,y,vy],[xc,vcx,yc,vcy],[t,0,tp,dt]),

xL : take(rkpts,2),
yL : take(rkpts,4),
pp : [discrete, xL, yL],

which will be the points plotted for the later part of the trajectory. In both functions,(xc, yc) represent(x̄c, ȳc) and
( vcx, vcy) represent(v̄c x, v̄c y) and these are locally available after callinginit(e,b) .

In this function, a homemade functiontake(mlist,n) is used to create a listxL of the x coordinates and a listyL of
the y coordinates, using the syntaxxL : take(pts, 2) andyL : take(pts, 4) sincerk() , in this example,
returns a list with elements of the form[t, x, vx, y, vy] .

The functiontake(mL,n) has the definition

take(%aL,%nn) := (map(lambda([x],part(x,%nn)), %aL))$

The syntax used withrk here is

rk( [dx/dt,dvx/dt,dy/dt,dvy/dt],[x,vx,y,vy],[x0,vx0, y0,vy0], [t,t0,tmax,dt] )

in which the first argument is the list of the right-hand sidesof four first-order differential equations and is based on

Eqs. (2.47) and (3.2), leading to, for example

d v̄x
d t̄

=
x̄

2 Ē r̄3
=

x̄

2 Ē (x̄2 + ȳ2)3/2
(3.12)
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3.7 Review of R’s ode() with the Simple Harmonic Oscillator

The filesho1.R containsRcode to integrate the simple harmonic oscillator system with unit period and intial conditions
x0 = 1, vx0 = 0 and make a plot of both the positionx and the velocity componentvx as functions of the time.

## sho1.R
## simple harmonic oscillator with period = 1
## produces side by side plots of
## x vs t and vx vs t
yini = c(x = 1, vx = 0)
times = seq(0, 1, 0.001)
sho = function(t, y, parms) {

with( as.list(y), {
dx = vx
dvx = -4 * piˆ2 * x
list( c(dx, dvx) ) } ) }

out = ode(times = times, y = yini, func = sho, parms = NULL)
plot(out, lwd = 2)

We first load in thedeSolve package, and then load and run this script withsource , as usual:

> library(deSolve)
> source("c:/k1/sho1.R")
> head(out)

time x vx
[1,] 0.000 1.0000000 0.00000000
[2,] 0.001 0.9999803 -0.03947803
[3,] 0.002 0.9999210 -0.07895450
[4,] 0.003 0.9998224 -0.11842785
[5,] 0.004 0.9996842 -0.15789672
[6,] 0.005 0.9995066 -0.19735930

which produces the plot
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Figure 11: Position and Velocity for SHO with Unit Period
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The side effect of loading in the packagedeSolve is to set up some plot defaults which have been accepted in theabove
example.

We can then return to one plot per row, and plot the velocity component versus the position (a phase space plot) with

> par(mfrow = c(1,1))
> plot(out[,"x"], out[,"vx"],type = "l",lwd = 3,col = "blue ",
+ xlab = "X", ylab = "Vx")

which produces the single plot

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

X

V
x

Figure 12: Velocity vs. Position for SHO with Unit Period

Rvectors containing the discrete positions and velocity components can be extracted from thedata.frame produced by
ode .

> xL = out[,"x"]
> head(xL)
[1] 1.0000000 0.9999803 0.9999210 0.9998224 0.9996842 0.9 995066
> vxL = out[,"vx"]
> head(vxL)
[1] 0.00000000 -0.03947803 -0.07895450 -0.11842785 -0.15 789672
[6] -0.19735930

TheRvector containing the discrete times can also be extracted

> tL = out[,1]
> head(tL)
[1] 0.000 0.001 0.002 0.003 0.004 0.005

and we could have usedout[,2] to get the positions, etc.
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We are free to usey as a variable inside the derivative function, as in

## sho3.R
## simple harmonic oscillator with period = 1
## produces side by side plots of
## y vs t and vy vs t

yini = c(y = 1, vy = 0)
times = seq(0, 1, 0.001)
sho = function(t, y, parms) {

with( as.list(y), {
dy = vy
dvy = -4 * piˆ2 * y
list( c(dy, dvy) ) } ) }

out = ode(times = times, y = yini, func = sho, parms = NULL)
plot(out, lwd = 2)

We get the same plots as before, and we can access the elementsof thedata.frame as before. Here we also define the
R function fll for use.

> library(deSolve)
> source("c:/k1/sho3.R")
> fll = function(xL) {
+ xlen = length(xL)
+ cat(" ",xL[1]," ",xL[xlen]," ",xlen,"\n") }
> head(out)

time y vy
[1,] 0.000 1.0000000 0.00000000
[2,] 0.001 0.9999803 -0.03947803
[3,] 0.002 0.9999210 -0.07895450
[4,] 0.003 0.9998224 -0.11842785
[5,] 0.004 0.9996842 -0.15789672
[6,] 0.005 0.9995066 -0.19735930
> tL = out[,1]
> fll(tL)

0 1 1001
> yL = out[,"y"]
> fll(yL)

1 1 1001
> vyL = out[,"vy"]
> fll(vyL)

0 3.247125e-07 1001
> tail(yL,n=2)
[1] 0.9999803 1.0000000

3.8 Scattering Trajectory Plot Using R

The filerutherford_repulse.R contains the function

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax)

which provides much flexibility for the task of drawing a scattering orbit. The code uses thedeSolve Rpackage integrator
ode() , and thedeSolve package must be loaded, usinglibrary(deSolve) before using the part of the code which
callsode() .
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Here is one example, for the casee = 1 andb = 1. The scattering angleχ is represented bychi in the code.

> source("c:/k1/rutherford_repulse.R")
> library(deSolve)
> orbit_plot1(1,1,5.5,5,0.01,5,-4.54,1.87,0,4)

rmin = 1.618034
phi_inf = 1.107149 rad or 63.43495 deg
theta0 = 2.034444 rad or 116.5651 deg
chi = 0.9272952 rad, or 53.1301 deg
xc = -0.7236068 yc = 1.447214
vcx = 0.5527864 vcy = 0.2763932
xa = -0.5

backwards from xc, yc
xfirst = -4.982187

forwards from xc, yc
xlast = 1.872902 ylast = 4.265932
vx_last = 0.5421801 vy_last = 0.7009998
xf = 2.5 yf = 5

which produces the scattering trajectory plot
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Figure 13:e = 1, b = 1, χ = 53deg

See the discussion in Sec. ( 3.6), in which Maxima is used for plots of trajectories, for some details, which still form the
basis for theRcode, with some obvious translations and differences, especially in how the final plot is built up in stages.

TheR version ofinit(e,b) defines some parameters and makes them visible to the callingenvironment (in this case
orbit_plot1 ) by using the special assignment syntaxa <<- 10 , for example. (In the code comments, the word
’global’ refers to parameter visibility in the calling environment.)

## init(e,b) specific to repulsive rutherford case,
## uses analytic expressions to produce global definitions
## of chi,xc,yc, vcx,vcy,and xa. Besides printing out
## these values, init(e,b) also prints
## out the values of rmin, phi_inf, and theta0.
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init = function(e,b) {
w = 1/e/b
rmin = b * (w + sqrt(4+wˆ2))/2 # repulsive case
cat(" rmin = ",rmin,"\n")
phi_inf = acos(w/sqrt(4+wˆ2)) # repulsive case
cat(" phi_inf = ", phi_inf," rad or ", phi_inf * 180/pi," deg\n")
theta0 = pi - phi_inf
cat(" theta0 = ",theta0," rad or ", theta0 * 180/pi," deg\n")
chi <<- pi - 2 * phi_inf # global parameter chi in radians
cat(" chi = ", chi, " rad, or ", chi * 180/pi," deg\n")
# point of closest approach
xc <<- rmin * cos(theta0) # global
yc <<- rmin * sin(theta0) # global
vcx <<- b * sin(theta0)/rmin # global
vcy <<- -b * cos(theta0)/rmin # global
cat(" xc = ", xc," yc = ", yc,"\n")
cat(" vcx = ", vcx," vcy = ", vcy,"\n")
# x-intersection of rmin line with y=b line
xa <<- xc * b/yc # global
cat(" xa = ",xa,"\n") }

Then, inside theR functionorbit_plot1 are the lines:

# define local xc, yc, vcx, vcy, xa, chi
init(e,b)

trajec = function(t, y, parms) {
with( as.list(y), {

r = sqrt(xˆ2 + yˆ2)
dx = vx
dvx = x/2/e/rˆ3 # repulsive case
dy = vy
dvy = y/2/e/rˆ3 # repulsive case
list( c(dx, dvx, dy, dvy) ) } ) }

# integrate backwards from xc, yc

yini = c(x = xc, vx = vcx, y = yc, vy = vcy)
times = seq(0, -tm, -dt)
out = ode(times = times, y = yini, func = trajec, parms = NULL)
xL = out[,"x"]
yL = out[,"y"]
plot(xL, yL, xlim = c(xmin, xmax), ylim = c(ymin, ymax),

type = "l", col = "blue", lwd = 3, xlab = "X",
ylab = "Y")

# integrate forwards from xc,yc

times = seq(0, tp, dt)
out = ode(times = times, y = yini, func = trajec, parms = NULL)
xL = out[,"x"]
yL = out[,"y"]
lines(xL, yL, lwd = 3, col = "blue")

as well as lines for other graphic elements and orbit detail printouts.
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3.9 Analytic Differential Cross Section vs. Scattering Angle Using Maxima

Using Eqs. (2.51) and (3.10), we have

sin(χ/2) =
1

(

1 + 4 (Ē b̄)2
)1/2

(3.13)

so a right triangle has1 on the side oppositeχ/2 and
(

1 + 4 (Ē b̄)2
)1/2

on the hypotenuse, and hence2 Ē b̄ on the side

adjacent toχ/2. Hence

cot(χ/2) = 2 Ē b̄, b̄ =
cot(χ/2)

2 Ē
(3.14)

We then need the first derivatived b̄/dχ.

(%i7) diff(cot(x/2)/2/e,x);
(%o7) -csc(x/2)ˆ2/(4 * e)

so
d b̄

d χ
= − 1

4 Ē sin2(χ/2)
(3.15)

Hence
d σ̄

dΩ
=

1

16 Ē2 sin4(χ/2)
, or

d σ

dΩ
=
( α

4E

)2 1

sin4(χ/2)
(3.16)

If we plot the natural log of the differential scattering cross section (using dimensionless units) versus the scattering angle
χ, with Ē = 1, using the code

(%i6) plot2d(log(1/(16 * sin(x/2)ˆ4)),[x,0.01,1],[xlabel,"chi"],
[ylabel,"ln(dsigma/do)"],[style,[lines,3]])$

we get:
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Figure 14:ln(dσ/dΩ) versusχ, Ē = 1
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3.10 Numerical Differential Cross Section vs. Scattering Angle Using Maxima

We pretend we do not have the analytic result for the scattering angle as a function of the energy and impact parameter,
and use numerical methods to plot the natural logarithm of the predicted (dimensionless) differential cross section versus
the scattering angle. This provides an opportunity to use our results for the numerical approximation of a first derivative.

sigma_points calls achi(e,b) to construct a listchiL of scattering angles (in radians) corresponding to a set of

values of the dimensionless impact parameterb̄. The energye, the starting impact parameter valueb0, the maximum

impact parameter valuebmax, and the impact parameter incrementdb are inputs. The functionf1d(num,dx,funcL) is

called with the syntaxf1d(nb,db,chiL) to obtain a list of first derivativesdχ/d b̄ at the impact parameter grid points

and stored in the listdchi_dbL . sigma_points returns a list of lists:[chi-list, log(dsig)-list] . The value of

each element ofsigL in the code is based on

d σ̄/dΩ =
b̄

sin(χ)

1

| d χ/d b̄ | (3.17)

The three functions just mentioned are defined inrutherford_repulse.mac .

/ * sigma_points(e,b0,bmax,db) produces a list of two lists:
[chi-list, log(d_sig/d_omega)-list] using numerical met hods.
Typical list arithmetic Maxima methods replace
conventional loop methods here.
calls achi() and f1d() * /

sigma_points(ee,b0,bmax,db):=
block([nb,bL,chiL,dchi_dbL,sigL,numer],numer:true,

bL : makelist(b,b,b0,bmax,db),
nb : length(bL),
chiL : map(lambda([x], achi(ee,x)), bL),
dchi_dbL : f1d(nb,db,chiL),
sigL : abs(bL/sin(chiL)/dchi_dbL),
[chiL,log(sigL)])$

/ * achi(e,b) returns the scattering angle in radians
using numerical, rather than analytical, methods. * /

achi(e,b) :=
block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,

w : 1/(b * e),
rexpr : zˆ2 - w * z -1, / * root -> zmin * /
iexpr : 1/(z * sqrt(rexpr)), / * integrate to get phi_inf * /
zmin : find_root(rexpr,z,1e-4,1e6),
phi_inf : quad_qagi(iexpr,z,zmin,inf)[1],
(%pi - 2 * phi_inf))$

/ *
(%i7) achi(1,1);
(%o7) 0.927295
(%i8) deg(%);
(%o8) 53.130102

* /
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/ * f1d(nv,hh,gL) returns a list of first derivatives
at the grid points for a function whose

nv values at the grid points separated by hh
are in the list gL * /

f1d(nv,hh,gL) :=
block([j,fpL:[],fp0,fpl,numer],numer:true,

for j:2 thru nv-1 do
fpL : cons( (gL[j+1] - gL[j-1])/2/hh,fpL),

fpL : reverse(fpL),
/ * use linear interpolation to define first and

last elements of fpL * /
fp0 : 2 * fpL[1] - fpL[2],
fpl : 2 * fpL[nv-2] - fpL[nv-3],
fpL : cons(fp0,fpL),
fpL : append(fpL,[fpl]),
fpL)$

Here is an example of use which compares the strictly numerical approach to the analytic.

(%i1) load(rutherford_repulse);
(%o1) "c:/k1/rutherford_repulse.mac"
(%i2) [chival,sigval] : sigma_points(1,0.1,50,0.1)$
(%i3) time(%);
(%o3) [15.44]
(%i4) fll(chival);
(%o4) [2.7468015,0.0199993,500]
(%i5) fll(sigval);
(%o5) [-2.712689,15.648312,500]
(%i6) chi_min : lmin(chival);
(%o6) 0.0199993
(%i7) chi_max : lmax(chival);
(%o7) 2.7468015
(%i8) plot2d([[discrete, chival,sigval], log(1/16/sin( x/2)ˆ4)],

[x,chi_min,chi_max],[xlabel,"chi"],
[ylabel,"ln(dsigma/do)"],[style,[lines,3]],
[legend,"numerical","analytic"])$

produces the plot
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Figure 15:ln(dσ/dΩ) versusχ, Ē = 1

We see that if we sample enough points, we get agreement between the analytic result and the numerical method.
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3.11 Numerical Differential Cross Section vs. Scattering Angle Using R

We use numerical methods withR to calculate the scattering angle as a function of the energyand impact parameter, and
use numerical methods to plot the natural logarithm of the predicted (dimensionless) differential cross section versus the
scattering angle.

sigma_points calls achi(e,b) to construct aR vectorchiL of scattering angles (in radians) corresponding to a set

of values of the dimensionless impact parameterb̄. The energye, the starting impact parameter valueb0, the maximum

impact parameterbmax, and the impact parameter incrementdb are inputs. The functionf1d(num,dx,funcL) is called

with the inputsf1d(nb,db,chiL) to obtain aR vector of first derivativesdχ/d b̄ at the impact parameter grid points

and stored in the vectordchi_dbL . sigma_points returns aR list of two Rvectors:

{chi-vec, log(dsig)-vec} . The value of each element ofsigL in the code is based on

d σ̄/dΩ =
b̄

sin(χ)

1

| d χ/d b̄ | (3.18)

The following four functions are defined inrutherford_repulse.R .

## sigma_points(e,b0,bmax,db) produces a list of two lists :
## [chi-list, log(d_sig/d_omega)-list] using numerical m ethods.
## Typical list arithmetic Maxima methods replace
## conventional loop methods here.
## calls achi() and f1d()

sigma_points = function(ee,b0,bmax,db) {
bL = seq(from=b0, to=bmax, by=db)
nb = length(bL)
chiL = sapply(bL, function(x) achi(ee,x))
dchi_dbL = f1d(nb, db, chiL)
sigL = abs(bL/sin(chiL)/dchi_dbL)
list( chiL,log(sigL))}

## scattering angle in radians

achi = function(e,b) {
w = 1/(b * e)
fr = function(z) zˆ2 - w * z -1 # root -> zmin
zmin = uniroot(fr, c(1e-4, 1e6),tol = 1e-10)$root
phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin, I nf)$val
pi - 2 * phi_inf}

## f1d(nv,hh,gL) returns a vector of first derivatives
## at the nv grid points for a function whose
## nv values at the grid points separated by hh
## are in the vector gL. Would be more accurate if
## we used quadratic interpolation to define the
## end of grid derivatives.

f1d = function(nv,hh,gL) {
fpL = vector(mode = "numeric", length = nv)
for (j in 2:(nv-1)) fpL[j] = (gL[j+1] - gL[j-1])/2/hh
fpL[1] = 2 * fpL[2] - fpL[3]
fpL[nv] = 2 * fpL[nv-1] - fpL[nv-2]
fpL}
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## print out first, last and length of a vector

fll = function(xL) {
xlen = length(xL)
cat(" ",xL[1]," ",xL[xlen]," ",xlen,"\n") }

Here is an example of using these functions to make a plot of the natural log of the differential scattering cross-section
versus the scattering angleχ.

> source("rutherford_repulse.R")
> spts = sigma_points(1,0.1,50,0.1)
> chival = spts[[1]]
> sigval = spts[[2]]
> fll(chival)

2.746802 0.01999933 500
> fll(sigval)

-2.712689 15.64831 500
> chi_min = min(chival); chi_min
[1] 0.01999933
> chi_max = max(chival); chi_max
[1] 2.746802
> plot(chival, sigval, xlim = c(chi_min,chi_max),
+ type="l", col = "blue", lwd = 3,
+ xlab="chi", ylab="log(sigma)")
> abline(h=0,v=0)
> curve(log(1/16/sin(x/2)ˆ4),chi_min,chi_max,n=200,
+ add=TRUE,col = "red",lwd = 3)

which produces the plot
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Figure 16:ln(dσ/dΩ) versusχ, Ē = 1

The analytic curve (in red) lies on top of the numerical curve(in blue), provided we take enough samples using the
numerical method.
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4 Attractive Rutherford Scattering

Here we treat the case in which the potential energy is

V (r) = −α
r
, α > 0, Veff (r) = −α

r
+
E b2

r2
, (4.1)

V̄ (r̄) = −1

r̄
, V̄eff (r̄) = −1

r̄
+
Ē b̄2

r̄2
(4.2)

4.1 Plot of Effective Potential - Attractive Rutherford

The functionVeff_plot (from rutherford_attract.mac ) has the definition

Veff_plot(e,b,r0,r1,xmin,xmax,ymin,ymax) :=
block([w,rmin,energy_line,numer],numer:true,

w : 1/e/b,
rmin : b * (-w + sqrt(4+wˆ2))/2, / * attractive case * /
print(" rmin = ",rmin),
energy_line : [discrete,[[rmin,e],[r1,e]]],
plot2d([-1/r + e * bˆ2/rˆ2, energy_line],[r,r0,r1], [x,xmin,xmax],

[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff"]))$

The parameterrmin is the minimum radial distance between the incident particle and the scattering center. The invocation

(%i1) Veff_plot(1,1,0.4,8,0.4,8,-1,2)$
rmin = 0.618034

plot2d: some values were clipped.

choosesĒ = 1, b̄ = 1, and chooses to plot the expression defined byveff over the range[r,0.4,8] . The canvas
horizontal extent is determined by the argumentsxmin andxmax. The canvas vertical extent is determined by the argu-
mentsymin andymax. This produces a plot of both the effective potential energyand also the constant total energy of
the incident particle (in red).
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Figure 17: Effective Potential for̄E = 1, b̄ = 1
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4.2 Analytic and Numeric Scattering Angle Using Maxima - Attractive Rutherford

Continuing with the attractive Rutherford case, from Eq. (2.44) we then have

φ∞ = b̄

∫ ∞

r̄min

dr̄

r̄2
√

1 + 1/(Ē r̄)− b̄2/r̄2
. (4.3)

We replace the integration variablēr by z = r̄/b̄, as before, and definew = 1/(Ē b̄), as before, to get

φ∞ =

∫ ∞

zmin

d z

z
√
z2 + w z − 1

(4.4)

in which zmin is the positive value ofz for which the argument of the square root is zero. This gives the result (see
Maxima session just below)

φ∞ =
π

2
+ sin−1

(

w√
4 + w2

)

, w = 1/(Ē b̄). (4.5)

For attractive scattering,φ∞ > π/2 and

φ∞ + (φ∞ − |χ|) = π, χ = π − 2φ∞ < 0 (4.6)

χ = −2 sin−1

(

w√
4 + w2

)

(4.7)

We takeχ to be a negative number here with the magnitude ofχ the deviation below the forward liney = b (or the line
ȳ = b̄).

We findzmin = 1
2 (

√
4 + w2 − w) and hencērmin = b̄

2 (
√
4 + w2 − w).

We letθ0 be the positive angle between the positive x-axis and the direction ofr(t) at the moment the incident particle
is at its minimum distance from the scattering center (the origin of the coordinate system). As before,θ0 + φ∞ = π, so
θ0 = π − φ∞.

Here is a short Maxima session to find the above results.

(%i1) rs : solve(zˆ2 + w * z -1,z);
(%o1) [z = -(sqrt(wˆ2+4)+w)/2,z = (sqrt(wˆ2+4)-w)/2]
(%i2) zmin : rhs(rs[2]);
(%o2) (sqrt(wˆ2+4)-w)/2
(%i3) assume(w>0);
(%o3) [w > 0]
(%i4) phi_inf : integrate(1/(z * sqrt(zˆ2 + w * z -1)),z,zmin,inf);
(%o4) asin(w/sqrt(wˆ2+4))+%pi/2

Using the functionangles(e,b) from rutherford_attract.mac ,

(%i5) angles(1,1)$
phi_inf = 2.0344439 rad, or 116.56505 deg
theta0 = 1.1071487 rad, or 63.434949 deg
chi = -0.927295 rad, or -53.130102 deg
rmin = 0.618034

Since the magnitude of the scattering angle as a function of the dimensionless parametersĒ andb̄ is the same as
in the case of repulsive Rutherford scattering, the plots ofthe magnitude of the scattering angle as a function of
b̄ for givenĒ are the same, and the plots of the natural logarithm of the magnitude of the differential scattering
cross section as a function of the magnitude of the scattering angle are the same as the repulsive case.



4 ATTRACTIVE RUTHERFORD SCATTERING 33

In rutherford_attract.mac is the functionangle_a(e,b) which incorporates the analytic formula for the scatter-
ing angle:

/ * analytic scattering angle in degrees for given
values of Ebar and bbar * /

angle_a(e,b) :=
block([numer],numer:true,

-2 * asin(1/sqrt(1 + 4 * eˆ2 * bˆ2)) * 180/%pi)$

Using this function, we can make a simple plot of scattering angle versus impact parameter for the caseĒ = 1.

(%i6) plot2d(angle_a(1,b),[b,0.01,6],[ylabel,"chi-de g"],
[style,[lines,3]])$

which produces the plot
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Figure 18: Scattering Angle Versusb̄ for Ē = 1

Also in the filerutherford_attract.mac are the three numerical functions:

deg(z) := block([numer],numer:true, z * 180/%pi)$

achi(e,b) :=
block([z,w,zmin,phi_inf,rexpr,iexpr,numer],numer:tr ue,

w : 1/(b * e),
rexpr : zˆ2 + w * z -1, / * root -> zmin for attractive case * /
iexpr : 1/(z * sqrt(rexpr)), / * integrate to get phi_inf * /

zmin : find_root(rexpr,z,1e-4,1e6),
phi_inf : quad_qagi(iexpr,z,zmin,inf)[1],
(%pi - 2 * phi_inf))$

angle_n(e,b) := (deg(achi(e,b)))$

Using this numerical approach instead, we can also make a continuous plot by using thelambda function:

(%i7) plot2d(lambda([b],angle_n(1,b)),[b,0.01,6],[yl abel,"chi-deg"],
[style,[lines,3]])$

(%i8) time(%);
(%o8) [25.86]

which produces the same plot as produced usingangle_a(e,b) , but takes a longer time.



4 ATTRACTIVE RUTHERFORD SCATTERING 34

Of course a faster method would be to define a list of values of the impact parameter, and map the conversion to scattering
angle onto that list, producing a list of corresponding scattering angles in a shorter time, as in

(%i9) bL : makelist(b,b,0.1,5,0.1)$
(%i10) fll(bL);
(%o10) [0.1,5.0,50]
(%i11) chiL : map(lambda([b],angle_n(1,b)), bL)$
(%i12) time(%);
(%o12) [1.61]
(%i13) fll(chiL);
(%o13) [-157.38014,-11.421186,50]
(%i14) plot2d([discrete,bL,chiL],[x,0,5],[xlabel,"b" ],[ylabel,"chi-deg"],

[style,[lines,3]])$

which produces
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Figure 19: Scattering Angle Versusb̄ for Ē = 1

4.3 Numerical Scattering Angle Versus Impact Parameter Using R - Attractive Rutherford

In the filerutherford_attract.R are the three functions

## convert radians to degrees
deg = function(z) z * 180/pi

## scattering angle in radians via numerical methods
## for attractive Rutherford scattering
achi = function(e,b) {

w = 1/(b * e)
fr = function(z) zˆ2 + w * z -1 # root -> zmin
zmin = uniroot(fr, c(1e-4, 1e6),tol = 1e-10)$root
phi_inf = integrate(function(z) 1/z/sqrt(fr(z)), zmin, I nf)$val
pi - 2 * phi_inf}

## angle_n(e,b) attractive rutherford case
## numerical scattering angle in degrees for given
## values of Ebar and bbar

angle_n = function(e,b) deg(achi(e,b))
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Using these functions, we can make a simple plot of scattering angle versus impact paramter for the case of attractive
Rutherford scattering.

> bL = seq(0.01,6,0.1)
> fll(bL)

0.01 5.91 60
> chiL = sapply(bL,function(x) angle_n(1,x))
> fll(chiL)

-177.7085 -9.671686 60
> plot(bL,chiL,type="l",col="blue",lwd=3,ylab="chi-d eg",xlab="b")
> abline(v=0)

which produces the plot
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Figure 20: Scattering Angle Versusb̄ for Ē = 1

4.4 Scattering Trajectory Plot Using Maxima and R - Attractive Rutherford

The filerutherford_attract.mac contains the function

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax,n extend)

which provides much flexibility for the task of drawing a scattering orbit. The code uses the Maxima fourth-order Runge-
Kutta integratorrk .

A translation into R with the syntax

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax)

is in the file rutherford_attract.R and produces the same plots illustrated here using the Maxima version. The
Maxima version uses the small integernextend to determine the number of points to use for the extension of the red line
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which joins the origin to the closest point of the trajectory. Here are three examples of use of the Maxima version, first
for the casee = 1 andb = 1 ( χ, the scattering angle, is represented bychi in the code). The code fororbit_plot1

causes printouts (to the screen) of much diagnostic information about the trajectory.

(%i1) orbit_plot1(1,1,5,5,0.01,5,-3,3.4,-2,2,5,1)$
rmin = 0.618034
phi_inf = 2.0344439 rad or 116.56505 deg
theta0 = 1.1071487 rad or 63.434949 deg
chi = -0.927295 rad, or -53.130102 deg
xc = 0.276393 yc = 0.552786
vcx = 1.4472136 vcy = -0.723607
xa = 0.5
backwards from xc, yc
xfirst = -5.7276639
forwards from xc, yc
xlast = 4.2046373 ylast = -4.0061018
vx_last = 0.655096 vy_last = -0.861996
xf = 3.5 yf = -3.0

produces
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Figure 21:Ē = 1, b̄ = 1

and then forĒ = 1 andb̄ = 0.6,

(%i2) orbit_plot1(1,0.6,5,5,0.01,5,-3,3.4,-2,2,5,1)$
rmin = 0.281025
phi_inf = 2.2655346 rad or 129.80557 deg
theta0 = 0.876058 rad or 50.194429 deg
chi = -1.3894766 rad, or -79.611142 deg
xc = 0.179908 yc = 0.215889
vcx = 1.6401844 vcy = -1.3668203
xa = 0.5
backwards from xc, yc
xfirst = -5.9196184
forwards from xc, yc
xlast = 1.6346676 ylast = -5.7185896
vx_last = 0.198759 vy_last = -1.0623693
xf = 1.4016393 yf = -4.3180328
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produces
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Figure 22:Ē = 1, b̄ = 0.6

and forĒ = 1 andb̄ = 0.3,

(%i3) orbit_plot1(1,0.3,5,5,0.01,5,-3,3.4,-2,2,5,1)$
rmin = 0.0830952
phi_inf = 2.6011732 rad or 149.03624 deg
theta0 = 0.54042 rad or 30.963757 deg
chi = -2.0607537 rad, or -118.07249 deg
xc = 0.0712535 yc = 0.0427521
vcx = 1.8574929 vcy = -3.0958215
xa = 0.5
backwards from xc, yc
xfirst = -6.0729577
forwards from xc, yc
xlast = -2.6061534 ylast = -5.4927368
vx_last = -0.506288 vy_last = -0.951945
xf = -1.8529412 yf = -4.1117647

we get
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Figure 23:Ē = 1, b̄ = 0.3
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An example of the use of theRversion (which uses a more sophisticated adaptive algorithm than does Maxima) is:

> source("rutherford_attract.R")
> library(deSolve)
> orbit_plot1(1,1,5,5,0.01,5,-3,3.4,-2,2)

rmin = 0.618034
phi_inf = 2.034444 rad or 116.5651 deg
theta0 = 1.107149 rad or 63.43495 deg
chi = -0.9272952 rad, or -53.1301 deg
xc = 0.2763932 yc = 0.5527864
vcx = 1.447214 vcy = -0.7236068
xa = 0.5

backwards from xc, yc
xfirst = -5.727665

forwards from xc, yc
xlast = 4.204644 ylast = -4.006098
vx_last = 0.6550977 vy_last = -0.861996
xf = 3.5 yf = -3

which produces the plot
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Figure 24:Ē = 1, b̄ = 1

Using the Maxima version (which uses a fixed time step), for a given energy, as you decrease the impact parameter, you
need to finally decrease the integration step size to achievecorrect asymptotic behavior: approachingy = b ast → −∞,
and thet → +∞ orbital elements becoming tangent to the scattering angle line. We find that we must setdt = 0.001
whene = 1, b = 0.2 , and we must setdt = 0.0001 whene = 1, b = 0.1 , to get a resulting plot with the correct
asymptotic behavior.

4.5 Differential Scattering Cross Section - Attractive Rutherford Case

In Section ( 4.2) we found the negative scattering angle for the attractive Rutherford potential case:

χ = −2 sin−1

(

w√
4 + w2

)

(4.8)
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This implies
sin(|χ|/2) = (1 + 4 Ē2 b̄2)−1/2 (4.9)

Using the same argument as before, this implies that

cot(|χ|/2) = 2 Ē b̄, b̄ = −cot(χ/2)

2 Ē
(4.10)

and hence
d b̄

d χ
=

1

4 Ē sin2(χ/2)
(4.11)

We then get the same formal expression as in the repulsive Rutherford case, Eq.( 3.16

d σ̄

dΩ
=

1

16 Ē2 sin4(χ/2)
. (4.12)

We will use the same approximate numerical method as used in the repulsive Rutherford case, and compare the results
with the analytic answer. Using Maxima for the caseĒ = 1,

(%i1) load(rutherford_attract);
(%o1) "c:/k1/rutherford_attract.mac"
(%i2) [chival,sigval] : sigma_points(1,0.1,50,0.1)$
(%i3) time(%);
(%o3) [16.25]
(%i4) fll(chival);
(%o4) [-2.7468015,-0.0199993,500]
(%i5) fll(sigval);
(%o5) [-2.712689,15.648312,500]
(%i6) chi_min : lmin(chival);
(%o6) -2.7468015
(%i7) chi_max : lmax(chival);
(%o7) -0.0199993
(%i8) plot2d([[discrete, chival,sigval], log(1/16/sin( x/2)ˆ4)],

[x,chi_min,chi_max],[xlabel,"chi"],
[ylabel,"ln(dsigma/do)"],[style,[lines,3]],
[legend,"numerical","analytic"])$

which produces the plot
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Figure 25:Ē = 1, b̄ = 1

which implies agreement (again provided we use enough samples in the approximate numerical method).
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UsingR instead, we get the same agreement:

> source("rutherford_attract.R")
> spts = sigma_points(1,0.1,50,0.1)
> chival = spts[[1]]
> fll(chival)

-2.746802 -0.01999933 500
> sigval = spts[[2]]
> fll(sigval)

-2.712689 15.64831 500
> chi_min = min(chival); chi_min
[1] -2.746802
> chi_max = max(chival); chi_max
[1] -0.01999933
> plot(chival, sigval, xlim = c(chi_min,chi_max),
+ type="l", col = "blue", lwd = 3,
+ xlab="chi", ylab="log(sigma)")
> abline(h=0,v=0)
> curve(log(1/16/sin(x/2)ˆ4),chi_min,chi_max,n=200,
+ add=TRUE,col = "red",lwd = 3)
> legend("topleft",col=c("blue","red"),legend=c("num erical","analytic"),
+ lwd = 2, cex = 1.5)

which produces
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Figure 26:Ē = 1, b̄ = 1
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5 Scattering by the Lennard-Jones Potential

A central potential (energy) expression which implies an attractive force (on the scattered particle) whenr is large and a

repulsive force whenr is small is the Lennard-Jones “6-12” potential

V (r) = 4 V0

(

(a/r)12 − (a/r)6
)

(5.1)

which contains the adjustable parametera with the dimension of length and the adjustable parameterV0 with the dimen-
sion of energy. The factor of4 assures thatV0 is the depth of the potential energy minimum (below the zero of energy).
The switch from attractive to repulsive force occurs whenr = 21/6 a.

Defining dimensionless variables̄r = r/a andV̄ (r̄) = V/V0, we get

V̄ (r̄) = 4

(

1

r̄12
− 1

r̄6

)

. (5.2)

The dimensionless energy is̄E = E/V0 and the dimensionless impact parameter isb̄ = b/a.

The dimensionlessx component of acceleration is then, using Eq.(2.47)

d v̄x
d t̄

= −12 x̄

Ē

(

1

r̄8
− 2

r̄14

)

(5.3)

The dimensionlessy component of acceleration is

d v̄y
d t̄

= −12 ȳ

Ē

(

1

r̄8
− 2

r̄14

)

(5.4)

For larger̄
d v̄x
d t̄

≈ − 12 x̄

Ē r̄8
(5.5)

and if x̄ < 0 (for larger̄) thenv̄x is increasing with time (attractive region) and ifx̄ > 0 (for larger̄) thenv̄x is decreasing
with time (repulsive region). With no restriction on the size of r̄, d v̄x/d t̄ changes sign when̄r = 21/6 ≈ 1.122462.

(%i1) 2ˆ(1/6),numer;
(%o1) 1.122462048309373

which determines the location of the minimum ofV̄ (r̄), where the dimensionless potential (energy) takes the value−1.

(%i2) 4 * (1/xˆ(12) - 1/xˆ6), x = 2ˆ(1/6);
(%o2) -1

The dimensionlesseffective potential energy is

V̄eff (r̄) = V̄ (r̄) + Ē b̄2/r̄2 (5.6)

The scattering angleχ is then
χ = |π − 2φ∞| (5.7)

where

φ∞ = b̄

∫ ∞

r̄min

dr̄

r̄2
√

1− 4
Ē

(

1
r̄12 − 1

r̄6

)

− b̄2/r̄2
. (5.8)

The lower limit r̄min = (rmin/a) is the largest real (positive) value ofr̄ for which the argument of the square root
vanishes, and hence the largest real root of the equationf(r) = 0, where in the code we replacēr by r, b̄ by b, andĒ by
e, and

f(r) = e r12 − e b2 r10 + 4 r6 − 4 = 0. (5.9)
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If we make a plot off(r) for e = 1, b = 1, using the code (this and following code is inlennard_jones.mac )

(%i3) fplot(e,b,xmin,xmax,ymin,ymax) :=
block([f,numer], numer : true,

f : e * xˆ12 - e * bˆ2 * xˆ10 + 4 * xˆ6 - 4,
plot2d(f,[x, xmin, xmax],[y,ymin,ymax],

[style, [lines, 3]], [ylabel, "f"],
[xlabel, "r"],[nticks,200]))$

(%i4) fplot(1,1,0.01,2,-10,10)$
plot2d: some values were clipped.

we get the following plot which shows one root nearr = 1
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Figure 27: Arg. of Radical for̄E = 1, b̄ = 1

which is confirmed byfind_root :

(%i5) find_root(xˆ12 - xˆ10 + 4 * xˆ6 -4,x,0.1,2);
(%o5) 1.0

andrealroots shows that it is an exact solution:

(%i6) realroots(xˆ12 - xˆ10 + 4 * xˆ6 -4);
(%o6) [x = -1,x = 1]

as is obvious from inspection of the expression.

UsingR instead of Maxima, we get the same plot with (this function isin lennard_jones.R ):

> fplot = function(e,b,xmin,xmax,ymin,ymax) {
+ curve(e * xˆ12 - e * bˆ2 * xˆ10 + 4 * xˆ6 - 4, xmin, xmax,
+ n=200, col="blue", lwd=3, ylim = c(ymin,ymax),
+ xlab = "r", ylab = "f")
+ abline(h = 0)}
> fplot(1,1,0.01,2,-10,10)
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Again, usingR to find rmin locations

> e = 1; b = 1
> uniroot (function(x) e * xˆ12 - e * bˆ2 * xˆ10 + 4 * xˆ6 - 4, c(0.1,2),
+ tol = 1e-10 )$root
[1] 1
> e = 1; b = 0.3
> uniroot (function(x) e * xˆ12 - e * bˆ2 * xˆ10 + 4 * xˆ6 - 4, c(0.1,2),
+ tol = 1e-10 )$root
[1] 0.9714185

5.1 Effective Lennard-Jones Potential Plots

A Maxima funciton, for the Lennard-Jones case, for a plot of the effective potential energy together with a line for the
energy of the incident particle (in red) ending atrmin is:

Veff_plot(e,b,r0,r1,xmin,xmax,ymin,ymax) :=
block([r,veff,root_expr,rmin,energy_line,numer],num er:true,

veff : 4 * (rˆ(-12) - rˆ(-6)) + e * bˆ2/rˆ2,
root_expr : 1 - 4 * (1/rˆ12 - 1/rˆ6)/e - bˆ2/rˆ2,
rmin : map(’rhs, realroots(root_expr,1e-15)),
rmin : apply(’max, rmin),
energy_line : [discrete,[[rmin,e],[r1,e]]],
plot2d([veff, energy_line],[r,r0,r1], [x,xmin,xmax],

[y,ymin,ymax],[style,[lines,3,1],[lines,3,2]],
[legend,false],[xlabel,"r"],[ylabel,"Veff"]))$

Here are a few examples of use. First fore = 1 andb = 1 ,

(%i1) Veff_plot(1,1,0.9,3,0.8,3,-0.5,2)$

which produces the plot
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Figure 28: Effective Potential Energy for̄E = 1, b̄ = 1
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A second example at a value of the impact parameter which results in a “wrap-around” orbit is

(%i2) Veff_plot(1,1.66597,1,5,1,5,-0.5,2)$

which produces the plot
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Figure 29: Effective Potential Energy for̄E = 1, b̄ = 1.66597

5.2 Lennard-Jones Trajectory Plots

The Maxima function

orbit_plot1(e,b,tm,tp,dt,rchi,xmin,xmax,ymin,ymax,n extend,psize)

in the file lennard_jones.mac provides much flexibility in producing a plot of the trajectory for the Lennard-Jones
potential.

Here is an example which prints to the screen diagnostic information about the details of the trajectory.

(%i1) orbit_plot1(1,1,5,5,0.01,5,-2,1.2,0,2,4,0.4)$
rmin = 1
phi_inf = 1.0723305 rad or 61.440014 deg
theta0 = 2.0692621 rad or 118.55999 deg
chi = 0.996932 rad, or 57.119973 deg
xc = -0.478079 yc = 0.878317
vcx = 0.878317 vcy = 0.478079
xa = -0.544312
backwards from xc, yc
xfirst = -5.6624496
forwards from xc, yc
xlast = 2.2342414 ylast = 5.2982522
vx_last = 0.542905 vy_last = 0.839859
xf = 2.1700966 yf = 5.1990458



5 SCATTERING BY THE LENNARD-JONES POTENTIAL 45

and produces the plot
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Figure 30: Lennard-Jones Trajectory forĒ = 1, b̄ = 1

A case in which the trajectory wraps around the scattering center and has a negative scattering angle of about−185
degrees is produced by the parameterse = 1 andb = 1.66597 .

(%i2) orbit_plot1(1,1.66597,5,13,0.01,5,-4.9,1.5,-2, 2,4,0.4)$
rmin = 1.256028
phi_inf = 3.1889565 rad or 182.71375 deg
theta0 = -0.0473639 rad or -2.7137495 deg
chi = -3.2363204 rad, or -185.4275 deg
xc = 1.2546194 yc = -0.0594681
vcx = -0.062799 vcy = -1.3248922
xa = -35.147555
backwards from xc, yc
xfirst = -3.3460942
forwards from xc, yc
xlast = -11.453391 ylast = -0.585262
vx_last = -0.995518 vy_last = 0.0945861
xf = -40.125139 yf = 2.1389006

which produces
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Figure 31:Ē = 1, b̄ = 1.66597, χ = −185.4 degrees
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5.3 Lennard-Jones Scattering Angle Plots

The Maxima functionangle_n(e,b) for the Lennard-Jones case uses numerical methods to returnthe scattering angle (in degrees),
given the dimensionless energye and impact parameterb. The scattering angle can be either positive or negative.

angle_n(e,b) :=
block([root_expr,rmin,phi_inf,numer],numer:true,

root_expr : 1 - 4 * (1/rˆ12 - 1/rˆ6)/e - bˆ2/rˆ2,
rmin : map(’rhs, realroots(root_expr,1e-15)),
rmin : apply(’max, rmin),
phi_inf : b * quad_qagi(1/rˆ2/sqrt(root_expr),r,rmin,inf)[1],
(%pi - 2 * phi_inf) * 180/%pi)$

with the behavior:

(%i1) angle_n(1,1);
(%o1) 57.119973

For given energye = 1 , we can use the Maximamap function withangle_n (provided we also use thelambda function) the
produce a list of scattering angles from a list of values of the dimensionless impact paramterb.

(%i2) bval : [1,0.8];
(%o2) [1,0.8]
(%i3) map(’lambda([x],angle_n(1,x)),bval);
(%o3) [57.119973,85.630912]

We can use the Maxima functionmakelist to make a list of values ofb in an organised manner, and then a list of the corresponding
scattering angles (in degrees).

(%i4) bval : makelist(b,b,0.1,3,0.5);
(%o4) [0.1,0.6,1.1,1.6,2.1,2.6]
(%i5) chival : map(’lambda([x],angle_n(1,x)),bval);
(%o5) [168.87958,111.16737,41.099183,-109.10721,-9.3 447236,-2.2820441]

and then make a simple plot which shows both the discrete points and also joins the points with straight lines:

(%i6) plot2d([[discrete,bval,chival],[discrete,bval, chival],
[discrete,[[0,0],[3,0]]] ],

[x,0,3],[y,-180,180],[xlabel,"b"],[ylabel,"chi"],
[style,[lines,3,1],[points,2,2,1],[lines,3,5] ],
[legend, false])$

which produces the plot
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Figure 32: Scattering Angles for̄E = 1
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The region of impact parameters fromb = 0.4 to b = 2 can then be looked at more carefully:

(%i7) bval : makelist(b,b,0.4,2,0.1);
(%o7) [0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1 .5,1.6,1.7,1.8,1.9,2.0]
(%i8) chival : map(’lambda([x],angle_n(1,x)),bval);
(%o8) [134.94076,123.22066,111.16737,98.679851,85.63 0912,71.853809,57.119973,

41.099183,23.282176,2.8123902,-21.942679,-54.792783 ,-109.10721,
-93.021101,-35.226049,-20.509053,-13.435124]

(%i9) plot2d([[discrete,bval,chival],[discrete,bval, chival],
[discrete,[[0.3,0],[2.2,0]]] ],

[x,0.3, 2.2],[y,-180,180],[xlabel,"b"],[ylabel,"chi" ],
[style,[lines,3,1],[points,2,2,1],[lines,3,5] ],
[legend, false])$

which produces the plot
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Figure 33: Scattering Angles for̄E = 1

It is also possible to use the functionangle_n(e,b) with the lambda function to get a continuous plot of scattering angle
versus impact parameter, as in

(%i10) plot2d(lambda([x],angle_n(1,x)),[x,0.3,2.5],[ y,-200,180],
[xlabel,"b"],[ylabel,"chi"],
[style,[lines,3,1]])$

(%i11) time(%);
(%o11) [33.62]

which produces the plot
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Figure 34: Scattering Angle Versusb̄ for Ē = 1
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5.4 Lennard-Jones Differential Scattering Cross Section

The scattering angle in radians is returned by the Maxima function achi(e,b) , edited to describe the Lennard-Jones
case:

achi(e,b) :=
block([root_expr,rmin,phi_inf,numer],numer:true,

root_expr : 1 - 4 * (1/rˆ12 - 1/rˆ6)/e - bˆ2/rˆ2,
rmin : map(’rhs, realroots(root_expr,1e-15)),
rmin : lmax(rmin),
phi_inf : b * quad_qagi(1/rˆ2/sqrt(root_expr),r,rmin,inf)[1],

(%pi - 2 * phi_inf))$

For example,

(%i1) achi(1,1);
(%o1) 0.996932
(%i2) map(lambda([x],achi(1,x)),[0.8,1,1.2]);
(%o2) [1.4945414,0.996932,0.406351]

As another example, we can calculate the finite value ofb̄ for which the scattering angle is zero (see Figure 34):

(%i3) find_root(lambda([x],achi(1,x)),x,1.3,1.4);
(%o3) 1.3124992
(%i4) achi(1,%);
(%o4) 1.27897692E-13

Thus, forĒ = 1, the scattering angle is approximately zero forb̄ = 1.3124992.

In our plots of the scattering angle as a function of impact parameter, we have seen that there is a sharp negative minimum
in the scattering angle for an impact parameter in the neighborhood of̄b = 1.6.

A useful function here isfind_b(b_list, chi_list) , which, given two equal length lists, a list ofb̄ values and a list
of the correspondingχ values, finds the value of̄b corresponding to the minimum value ofχ.

which_min(aL) :=
block([amin,j,jval:0,numer ],numer:true,

amin:lmin(aL),
for j thru length(aL) do

if is(equal(aL[j], amin)) then (
jval : j,

return()),
jval)$

find_b(xL,yL) := (xL[which_min(yL)])$

As a simple test example with a small number of elements:

(%i5) bL : makelist(b,b,0.1,0.6,0.1);
(%o5) [0.1,0.2,0.3,0.4,0.5,0.6]
(%i6) chiL : map(’lambda([x],achi(1,x)), bL);
(%o6) [2.9475046,2.752433,2.5553542,2.3551605,2.1506 062,1.9402366]
(%i7) lmin(chiL);
(%o7) 1.9402366
(%i8) find_b(bL, chiL);
(%o8) 0.6
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To useR, we can define:

find_b = function(bvec,chi_vec) bvec[which.min(chi_vec )]

with the behavior

> bL = seq(0.1,0.6,0.1); bL
[1] 0.1 0.2 0.3 0.4 0.5 0.6
> chiL = sin(bL); chiL
[1] 0.09983342 0.19866933 0.29552021 0.38941834 0.479425 54 0.56464247
> min(chiL)
[1] 0.09983342
> find_b(bL,chiL)
[1] 0.1

We use two different methods to make cross section plots.

We first use the more efficientsigma_points(e,b0,bmax,db) andf1d(nb,db,chiL) method to generate a list of
scattering angles and the corresponding natural logarithms of the absolute value of the differential scattering crosssection
implied by the range of impact parameters(b0, bmax) . This method was used for the Rutherford scattering cases.

We use first usefind_b( b_list, chi_list ) to get the approximate location of the impact parameter which cor-
responds to the steep minimum of the scattering angle.

(%i9) bval : makelist(b,b,0.1,3,0.1)$
(%i10) fll(bval);
(%o10) [0.1,3.0,30]
(%i11) chival : map(’lambda([x], achi(1,x)), bval)$
(%i12) fll(chival);
(%o12) [2.9475046,-0.016455,30]
(%i13) lmin(chival);
(%o13) -1.9042801
(%i14) find_b(bval,chival);
(%o14) 1.6

We then work toward a plot corresponding to the small values of impact parameters, from̄b = 0.1 up to b̄ = 1.6. The
values ofχ indicated on the plots are in radians. In this range of impactparameters, the scattering angle starts off at a
large positive value2.9475046 (approximately169 deg) whenb̄ = 0.1, steadily decreases in value, becomes negative and
reaches−1.9042801 (approximately−109 deg) whenb̄ = 1.6.

(%i15) achi(1,0.1);
(%o15) 2.9475046
(%i16) deg(%);
(%o16) 168.87958
(%i17) achi(1,1.6);
(%o17) -1.9042801
(%i18) deg(%);
(%o18) -109.10721
(%i19) [chival,sigval] : sigma_points(1,0.1,1.6,0.02)$
(%i20) time(%);
(%o20) [1.8]
(%i21) chi_min : lmin(chival);
(%o21) -1.9042801
(%i22) chi_max : lmax(chival);
(%o22) 2.9475046
(%i23) plot2d([discrete,chival,sigval],[x,chi_min,ch i_max],

[xlabel,"chi"],[ylabel,"ln(dsigma/do)"],
[style,[lines,3]])$
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which produces the plot
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Figure 35: Log of Cross Section vs.χ for Ē = 1 andb̄ = (0.1, 1.6)

In the above figure, the peak in the natural logarithm of the absolute value of the cross section occurs forχ = 0, cor-
responding tōb ≈ 1.3124992, due to the presence ofsin(χ) in the denominator of the formula for the differential cross
section.

We then make a separate plot forb̄ in the range(1.7, 3). In this range of impact parameters, the scattering angle starts at
a large negative valueχ = −1.6235245 = −93 deg when b̄ = 1.7, and then becomes less negative steadily, ending at
χ = −0.016455 = −0.94 deg whenb̄ = 3.

(%i24) achi(1,1.7);
(%o24) -1.6235245
(%i25) deg(%);
(%o25) -93.021101
(%i26) achi(1,3);
(%o26) -0.016455
(%i27) deg(%);
(%o27) -0.942803
(%i28) [chival,sigval] : sigma_points(1,1.7,3,0.02)$
(%i29) time(%);
(%o29) [1.54]
(%i30) chi_min : lmin(chival);
(%o30) -1.6235245
(%i31) chi_max : lmax(chival);
(%o31) -0.016455
(%i32) plot2d([discrete,chival,sigval],[x,chi_min,ch i_max],

[xlabel,"chi"],[ylabel,"ln(dsigma/do)"],
[style,[lines,3]])$
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which produces the plot
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Figure 36: Log of Cross Section vs.χ for Ē = 1 andb̄ = (1.7, 3)

Since the behavior of the scattering angle and differentialcross section (as a function of the energy and impact parameter)
is more complicated than the pure Rutherford scattering cases, we create a second somewhat slower and less efficient
method of calculation here, which is able to produce smoother plots.

Instead of usingsigma_points andf1d (used in the Rutherford scattering cases) as above, we defineand use a function
chi_sigma1(e,b,db) , which evaluates the approximate numerical first derivative ofχ with respect to a single value of
b̄ and returns a list of the value ofχ implied by the input value of̄b, together with the natural logarithm of the absolute
value of the differential cross section for that scatteringangle.

chi_sigma1(e,b,db):=
block([chival,dchi_db,sig,numer],numer:true,

chival : achi(e,b),
dchi_db : (achi(e,b+db) - achi(e,b-db))/2/db,
sig : abs(b/sin(chival)/dchi_db),
[chival,log(sig)])$

For example,

(%i1) chi_sigma1(1,0.1,0.01);
(%o1) [2.9475046,-1.3216832]
(%i2) bL : [0.1,0.2]$
(%i3) map(’lambda([x],chi_sigma1(1,x,0.01)), bL);
(%o3) [[2.9475046,-1.3216832],[2.752433,-1.3127418]]
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Finally, we have constructedsigma_plot(e,b0,bmax,db) , which, given the energye, the interval ofb values to use
(b0 is lower limit, bmax is upper limit), and the separationdb of b values used, makes a plot of the natural logarithm of
the absolute value of the dimensionless differential scattering cross section as a function of the corresponding scattering
angles.

sigma_plot(e,b0,bmax,db) :=
block([bL,pts,chiL,chi_min,chi_max, numer],numer:tru e,

bL : makelist(b,b,b0,bmax,db),
pts : map(’lambda([x],chi_sigma1(1,x,db)), bL),
chiL : take(pts,1),
chi_min : lmin(chiL),
chi_max : lmax(chiL),
plot2d([discrete, pts],[x,chi_min,chi_max],

[xlabel,"chi"], [ylabel,"ln(dsigma/do)"],
[style,[lines,3]]))$

We again make a separate plot forb̄ in the range(0.1, 1.6).

(%i4) sigma_plot(1,0.1,1.6,0.01);
(%i5) time(%);
(%o5) [152.06]

which produces
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Figure 37: Log of Cross Section vs.χ for Ē = 1 andb̄ = (0.1, 1.6)

We then make a separate plot forb̄ in the range(1.7, 3).

(%i6) sigma_plot(1,1.7,3,0.01)$
(%i7) time(%);
(%o7) [119.9]
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which produces
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Figure 38: Log of Cross Section vs.χ for Ē = 1 andb̄ = (1.7, 3)

6 R Scripts For The First Three Figures

The center of mass diagram (see 2.1) was produced with theRscriptcmass.R .

## cmass.R
plot(0:3,0:3,type="n",xlab="",ylab="",

xaxt="n",yaxt="n",bty="n") # no axes, no box
points(0.5,0.5,pch=20)
points(0.5,2.5,pch=19,cex=2)
text(0.3,2.5,expression(m[1]),cex=1.5)
arrows(0.5,0.5,0.5,2.5,code=2,cex=1.2)
text(0.4,1.5,expression(r[1]),cex=1.5)
text(0.4,0.5,"0")
points(2.5,2.5,pch=19,cex=2)
arrows(0.5,0.5,2.5,2.5,code=2,cex=1.2)
text(1.7,1.5,expression(r[2]),cex=1.5)
text(2.65,2.5,expression(m[2]),cex=1.5)
arrows(0.5,0.5,1.4,2.5,code=2,cex=1.2)
text(1,2,"R",cex=2)
arrows(0.5,2.5,2.5,2.5,code=2,cex=1.2)
text(1.4,2.6,"C. M.",cex=1.2)
text(1.2,2.8,expression(r[rel]),cex=1.5)
text(1.35,2.8,"=",cex=1.5)
text(1.45,2.8,expression(r[2]),cex=1.5)
text(1.55,2.8,"-",cex=1.5)
text(1.65,2.8,expression(r[1]),cex=1.5)

and executed via

> source("c:/k1/cmass.R")
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The coordinate system diagram (see 2.1) was produced with the Rscriptcoord.R .

## coord.R

plot(0:3,0:3,type="n",xlab="",ylab="",
xaxt="n",yaxt="n",bty="n") # no axes, no box

arrows(0.25,0.25,2.75,0.25,code=2,lwd=2) # x axis
arrows(0.25,0.25,0.25,2.75,code=2,lwd=2) # y axis
arrows(0.25,0.25,1.536,1.782,code=2,lwd=3,col="blue ") # position vector r
text(2.9,0.25,"+x",cex=2)
text(0.25,2.9,"+y",cex=2)
text(0.9,1.5,"r",cex=3)
points(1.536,1.782,pch=20,cex=1.75)
points(0.25,0.25,cex=2,pch=19)
text(0.12,0.12,"0",cex=2)
## arc of a circle with an arrow
plotcircle(r=1,mid=c(0.25,0.25),from=0,to=0.75,arro w=TRUE)
text(1.4,0.9,expression(theta),cex=3) # greek letter th eta

The functionplotcircle is from theshape package which must be loaded before using the script.

> library(shape)
> source("c:/k1/coord.R")

The scattering angle definition Figure 3 was created usingrutherford_repulse.R , scatt.R , and thedeSolve and
shape libraries (see the end comment in thescatt.R file, which is shown here:)

## scatt.R generic scatt angle plot

## scatt_plot1 for generic scattering plot
## repulsive rutherford potential.
## calls init(e,b) to define local values of
## xc,yc,xa,vcx,vcy,chi.

scatt_plot1 = function(e,b,tm,tp,dt,rchi,xmin,xmax,ym in,ymax) {

n1 = 150 # vector element for incident rvec arrow

# define local xc, yc, vcx, vcy, xa, chi

init(e,b)

# symbolic expressions for acceleration components

trajec = function(t, y, parms) {
with( as.list(y), {

r = sqrt(xˆ2 + yˆ2)
dx = vx
dvx = x/2/e/rˆ3 # repulsive case
dy = vy
dvy = y/2/e/rˆ3 # repulsive case
list( c(dx, dvx, dy, dvy) ) } ) }

# integrate backwards from xc, yc

cat(" backwards from xc, yc \n")
yini = c(x = xc, vx = vcx, y = yc, vy = vcy)
times = seq(0, -tm, -dt)
out = ode(times = times, y = yini, func = trajec, parms = NULL)
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## make xLb and yLb global so they can be looked at outside prog ram
xLb <<- out[,"x"]
yLb <<- out[,"y"]

x1 = xLb[n1]
y1 = yLb[n1]
cat(" x1 = ",x1," y1 = ",y1,"\n")
xfirst = tail(xLb, n=1)
cat(" xfirst = ", xfirst," \n")
plot(xLb, yLb, xlim = c(xmin, xmax), ylim = c(ymin, ymax),

type = "l", col = "blue", lwd = 3, xlab = "X",
ylab = "Y")

# integrate forwards from xc,yc

cat(" forwards from xc, yc \n")
times = seq(0, tp, dt)
out = ode(times = times, y = yini, func = trajec, parms = NULL)

xL = out[,"x"]
yL = out[,"y"]
cat(" xlast = ", tail(xL, n=1)," ylast = ",tail(yL, n=1),"\n ")
vxf = tail(out[,"vx"], n=1)
vyf = tail(out[,"vy"], n=1)
cat (" vx_last = ",vxf," vy_last = ",vyf,"\n")

lines(xL, yL, lwd = 3, col = "blue")

# add line y = b
abline(h = b, lwd=2)
abline(h = 0)
# add tick mark at origin
lines ( c(0,0), c(- 0.05,0.05), lwd=2)

# add point at end of rvec arrow
points(x1,y1,pch=19,col="blue",cex=2)

# add rvec arrow
arrows(0,0,x1,y1, code=2, length=0.1, lwd = 2 )

# add rmin vector
arrows(0,0,xc,yc,code=2, length=0.1, col="red",lwd = 2)
text(0,0.8,expression(r[min]),cex=1.5)

# show angle theta to rvec line, trial and error:
plotcircle(mid=c(0,0), from=0, to= 2.1, r=0.5, lwd = 2, arr ow=TRUE)
text(0.8, 0.3, expression(theta),cex=2)
text(-1.2,0.6,"r",cex=2)

# add chi line
yf = b + rchi * sin(chi)
xf = xa + rchi * cos(chi)
cat(" xf = ",xf," yf = ",yf,"\n")
lines ( c(xa,xf), c(b, yf), lwd=2)

# show angle chi
plotcircle(r=1,mid=c(xa,b), from=0,to=chi, arrow=TRUE )
text(0.8, 1.4, expression(chi),cex=2)
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# show impact parameter b
arrows(-4.2,0,-4.2,1,code=3,length=0.1,lwd=2)
text(-4,0.5,"b",cex=1.7)
}

## production of Fig.3, Scattering Angle Illustrated:
##
## > source("c:/k1/rutherford_repulse.R")
## > library(deSolve)
## > library(shape)
## > source("c:/k1/scatt.R")
## > scatt_plot1(1,1,5.5,5,0.01,5,-4.54,1.87,0,4)


