
Maxima by Example:
Ch.8: Numerical Integration ∗

Edwin L. Woollett

November 16, 2012

Contents
8.1 Introduction . 3
8.2 Using nint and quad for One or Two Dimensional Quadrature 3

8.2.1 Loading the nint Package . 3
8.2.2 nint and quad Syntax . 4
8.2.3 1D Quadrature Using mdefint and ndefint . 6
8.2.4 1D Quadrature Examples Using nint and quad . 7
8.2.5 2D Quadrature Examples Using nint and quad . 9
8.2.6 The nint Package Sets domain to complex: Caution! 10
8.2.7 Case: Symbolic Definite Integral the Difference of Two Almost Equal Numbers . . . 11
8.2.8 Turning Off Automatic Chop of Answer . 12
8.2.9 Changing the Chop Value Used by nint . 12

8.3 Arbitrary Precision One Dimensional Quadrature with apnint and apquad 13
8.4 Using the Wolfram Alpha Web Site for Integrals . 16
8.5 Direct Quadpack Use of quad qags, quad qag, and quad qagi 17

8.5.1 Syntax for Quadpack Functions . 17
8.5.2 Ouput List of Quadpack Functions and Error Code Values 18
8.5.3 Integration Rule Parameters and Optional Arguments 18
8.5.4 quad qags for a Finite Interval . 19
8.5.5 quad qags for Double Integrals . 22
8.5.6 quad qag for a General Oscillatory Integrand . 23
8.5.7 quad qagi for a Non-finite Interval . 26

8.6 Numerical Integration: Sharper Tools . 28
8.6.1 quad qagp for Internal Integrand Singularities . 28
8.6.2 quad qawo for Fourier Series Coefficients . 28
8.6.3 quad qaws for End Point Algebraic and Logarithmic Singularities 29
8.6.4 quad qawc for a Cauchy Principal Value Integral . 31
8.6.5 quad qawf for a Semi-Infinite Range Cosine or Sine Fourier Transform 33

8.7 Finite Region of Integration Decision Tree . 34
8.8 Non-Finite Region of Integration Decision Tree . 35

∗This version uses Maxima 5.28.0. This is a live document. Check http://www.csulb.edu/˜woollett/ for the
latest version of these notes. Send comments and suggestions to woollett@charter.net

1

Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima.
All comments and suggestions for improvements will be appreciated and carefully considered.

The Maxima session transcripts were generated using the Xmaxima
graphics interface on a Windows XP computer, and copied into
a fancy verbatim environment in a latex file which uses the
fancyvrb and color packages.

Maxima, a Computer Algebra System.
Some numerical results depend on the Lisp version used.
This chapter uses Version 5.28.0 (2012) using Lisp GNU
Common Lisp (GCL) GCL 2.6.8 (aka GCL).
http://maxima.sourceforge.net/

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
Richard Fateman provided early encouragement and advice. Raymond Toy, Stavros Macrakis, and Barton
Willis have each contributed importantly to the evolution of the code in the nint package.

The present nint and apnint packages are a work in progress, partially dictated by the progress in Maxima
special function float and bfloat values. The new Ch. 8 functions apnint and apquad are the first step in
providing quadrature results which attempt to satisfy user requested precision (for one dimensional quadrature).

2

3

8.1 Introduction
Chapter 8 on numerical integration (quadrature) is divided into eight sections.

The syntax of the functions nint and quad is exactly the same (quad is used to force use of Quadpack code)
and this syntax is introduced with a few examples. These functions are available once you load our nint
package, and they provide an interface to Maxima’s integrate function and the Quadpack functions for
numerical quadrature in one and two dimensions.

When you use nint, an answer is first sought using integrate (unless the integrand is a multiple-valued
function or otherwise potentially dangerous) and only if integrate does not succeed is Quadpack resorted
to.

The new package functions, apnint and apquad, available if you both load the nint.mac package and
then load the apnint.mac package (see examples below), allow the user to request quadrature results with
more digits of precision (for one-dimensional quadrature) than is returned by nint and quad. Several exam-
ples of the use of these functions is given.

We then discuss the most useful Quadpack functions for direct use, their syntax and examples of direct use.

We then discuss the less often used Quadpack functions which may occasionally be useful.

Finally we present a “decision tree” for one dimensional quadrature using the Quadpack functions, first for a
finite integration interval, and then for a non-finite integration interval.

In Chapter 9, we will discuss bigfloats and details of using Maxima for high precision quadrature, parts of
which are incorporated into the new Ch. 8 functions apnint and apquad. Chapter 10 covers the calculation
of Fourier series coefficients and both Fourier transform and Laplace transform type integrals. Chapter 11
presents tools for the use of fast Fourier transforms with examples of use.

If you are new to Maxima, check out Ch. 1 of Maxima by Example, and also take a look at the web page:

http://mathscitech.org/articles/maxima

as well as the “10 minute tutorial”:

http://math-blog.com/2007/06/04/
a-10-minute-tutorial-for-solving-math-problems-with-maxima/

and the Harvard Math web page:

http://www.math.harvard.edu/computing/maxima/

8.2 Using nint and quad for One or Two Dimensional Quadrature
8.2.1 Loading the nint Package

Maxima will be ready to use the nint package once you have issued a load command such as load(nint)
(if you have set up your maxima.init file as suggested in Ch. 1), or, using a complete path, as in
load("c:/work2/nint.mac").

4

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"

The files that are loaded are nint.mac, nint.lisp, quad_util.mac, mydefint.mac, quad1d.mac,
and quad2d.mac. Global parameters which are set during this load are: display2d:false,
ratprint:false, domain:complex, and lognegint:true.

8.2.2 nint and quad Syntax

Here is a summary of the syntax for either nint or quad.

We use var for the variable of integration, and a and b for the range limits in the 1d examples here (naturally,
you can use any symbol for the variable of integration, as long as the supplied expression expr is a function
of that variable.

For the 2d syntax examples, we assume expr is a function of x and y, with x1 and x2 the range limits for the
x variable, and with y1 and y2 the range limits for the y variable.

Again, you can use any symbols for the variables of integration.

The range limit parameters are either real numbers or inf or minf.

1D INTEGRAL SYNTAX

To first try integrate with a fallback to quadpack:

nint ([expr],var,a, b [options])

or, to force use of quadpack:

quad ([expr],var,a, b [options])

The options: strong_osc, singular, principal_val(v0), points(x1,x2,...), real,
imaginary, and complex are recognised for one dimensional integrals and are used to decide what quad-
pack routine to use and how.

Before calling the quadpack routines, nint (or quad) expends some effort in trying to confirm that the inte-
grand is either real or pure imaginary. If nint (or quad) cannot assume the integrand is either real or pure
imaginary (using a series of tests), nint (or quad) proceeds to work with the real and imaginary parts sepa-
rately. Although it is never necessary to use the options real, imaginary, or complex, for a complicated
integrand some time may be saved if the relevant option is included (thus avoiding the time for the tests). Of
course, if you include the option real, you should be sure the integrand evaluates to a real number over the
whole domain of integration!

The option strong_osc forces use of quad_qag if integrate does not succeed. The strong_osc key-
word should only be used for a finite interval of integration.

5

The option singular forces use of quad_qags if integrate does not succeed; should only be used for a
finite interval of integration.

The option principal_val(v0) assumes that expr has the form g(var)/(var - v0), and requests
that the quadpack routine quad_qawc be used for a numerical principal value evaluation (if integrate is not
used or is not successful).

The option points(x1,x2,..) forces use of quad_qagp if integrate is not used or is not successful.
quad_qagp gives special treatment to the supplied points, where the integrand is assumed to have singular
behavior of some type. The supplied points should be entirely inside the range of integration.

1d examples (in each you can use quad instead of nint,
which forces use of quadpack routines):

nint (expr,var,a,b)
nint (expr,var,a,b,real)
nint (expr,var,a,b,imaginary)
nint (expr,var,a,b,complex)

nint (expr,var,a,b,strong_osc)
nint (expr,var,a,b,strong_osc,real)
nint (expr,var,a,b,strong_osc,imaginary)
nint (expr,var,a,b,strong_osc,complex)

nint (expr,var,a,b,singular)
nint (expr,var,a,b,singular,real)
nint (expr,var,a,b,singular,imaginary)
nint (expr,var,a,b,singular,complex)

nint (expr,var,a,b,principal_val(v0))
where v0 evaluates to a number and
a < v0 < b.

nint (expr,var,a,b,principal_val(v0),real)
nint (expr,var,a,b,principal_val(v0),imaginary)
nint (expr,var,a,b,principal_val(v0),complex)

nint (expr,var,a,b, points(x1,x2,...))
where x1, x2, etc., evaluate to numbers and

a < x1 < b, etc.
nint (expr,var,a,b, points(x1,x2,...),real)
nint (expr,var,a,b, points(x1,x2,...),imaginary)
nint (expr,var,a,b, points(x1,x2,...),complex)

6

2D INTEGRAL SYNTAX

We use a 2d notation similar to Mathematica’s. nint(f,[x,x1,x2],[y,y1,y2]) is the approximate
numerical value of the double integral integrate(integrate (f,y,y1,y2), x,x1,x2). The 2d
quadrature syntax is then:

nint (expr,[x,x1,x2 [x-option]],[y,y1,y2 [y-option]] [gen-option])

which includes a try using integrate, or

quad (expr,[x,x1,x2 [x-option]],[y,y1,y2 [y-option]] [gen-option])

which uses only the quadpack routines. For example (in each, you can replace nint by quad):

nint (expr,[x,x1,x2],[y,y1,y2])

nint (expr,[x,x1,x2],[y,y1,y2],real)

nint (expr,[x,x1,x2],[y,y1,y2,strong_osc])

nint (expr,[x,x1,x2,strong_osc],[y,y1,y2],imaginary)

nint (expr,[x,x1,x2],[y,y1,y2,principal_val(y0)])

nint (expr,[x,x1,x2],[y,y1,y2,points(ya,yb,...)])

GENERAL REMARKS

nint calls nint1d for a 1d integral or nint2d for a 2d integral. nint1d and nint2d are responsi-
ble for making sure the work detail lists nargL and noutL are constructed and available as global lists if
integrate is used and is successful.

Otherwise these lists are constructed by the code in quad1d or quad2d, which are called if the word nint
is replaced by quad, or which are called if the call to integrate (by nint) is not sucessful.

nargL is a global list of method and args input, noutL is a global list of method and either integrate or
quadpack total output.

If method is set to true, nint or quad will print out the method used during the work.

If debug is set to true, many details of progress will be printed to the console screen.

8.2.3 1D Quadrature Using mdefint and ndefint

You might want to try using (i.e., force Maxima to use) integrate, even though nint avoids using
integrate for a particular integrand.

For 1d integrals, the package provides the function mdefintwhich uses integrate (in a careful way) to try
to get a symbolic answer. You can then use cfloat to reduce the answer to a floating point value. cfloat
is a package function which combines rectform, float, and expand in one function, with the definition:

7

cfloat(expr):= (expand(float(rectform(expr))))$

However, if the symbolic answer is the difference of two almost equal values, cfloat can return an incorrect
numerical value. A more careful reduction to a numerical value occurs with the use of the package function
fbfloat (expr, ndigits) which uses bigfloat methods to reduce expr to a floating point value using
the requested precision.

The package function ndefint combines mdefint with fbfloat and requests 32 digit accuracy. Some
examples of the use of mdefint and ndefint for 1d quadrature (see below for 2d examples):

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) mdefint(log(1/x)/sqrt(x),x,0,1);
(%o2) 4
(%i3) ndefint(log(1/x)/sqrt(x),x,0,1);
(%o3) 4.0
(%i4) mdefint(log(1/x)/sqrt(%i*x),x,0,1);
(%o4) -4*(-1)ˆ(3/4)
(%i5) ndefint(log(1/x)/sqrt(%i*x),x,0,1);
(%o5) 2.82842712474619-2.82842712474619*%i
(%i6) mdefint(log(1/x)/sqrt(%i*x),x,0,1);
(%o6) -4*(-1)ˆ(3/4)
(%i7) cfloat(%);
(%o7) 2.828427124746191-2.828427124746191*%i
(%i8) fbfloat(%o6,32);
(%o8) 2.82842712474619-2.82842712474619*%i

8.2.4 1D Quadrature Examples Using nint and quad

We continue with the same integrand used above. Rather than setting method to true, we can use the global
parameter noutL to see what actual method(s) were used and perhaps some details. Even if we set method
to true, we can always look at noutL; more details are given if quadpack was used.

If no method option is included in the arguments given to nint or quad, and if quadpack is being used,
quad1d runs a competition between quad_qags and quad_qag, and selects the result with the least esti-
mated error magnitude.

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) nint(log(1/x)/sqrt(%i*x),x,0,1);
(%o2) 2.82842712474623-2.828427124746158*%i
(%i3) noutL;
(%o3) [[qags,2.82842712474623,3.6770586575585185E-13,315,0],

[qags,-2.828427124746158,1.1102230246251565E-13,315,0]]
(%i4) quad(log(1/x)/sqrt(%i*x),x,0,1);
(%o4) 2.82842712474623-2.828427124746158*%i
(%i5) noutL;
(%o5) [[qags,2.82842712474623,3.6770586575585185E-13,315,0],

[qags,-2.828427124746158,1.1102230246251565E-13,315,0]]
(%i6) method:true$
(%i7) nint(log(1/x)/sqrt(%i*x),x,0,1);

quad_qags
quad_qags

(%o7) 2.82842712474623-2.828427124746158*%i

8

(%i8) quad(log(1/x)/sqrt(%i*x),x,0,1);
quad_qags
quad_qags

(%o8) 2.82842712474623-2.828427124746158*%i
(%i9) noutL;
(%o9) [[qags,2.82842712474623,3.6770586575585185E-13,315,0],

[qags,-2.828427124746158,1.1102230246251565E-13,315,0]]
(%i10) nint(xˆ2,x,0,2);
integrate

(%o10) 2.666666666666667
(%i11) mdefint(xˆ2,x,0,2);
(%o11) 8/3
(%i12) cfloat(%);
(%o12) 2.666666666666667

Non-Finite Range Examples

(%i13) nint(1/(1+xˆ2),x,0,inf);
integrate

(%o13) 1.570796326794897
(%i14) nint(exp (%i*xˆ2),x,minf,inf);
integrate

(%o14) 1.2533141373155*%i+1.2533141373155
(%i15) quad(exp (%i*xˆ2),x,minf,inf);
quad_qagi
realpart quad_qagi error = integration failed to converge

(%o15) false

In the last example, integrate is able to find the result, but quadpack fails. The symbolic answer is:

(%i16) mdefint(exp (%i*xˆ2),x,minf,inf);
(%o16) sqrt(%pi)*(%i/sqrt(2)+1/sqrt(2))

Further Examples

Because the integrand contains sqrt, nint bypasses integrate here and calls quad1d. However,
integrate can actually do this integral and returns the correct numerical value.

(%i17) nint(sin(x)/sqrt(x),x,0,5000,real,singular);
quad_qags

(%o17) 1.251128192999518
(%i18) ndefint(sin(x)/sqrt(x),x,0,5000);
(%o18) 1.251128192999533

Here is a bessel function example in which we request the use of quad_qag:

(%i19) nint(bessel_j(0,x)/(1+x),x,0,1,real,strong_osc);
quad_qag

(%o19) 0.64654342647716

9

Here is a principal value integral done by quadpack:

(%i20) quad((x-xˆ2)ˆ(-1),x,-1/2,1/2,principal_val(0));
quad_qawc
quad_qawc

(%o20) 1.09861228866811

However, integrate can do this principal value integral, and issues the “Principal Value” printout to warn
the user:

(%i21) ndefint((x-xˆ2)ˆ(-1),x,-1/2,1/2);
Principal Value
(%o21) 1.09861228866811

Here is a quadrature done using the quadpack routine quad_qagp by including the points option:

(%i22) quad(1/sqrt(sin(x)),x,0,10,points(%pi,2*%pi,3*%pi));
quad_qagp
quad_qagp
quad_qagp

(%o22) 10.48823021716681-6.769465521725387*%i

integrate cannot find a value for this integral:

(%i23) ndefint(1/sqrt(sin(x)),x,0,10);
(%o23) false
(%i24) mdefint(1/sqrt(sin(x)),x,0,10);
(%o24) ’integrate(1/sqrt(sin(x1030868)),x1030868,0,10)

8.2.5 2D Quadrature Examples Using nint and quad

The no-option version of 2D syntax also works with mdefint and ndefint.

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) nint(1,[x,0,1],[y,0,1]);
(%o2) 1.0
(%i3) quad(1,[x,0,1],[y,0,1]);
(%o3) 1.0
(%i4) mdefint(1,[x,0,1],[y,0,1]);
(%o4) 1
(%i5) ndefint(1,[x,0,1],[y,0,1]);
(%o5) 1.0

and here are uses of the option real:

(%i6) nint(1/sqrt(x+y),[x,0,1],[y,0,1],real);
(%o6) 1.104569499660576
(%i7) nint(sin(x*y),[x,0,1],[y,0,1],real);
(%o7) 0.23981174200056

10

A 2d example in which the presence of log and also fractional powers causes integrate to be bypassed
in favor of quadpack (set method to true to see easily what method is being used here):

(%i8) method:true$
(%i9) nint(log(y)/xˆ(4/5),[x,0,1],[y,0,1]);

qags2
(%o9) -5.000000000000004
(%i10) time(%);
(%o10) [6.23]
(%i11) nint(log(y)/xˆ(4/5),[x,0,1],[y,0,1],real);

qags2
(%o11) -5.000000000000004
(%i12) time(%);
(%o12) [3.78]
(%i13) ndefint(log(y)/xˆ(4/5),[x,0,1],[y,0,1]);
(%o13) -5.0
(%i14) time(%);
(%o14) [0.02]

This is a case in which including the option real halves the time of the quadpack calculation. This integrand-
domain combination is correctly evaluated by mdefint in a fraction of the time required by quadpack.

(%i15) mdefint(log(y)/xˆ(4/5),[x,0,1],[y,0,1]);
(%o15) -5
(%i16) time(%);
(%o16) [0.0]

2d examples with non-finite limits:

(%i17) nint(exp(-abs(x) - abs(y)),[x,minf,inf],[y,minf,inf]);
integrate

(%o17) 4.0
(%i18) quad(exp(-abs(x) - abs(y)),[x,minf,inf],[y,minf,inf]);
qagi(qagi(..))

(%o18) 3.999999999996149
(%i19) nint(sin(x*y)*exp(-x)*exp(-y),[x,0,inf],[y,0,inf],real);
qagi(qagi(..))

(%o19) 0.34337796296064

8.2.6 The nint Package Sets domain to complex: Caution!

When you load in the nint package, domain is set to complex, which can result in an incorrect symbolic
integral result or an error when you directly use integrate.

Here is a 2d example, in which integrate gives the correct answer only if domain is set to real (the
normal default in the absence of the package nint.mac). (This is a Maxima bug.)

If you are only interested in the numerical value (for a particular value of the parameter b), and use our package
functions nint or quad, there is no problem, because the sqrt function in the integrand causes nint to
bypass integrate automatically.

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) domain;
(%o2) complex

11

(%i3) foo :((-%pi)/2+acos(y/b)+acos(x/b))/(2*%pi)$
(%i4) assume(b>0,x>0, x<b);
(%o4) [b > 0,x > 0,b > x]
(%i5) integrate(integrate(foo,y,0,sqrt(bˆ2 - xˆ2)),x,0,b);
expt: undefined: 0 to a negative exponent.
-- an error. To debug this try: debugmode(true);

(%i6) domain:real;
(%o6) real
(%i7) integrate(integrate(foo,y,0,sqrt(bˆ2 - xˆ2)),x,0,b);
(%o7) bˆ2/(4*%pi)

8.2.7 Case: Symbolic Definite Integral the Difference of Two Almost Equal Numbers

Here we compare the direct use of integrate, nint, and quad with an integrand whose definite integral is the
difference of two almost equal numbers.

Use of cfloat (an nint package function which combines rectform, float, and expand) produces a
wildly wrong numerical answer. Use of the package function fbfloat, and choice of 32 digit precision, uses
bigfloat methods to get an accurate answer, which is then converted back to 16 digit display inside the function
fbfloat.

The package function fchop is used routinely in the package to ignore very small numbers.

The package function nint tries integrate first, and if successful then uses fbfloat with 32 digit preci-
sion requested to obtain the numerical value from the symbolic definite integral, and then uses fchop.

The package function quad always uses fchop on the result returned by quadpack to round off the numerical
answer. (But see below about turning off the chopping of very small numbers.)

It is clear, from the nature of the integrand, that the answer must be a real number.

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) ee : integrate(exp(xˆ5),x,1,2);
(%o2) ((-1)ˆ(4/5)*gamma_incomplete(1/5,-32)-(-1)ˆ(4/5)

*gamma_incomplete(1/5,-1))/5
(%i3) cfloat(ee);
(%o3) 1.0132394896940175E+12-1.9531250000000001E-4*%i
(%i4) fbfloat(ee,32);
(%o4) 1.0512336862202133E-20*%i+1.0132394896940183E+12
(%i5) fchop(%);
(%o5) 1.0132394896940183E+12
(%i6) nint(exp(xˆ5),x,1,2);
(%o6) 1.0132394896940183E+12
(%i7) noutL;
(%o7) [integrate,1.0132394896940183E+12]
(%i8) quad(exp(xˆ5),x,1,2);
(%o8) 1.0132394896940144E+12
(%i9) noutL;
(%o9) [qag,1.0132394896940144E+12,0.011249218166387,155,0]

In the above output, the global parameter noutL includes the method and the result(s) returned by the method.

12

The global parameter nargL is a list which includes both the method and the arguments used by the method.
The names of the integration variables actually used are automatically generated by the code to allow global
assumptions to remain in force after the computation, hence the weird names.

(%i10) nint(exp(xˆ5),x,1,2);
(%o10) 1.0132394896940183E+12
(%i11) nargL;
(%o11) [integrate,%eˆwx62375ˆ5,wx62375,1,2]
(%i12) quad(exp(xˆ5),x,1,2);
(%o12) 1.0132394896940144E+12
(%i13) nargL;
(%o13) [qag,%eˆx76014ˆ5,x76014,1.0,2.0,3,limit = 800]

8.2.8 Turning Off Automatic Chop of Answer

The global parameter dochop is set to true by the package and causes automatic chopping of the answer.
Set dochop to false to prevent automatic chopping of the answer.

(%i1) load(nint);
(%o1) "c:/work2/nint.mac"
(%i2) dochop;
(%o2) true
(%i3) nint(exp(xˆ5),x,1,2);
(%o3) 1.0132394896940183E+12
(%i4) dochop:false$
(%i5) nint(exp(xˆ5),x,1,2);
(%o5) 1.0512336862202133E-20*%i+1.0132394896940183E+12
(%i6) dochop:true$
(%i7) nint(exp(xˆ5),x,1,2);
(%o7) 1.0132394896940183E+12

8.2.9 Changing the Chop Value Used by nint

The global parameter _small% holds the small chop value; numbers whose absolute values are smaller than
_small% are automatically “chopped” by fchop. Set _small% to smaller values if you want less chopping.

(%i8) method : false$
(%i9) nint(exp(xˆ5),x,1,2);
(%o9) 1.0132394896940183E+12
(%i10) _small%;
(%o10) 1.0E-14
(%i11) _small% : 1.0e-30$
(%i12) nint(exp(xˆ5),x,1,2);
(%o12) 1.0512336862202133E-20*%i+1.0132394896940183E+12

13

8.3 Arbitrary Precision One Dimensional Quadrature with apnint and apquad
Syntax

The new Ch. 8 functions apnint (arbitrary precision numerical integration which first tries integrate) and
apquad (arbitrary precision quadrature which avoids integrate) are defined in the file apnint.mac (which
loads tsquad.mac and dequad.mac). To use apnint and/or apquad, you should first load the
nint.mac package, and then the apnint.mac package.

Both functions have the same syntax:

apnint (expr, x, x1,x2,rp,wp)
apquad (expr, x, x1,x2,rp,wp)

in which expr depends on the variable x (of course you can use any symbol), x1 is less than x2, x1 must
evaluate to a finite real number, but x2 can either be finite (evaluating to a real number) or the symbol inf.

rp is the “requested precision” (“precision goal”, the number of trustworthy digits wanted in the result), and
wp is the “working precision” (fpprec is set to wp during the course of the calculation).

These two functions do not set values of noutL and nargL, but you can set method to true to have a short
printout of the method used. The finite numerical case uses a new function tsquad (which accepts a complex
integrand), defined in the file tsquad.mac.

The non-finite numerical case uses a new function dequad (which also accepts a complex integrand), defined
in the file dequad.mac.

Both of these new functions return the result as a bigfloat number. In general, bfloat(expr) returns a
bigfloat number whose precision depends on the current value of fpprec. Both package functions apnint
and apquad worry about setting the value of fpprec locally to the values needed corresponding to the wp
arg. You do not have to set the global value of fpprec yourself, although that global value will not affect the
precision of the calculation: only the supplied value wp affects the precision of the actual calculation.

Here are some examples of bigfloat number returns (the default value of fpprec is 16). When comparing
two bigfloat numbers, you should set the value of fpprec to a large enough value. Using float to convert a
bigfloat number to an ordinary floating point number leads to a loss of significant digits. (See Ch. 9 for more
discussion of bigfloats.)

(%i1) fpprec;
(%o1) 16
(%i2) pi16 : bfloat(%pi);
(%o2) 3.141592653589793b0
(%i3) pi30 : bfloat(%pi),fpprec:30;
(%o3) 3.14159265358979323846264338328b0
(%i4) fpprec;
(%o4) 16
(%i5) abs(pi16 - pi30);
(%o5) 0.0b0
(%i6) abs(pi16 - pi30),fpprec:40;
(%o6) 1.144237745221949411169021904042519539695b-17
(%i7) pi30f : float(pi30);
(%o7) 3.141592653589793

14

(%i8) abs(pi16 - pi30f),fpprec:40;
(%o8) 1.1102230246251565404236316680908203125b-16

An Accuracy Test

A test used in Ch.9 is the known integral
∫ 1

0

√
t ln(t)dt = −4/9 (8.1)

You need to load both the nint.mac package, and then the apnint package (the latter loads tsquad.mac
and dequad.mac).

(%i1) (load(nint),load(apnint));
_kmax% = 8 _epsfac% = 2

(%o1) "c:/work2/apnint.mac"
(%i2) integrate(sqrt(x)*log(x),x,0,1);
(%o2) -4/9
(%i3) tval : bfloat(%),fpprec:45;
(%o3) -4.4445b-1
(%i4) apval : apquad(sqrt(x)*log(x),x,0,1,30,40);
construct _yw%[kk,fpprec] array for kk =
8 and fpprec = 40 ...working...

(%o4) -4.444444444444444444444444444444444444445b-1
(%i5) abs(apval - tval),fpprec:45;
(%o5) 4.46422161518439410412204461320543256312937649b-41

Requesting thirty digit accuracy with forty digit arithmetic returns a value for this integral which has about
forty digit precision. See Ch.9 for other tests using known integrals.

The loading of the apnint.mac file causes the loading of other files of the package. The loading of the
package file tsquad.mac produces the printout: _kmax% = 8 _epsfac% = 2 seen in the above
example, which warns that two global parameters are set by the package. Ch.9 discusses the meaning of those
parameters, and the possibility of changing them to fit your special problem.

An array of transformation coefficients is constructed, using 40 digit arithmetic, in the above example. Once
that array has been constructed, other numerical integrals can be evaluated using the same set of coefficients
(as long as the same working precision wp is requested).

If you change the value of wp, a new array of coefficients is constructed, which is available for use with other
integrals (the original 40 digit array is still available also).

(%i6) apquad(sqrt(x)*log(x),x,0,1,20,30);
construct _yw%[kk,fpprec] array for kk =
8 and fpprec = 30 ...working...

(%o6) -4.44444444444444444444444444445b-1
(%i7) apquad(sqrt(x)*log(x),x,0,1,30,40);
(%o7) -4.444444444444444444444444444444444444445b-1

15

Some Examples

Using apquad forces use of a numerical method discussed in Ch.9, instead of first trying integrate. The
expr to be integrated can be complex.

(%i8) apquad(sin(x)*exp(%i*x),x,0,2,20,30);
(%o8) 1.18920062382698206284315977363b0*%i+4.13410905215902978659792045774b-1

However this integral can be done using integrate, and Maxima is successful in obtaining a bfloat value
of the symbolic result:

(%i9) method:true$
(%i10) apnint(sin(x)*exp(%i*x),x,0,2,20,30);
integrate

(%o10) 1.18920062382698206284315977363b0*%i+4.13410905215902978659792045774b-1

Here is an example of a non-finite integral with a complex integrand. We force use of a numerical method by
using apquad:

(%i11) apquad(exp(-x +%i*x),x,0,inf,20,30);
dequad
(%o11) 5.0b-1*%i+5.0b-1

The package function dequad is defined in the file dequad.mac, loaded by apnint.mac, and can handle
a complex integrand, passing the real and imaginary parts separately to the Ch.9 function quad_de (the latter
assumes a real integrand).

As in the previous example, using apnint produces an answer from integrate:

(%i12) apnint(exp(-x +%i*x),x,0,inf,20,30);
integrate

(%o12) 5.0b-1*%i+5.0b-1

Here is an example of an integrand containing a Bessel function, and integrate cannot find the definite
integral over the non-finite domain, nor can integrate find the indefinite integral:

(%i13) integrate(bessel_j(1,x)*exp(-x),x,0,inf);
(%o13) ’integrate(bessel_j(1,x)*%eˆ-x,x,0,inf)
(%i14) integrate(bessel_j(1,x)*exp(-x),x);
(%o14) ’integrate(bessel_j(1,x)*%eˆ-x,x)

If we force the use of the numerical bigfloat methods, the integrand is first tested to see if evaluation at a bigfloat
specified point returns a bigfloat number, and for this example the Bessel function factor is not reduced:

(%i15) bfloat(bessel_j(1,0.5b0)*exp(-0.5b0));
(%o15) 6.065306597126334b-1*bessel_j(1.0b0,5.0b-1)

and apquad returns false.
(%i16) apquad(bessel_j(1,x)*exp(-x),x,0,inf,20,30);
apquad: cannot obtain bfloat value from integrand
(%o16) false

The presence of sqrt and/or log in an integrand causes apnint to bypass integrate, (just as happens
with nint).

(%i17) apnint(log(1/x)/sqrt(%i*x),x,0,1,20,30);
tsquad
(%o17) 2.82842712474619009760337744842b0-2.82842712474619009760337744842b0*%i

16

Here is an example of a complex integrand in which quad can get a numerical answer (about 15 digit
precision), but apquad can only get an answer for the realpart of the integrand:

(%i18) quad(log(-3+%i*x),x,-2,3);
quad_qag
quad_qags

(%o18) 2.449536971144524*%i+6.02070929514083
(%i19) quad(realpart(log(-3+%i*x)),x,-2,3);

quad_qag
(%o19) 6.02070929514083
(%i20) quad(imagpart(log(-3+%i*x)),x,-2,3);

quad_qags
(%o20) 2.449536971144524
(%i21) apnint(realpart(log(-3+%i*x)),x,-2,3,20,30);
tsquad
(%o21) 6.02070929514083135694888711387b0
(%i22) apnint(imagpart(log(-3+%i*x)),x,-2,3,20,30);
quad_ts: vdiffnew > vdiffold before vdiff < eps0 reached
quad_ts: abort calc.
(%o22) false
(%i23) imagpart(log(-3+%i*x));
(%o23) atan2(x,-3)

The bigfloat calculation for the imaginary part of the integrand was aborted when the differences between the
current estimate and the previous estimate of the integral started growing (instead of decreasing steadily).

8.4 Using the Wolfram Alpha Web Site for Integrals
The Wolfram Alpha web page, http://www.wolframalpha.com, allows free one-line commands (inte-
grals, derivatives, plots, etc.,) which may require translating Maxima syntax into Mathematica syntax.

A web page with some translation from Maxima to Mathematica is

http://www.math.harvard.edu/computing/maxima/

A larger comparison of Maxima, Maple, and Mathematica syntax is at

http://beige.ucs.indiana.edu/P573/node35.html

Maxima syntax for 1d symbolic integration is

(%i13) integrate(cos(x),x,0,1);
(%o13) sin(1)
(%i14) float(%);
(%o14) 0.8414709848079

The corresponding Mathematica request would be (note the curly brackets):

Integrate[Cos[x], {x, 0, 1}]

for a symbolic answer, and

NIntegrate[Cos[x], {x, 0, 1}]

17

produces a numerical result corresponding to Maxima’s

float(integrate(cos(x),x,0,1))

Mathematica also has the function N which computes the numerical value of expr with the syntax:

N[expr]

or

expr //N

Two examples of numerical two dimensional integration in Mathematica syntax are:

NIntegrate[1/Sqrt[x + y], {x,0,1},{y,0,1}]
NIntegrate[Sin[x*y],{x,0,1}, {y,0,1}]

8.5 Direct Quadpack Use of quad qags, quad qag, and quad qagi
The quadpack subroutine package originally was a set of Fortran subroutines, described in the book:

Quadpack: A Subroutine Package for Automatic Integration,
by R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber,

and D.K. Kahaner,
Springer-Verlag, 1983

and designed for the computation of 1d integrals. The Maxima developer Raymond Toy has adapted the pack-
age to Maxima via a translation from Fortran to Common Lisp (using f2cl) combined with a special interface
for the Maxima user.

See the Maxima Help Manual for an extensive discussion in Sec. 19.3 (Sec. 19 is Integration).

8.5.1 Syntax for Quadpack Functions

The integrand expr supplied as the first argument to a quadpack function must evaluate to a real number
throughout the requested range of the independent variable. All the quadpack functions (“q” is for “quadra-
ture”), except two, are called using the syntax:

quad_qaxx (expr, var, a, b, (other-required-args), optional-args)

The exceptions are the Cauchy principle value integration routine quad_qawc which does the integral∫ b

a
f(x)/(x− c)dx, using the syntax quad_qawc(expr,var,c,a,b,optional-args),

and the cosine or sine Fourier transform integration routine quad_qawf which does integrals∫∞
a

f(x) cos(ω x)dx or
∫∞
a

f(x) sin(ω x)dx using the syntax
quad_qawf(expr,var,a,omega,trig,optional-args).

18

8.5.2 Ouput List of Quadpack Functions and Error Code Values

All Quadpack functions return a list of four elements:

[num-val, est-abs-error, number-integrand-evaluations, error-code].

The error-code (the fourth element of the returned list) can have the values:

0 - no problems were encountered

1 - too many sub-intervals were done

2 - excessive roundoff error is detected

3 - extremely bad integrand behavior occurs

4 - failed to converge

5 - integral is probably divergent or slowly convergent

6 - the input is invalid

8.5.3 Integration Rule Parameters and Optional Arguments

All the Quadpack functions (except one) include epsrel, epsabs, and limit as possible optional types of allowed
arguments to override the default values of these parameters: epsrel = 1e-8, epsabs = 0.0, limit = 200.
To override the epsrel default value, for example, you would add the optional argument epsrel = 1e-6 or
epsrel=1d-6 (both have the same effect).

These Quadpack functions apply an integration rule adaptively until an estimate of the integral of expr over
the interval (a, b) is achieved within the desired absolute and relative error limits, epsabs and epsrel. With
the default values epsrel = 1e-8, epsabs = 0.0, only epsrel plays a role in determining the convergence of the
integration rules used, and this corresponds to getting the estimated relative error of the returned answer smaller
than epsrel.

If you override the defaults with the two optional arguments (in any order) epsrel = 0.0, epsabs = 1e-8, for
example, the value of epsrel will be ignored and convergence will have been achieved if the estimated absolute
error is less than epsabs.

The integration region is divided into subintervals, and on each iteration the subinterval with the largest es-
timated error is bisected. This “adaptive method” reduces the overall error rapidly, as the subintervals become
concentrated around local difficulties in the integrand.

The Quadpack parameter limit, whose default value is 200, is the maximum number of subintervals to be
used in seeking a convergent answer. To increase that limit, you would insert limit=300, for example.

19

8.5.4 quad qags for a Finite Interval

The “s” on the end of qags is a signal that quad_qags has extra abilities in dealing with functions which
have integrable singularities, but even if your function has no singular behavior, quad_qags is still the best
choice due to the sophistication of the quadrature algorithm used. Use the syntax

quad_qags (expr, var , a, b, [epsrel, epsabs, limit])

where the keywords inside the brackets indicate possible optional arguments (entered in any order), such as
epsrel = 1e-6.

Thus the approximate numerical value of
∫ 1

0
ex2

dx would be the first element of the list returned by
quad_qags (exp (xˆ2), x, 0, 1).

(%i1) display2d:false;
(%o1) false
(%i2) domain;
(%o2) real
(%i3) quad_qags(exp (xˆ2),x,0,1);
(%o3) [1.462651745907182,1.6238696453143376E-14,21,0]

If you call quad_qags with an unbound parameter in the integrand, a noun form will be returned which will
tell you all the defaults being used.

(%i4) quad_qags(a*x,x,0,1);
(%o4) quad_qags(a*x,x,0,1,epsrel = 1.0E-8,epsabs = 0.0,limit = 200)

There is a more efficient Quadpack function available, quad_qaws, for integrals which have end point al-
gebraic and/or logarithmic singularites associated with of the form

∫ b

a
f(x)w(x)dx, if the “weight function”

w(x) has the form (note: f(x) is assumed to be well behaved)

w(x) = (x− a)α (b− x)β ln(x− a) ln(b− x) (8.2)

where α > −1 and β > −1 for convergence. See Sec 8.6.3 for more information on quad_qaws and its use.

Example 1

Here is an example of the use of quad_qags to compute the numerical value of the integral
∫ 1

0

√
x ln(1/x)dx.

The integrand g = x1/2 ln(1/x) = −x1/2 ln(x) has the limiting value 0 as x → 0 from the positive side. Thus
the integrand is not singular at x = 0, but it is rapidly changing near x = 0 so an efficient algorithm is needed.
(Our Example 2 will work with an integrand which is singular at x = 0.)

Let’s check the limit at x = 0 and plot the function.

(%i5) g:sqrt(x)*log(1/x)$
(%i6) limit(g,x,0,plus);
(%o6) 0
(%i7) (load(draw),load(qdraw))$
(%i8) qdraw(ex(g,x,0,1))$

20

Here is that plot.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

1

Figure 1: x1/2 ln(1/x)

Now we try out quad_qags on this integral and compare with the exact answer returned by integrate,
converted to 20 digit accuracy using bfloat.

(%i9) fpprintprec:8$
(%i10) tval : block([fpprec:20], bfloat(integrate(g,x,0,1)));
(%o10) 4.4444444b-1
(%i11) qlist:quad_qags(g,x,0,1);
(%o11) [0.444444,4.93432455E-16,315,0]
(%i12) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o12) 8.0182679b-17

The first element of the returned list qlist is the approximate numerical value of the integral. We have used
integrate together with bfloat and fpprec to generate the “true value” good to about 20 digits (see Chapter 9),
and we see that the absolute error of the answer returned by quad_qags is about 10−16. The second element
of qlist is the estimated absolute error of the returned answer. The third element shows that 315 integrand
evaluations were needed to attain the requested (default) relative error epsrel = 1e-8. The fourth element is the
error code value 0 which indicates no problems were found.

The algorithm used to find an approximation for this integral does not know the “exact” (or true) answer, but
does have (at each stage) an estimate of the answer and an estimate of the likely error of this estimated answer
(gotten by comparing the new answer with the old answer, for example), and so can compute an estimated
relative error (est abs err/est answer) which the code checks against the requested relative error goal supplied
by the parameter epsrel.

We are assuming that the defaults are being used, and hence epsabs has the value 0.0, so that the convergence
criterion used by the code is

est rel err ≤ epsrel (8.3)

or
est abs err

est answer
≤ epsrel (8.4)

or
est abs err ≤ epsrel× est answer (8.5)

21

We can check that the values returned by quad_qags are at least consistent with the advertised convergence
criterion.

(%i13) est_answer : first(qlist);
(%o13) 0.444444
(%i14) est_abs_err : second(qlist);
(%o14) 4.93432455E-16
(%i15) est_rel_err : est_abs_err/est_answer;
(%o15) 1.11022302E-15

We see that the est_rel_err is much less than epsrel.

Example 2

Here we use quad_qags with an integrand which is singular at x = 0, but the singularity is an “integrable
singularity”. We want to calculate

∫ 1

0
ln(sin(x))dx. integrate returns an “exact” answer involving the dilog-

arithm function with a complex argument (see below).

We first show that the integrand is singular at x = 0, first using Maxima’s limit function and then using taylor.
We then use the approximate integrand for small x to show that the indefinite integral is a function of x which
has a finite limit at x = 0.

(%i1) display2d:false$
(%i2) limit(log(sin(x)),x,0,plus);
(%o2) minf
(%i3) ix : taylor(log(sin(x)),x,0,2);
(%o3) +log(x)-xˆ2/6
(%i4) int_ix:integrate(ix,x);
(%o4) x*log(x)-xˆ3/18-x
(%i5) limit(int_ix,x,0,plus);
(%o5) 0
(%i6) assume(eps>0,eps<1)$
(%i7) integrate(ix,x,0,eps);
(%o7) (18*eps*log(eps)-epsˆ3-18*eps)/18
(%i8) expand(%);
(%o8) eps*log(eps)-epsˆ3/18-eps
(%i9) limit(eps*log(eps),eps,0,plus);
(%o9) 0

Output %o2 indicates that the integrand → −∞ as x → 0+. To see if this is an “integrable singularity”, we
examine the integrand for x positive but close to 0, using a Taylor series expansion. We let eps represent ε, a
small positive number to be used as the upper limit of a small integration interval.

The approximate integrand, ix, shows a logarithmic singularity at x = 0. The indefinite integral of the approxi-
mate integrand, int ix, is finite as x → 0+. And finally, the integral of the approximate integrand over (0, ε) is
finite. Hence we are dealing with an integrable singularity, and we use quad_qags to evaluate the numerical
value of the exact integrand over [0,1].

(%i10) quad_qags(log(sin(x)),x,0,1);
(%o10) [-1.056720205991585,1.1731951032784962E-15,231,0]

22

Use of integrate with this integrand-domain returns an expression involving the dilogarithm function
li[2](z) in which z is a complex number. At present, Maxima cannot find numerical values of the diloga-
rithm function for non-real arguments.

(%i11) float(li[2](1));
(%o11) 1.644934066848226
(%i12) float(li[2](1+%i));
(%o12) li[2](%i+1.0)
(%i13) integrate(log(sin(x)),x,0,1);
(%o13) -%i*atan(sin(1)/(cos(1)+1))-%i*atan(sin(1)/(cos(1)-1))+log(sin(1))

-log(2*cos(1)+2)/2-log(2-2*cos(1))/2
+%i*li[2](%eˆ%i)+%i*li[2](-%eˆ%i)
-%i*%piˆ2/12+%i/2

8.5.5 quad qags for Double Integrals

In Sec.7.6 of Ch.7 we presented the notation (for an exact symbolic double integral):

To evaluate the exact symbolic double integral
∫ u2

u1

du

∫ v2(u)

v1(u)

dv f(u, v) ≡
∫ u2

u1

(∫ v2(u)

v1(u)

f(u, v) dv

)
du (8.6)

we use integrate with the syntax:

integrate(integrate(f(u,v), v, v1(u), v2(u)), u, u1, u2)

in which f(u,v) can either be an expression depending on the variables u and v, or a Maxima function, and
likewise v1(u) and v2(u) can either be expressions depending on u or Maxima functions.

Both u and v are “dummy variables”, since the value of the resulting double integral does not depend on our
choice of symbols for the integration variables; we could just as well use x and y.

To use quad qags we use

quad_qags (quad_qags (f(u,v), v, v1(u), v2(u))[1], u, u1, u2)

Example 1

For our first example, we use quad qags on the double integral:
∫ 3

1

(∫ x/2

0

xy

x + y
dy

)
dx (8.7)

comparing with the integrate result, first using the absolute error, then the relative error.

(%i1) (fpprintprec:8,display2d:false)$
(%i2) g : x*y/(x+y)$
(%i3) tval : (block [fpprec:20],bfloat (integrate (integrate (g,y,0,x/2),x,1,3)));
Is x positive, negative, or zero?
p;
(%o3) 8.1930239b-1

23

(%i4) quad_qags (quad_qags (g,y,0,x/2)[1],x,1,3);
(%o4) [0.819302,9.09608385E-15,21,0]
(%i5) block([fpprec:20], bfloat(abs (%[1] - tval)));
(%o5) 6.1962154b-17
(%i6) %/tval;
(%o6) 7.5627942b-17

Bear in mind that the quadpack functions (at present) have, at most, 16 digit accuracy. For a difficult numerical
integral, the accuracy can be much less than that.

Example 2

For our second example, we consider the double integral
∫ 1

0

(∫ 2+x

1

ex−y2

dy

)
dx (8.8)

(%i7) g : exp(x-yˆ2)$
(%i8) tval : block([fpprec:20],bfloat(integrate(integrate(g,y,1,2+x),x,0,1)));
(%o8) 2.3846836b-1
(%i9) quad_qags(quad_qags(g,y,1,2+x)[1],x,0,1);
(%o9) [0.238468,2.64753066E-15,21,0]
(%i10) block([fpprec:20],bfloat(abs (%[1] - tval)));
(%o10) 4.229659b-18
(%i11) %/tval;
(%o11) 1.7736772b-17

The Maxima coordinator, Robert Dodier has warned about the lack of accuracy diagnostics with the inner
integral done by quad qags:

A nested numerical integral like this has a couple of drawbacks, whatever the method. (1) The
estimated error in the inner integral isn’t taken into account in the error estimate for the outer.
(2) Methods specifically devised for multi-dimensional integrals are typically more efficient than
repeated 1-d integrals.

8.5.6 quad qag for a General Oscillatory Integrand

The function quad_qag is useful primarily due to its ability to deal with functions with some general oscilla-
tory behavior.

The “key” feature to watch out for is the required fifth slot argument which the manual calls “key”. This slot
can have any integral value between 1 and 6 inclusive, with the higher values corresponding to “higer order
Gauss-Kronrod” integration rules for more complicated oscillatory behavior.

Use the syntax:

quad_qag(expr, var, a, b, key, [epsrel, epsabs, limit])

Thus the approximate numerical value of
∫ 1

0
ex2

dx would be the first element of the list returned by
quad_qag (exp (xˆ2), x, 0, 1, 3) using the “key” value 3.

24

Example 1

Since the main feature of quad_qag is the ability to select a high order quadrature method for a generally
oscillating integrand, we begin by comparing quad_qag with quad_qags for such a case. We consider the
integral

∫ 1

0
cos(50x) sin(3x) e−x dx.

(%i1) (fpprintprec:8,display2d:false)$
(%i2) f : cos(50*x)*sin(3*x)*exp(-x)$
(%i3) tval : block ([fpprec:20],bfloat(integrate (f,x,0,1)));
(%o3) -1.9145466b-3
(%i4) (load(draw),load(qdraw))$
(%i5) qdraw(ex(f,x,0,1))$

Here is that plot: and here we make the comparison.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

Figure 2: cos(50x) sin(3x) e−x

(%i6) quad_qag(f,x,0,1,6);
(%o6) [-0.00191455,2.86107558E-15,61,0]
(%i7) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o7) 9.8573614b-17
(%i8) %/tval;
(%o8) -5.148666b-14
(%i9) quad_qags(f,x,0,1);
(%o9) [-0.00191455,2.8536E-15,315,0]
(%i10) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o10) 1.1804997b-16
(%i11) %/tval;
(%o11) -6.1659493b-14

We see that both methods returned results with about the same relative error, but that quad_qag needed only
about one fifth the number of integrand evaluations as compared with quad_qags. This extra efficiency of
quad_qag for this type of integrand may be of interest in certain kinds of intensive numerical work. Naturally,
the number of integrand evaluations needed does not necessarily translate simply into time saved, so timing
trials would be appropriate when considering this option.

25

Example 2

We compare quad_qag and quad_qags with the numerical evaluation of the integral
∫ 1

0
ex dx, which

has neither special oscillatory behavior (which quad_qag might help with) nor singular behavior (which
quad_qags might help with).

(%i12) tval : block ([fpprec:20], bfloat(integrate (exp(x),x,0,1)));
(%o12) 1.7182818b0
(%i13) quad_qag(exp(x),x,0,1,6);
(%o13) [1.7182818,1.90767605E-14,61,0]
(%i14) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o14) 1.445648b-16
(%i15) %/tval;
(%o15) 8.413335b-17
(%i16) quad_qags(exp(x),x,0,1);
(%o16) [1.7182818,1.90767605E-14,21,0]
(%i17) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o17) 7.7479797b-17
(%i18) %/tval;
(%o18) 4.5091437b-17

We see that using quad_qags for this function results in slightly smaller relative error while using only two
thirds the number of integrand evaluations compared with quad_qag.

Example 3

We compare quad_qag and quad_qags with the numerical evaluation of the integral
∫ 1

0

√
x ln(x)dx,

which has quasi-singular behavior at x = 0. See Sec.(8.5.4) for a plot of this integrand.

(%i19) f : sqrt(x)*log(1/x)$
(%i20) tval : block ([fpprec:20], bfloat(integrate (f,x,0,1)));
(%o20) 4.4444444b-1
(%i21) quad_qag(f,x,0,1,3);
(%o21) [0.444444,3.17009685E-9,961,0]
(%i22) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o22) 4.7663293b-12
(%i23) %/tval;
(%o23) 1.072424b-11
(%i24) quad_qags(f,x,0,1);
(%o24) [0.444444,4.93432455E-16,315,0]
(%i25) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o25) 8.0182679b-17
(%i26) %/tval;
(%o26) 1.8041102b-16

We see that using quad_qags for this function (which has a quasi-singular behavior near x = 0) returns
a much smaller relative error while using only one third the number of integrand evaluations compared with
quad_qag.

You can use quad_qag for numerical double integrals, following the pattern we used with qaud_qags, and
you can use different methods for each of the two axes.

26

8.5.7 quad qagi for a Non-finite Interval

See Sec.(8.8) for a decision tree for quadrature over a non-finite interval.

The syntax is

quad_qagi (expr, var, a, b, [epsrel, epsabs, limit]), where
(a,b) are the limits of integration.

Thus you will have (omitting the optional args):
quad_qagi (expr, var, minf, b) with b finite,
quad_qagi (expr, var, a, inf), with a finite, or
quad_qagi (expr, var, minf, inf).

If at least one of (a,b) are not equal to (minf,inf), a noun form will be returned.

The Maxima function quad_qagi returns the same type of information (approx-integral, est-abs-error, nfe,
error-code) in a list that quad_qags returns, and the possible error codes returned have the same meaning.

Here we test the syntax and behavior with a simple integrand, first over [0,∞]:

(%i1) (fpprintprec:8,display2d:false)$
(%i2) tval : block ([fpprec:20],bfloat(integrate (exp(-xˆ2),x,0,inf)));
(%o2) 8.8622692b-1
(%i3) quad_qagi(exp(-xˆ2),x,0,inf);
(%o3) [0.886227,7.10131839E-9,135,0]
(%i4) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o4) 7.2688979b-17
(%i5) %/tval;
(%o5) 8.202073b-17

and next the same simple integrand over [−∞,0]:

(%i6) quad_qagi(exp(-xˆ2),x,minf,0);
(%o6) [0.886227,7.10131839E-9,135,0]
(%i7) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o7) 7.2688979b-17

and, finally over [−∞,∞]:

(%i8) tval : block ([fpprec:20],bfloat(2*tval));
(%o8) 1.7724538b0
(%i9) quad_qagi(exp(-xˆ2),x,minf,inf);
(%o9) [1.7724539,1.42026368E-8,270,0]
(%i10) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o10) 1.4537795b-16

27

Example 1

Here is another simple example:

(%i11) g : exp(-x)*xˆ(5/100)$
(%i12) tval : block ([fpprec:20],bfloat(integrate(g,x,0,inf)));
(%o12) 9.7350426b-1
(%i13) quad_qagi(g,x,0,inf);
(%o13) [0.973504,1.2270015E-9,315,0]
(%i14) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o14) 7.9340695b-15
(%i15) %/tval;
(%o15) 8.15001b-15

We see that the use of the default mode (accepting the default epsrel:1d-8 and epsabs:0) has resulted in an
absolute error which is close to the floating point limit and a relative error of the same order of magnitude
(because the value of the integral is of order 1).

Example 2

We evaluate the integral
∫∞
0

e−x ln(x)dx = −γ, where γ is the Euler-Mascheroni constant, 0.5772156649015329.
Maxima has this constant available as %gamma, although you need to use either float or bfloat to get the nu-
merical value.

(%i16) g : exp(-x)*log(x)$
(%i17) tval : block ([fpprec:20],bfloat(integrate(g,x,0,inf)));
(%o17) -5.7721566b-1
(%i18) quad_qagi(g,x,0,inf);
(%o18) [-0.577216,5.11052578E-9,345,0]
(%i19) block ([fpprec:20], bfloat(abs(first(%) - tval)));
(%o19) 2.6595919b-15
(%i20) %/tval;
(%o20) -4.6076226b-15

Example 3

A symmetrical version of a Fourier transform pair is defined by the equations

g(x) =
1√
2π

∫ ∞

−∞
G(k) ei k x dk (8.9)

G(k) =
1√
2π

∫ ∞

−∞
g(x) e−i k x dx (8.10)

An example of such a Fourier transform pair which respects this symmetrical definition is: if g(x) = a e−bx2 ,
then G(k) = (a/

√
2b) e−k2/(4b).

(%i21) assume(a>0,b>0,k>0)$
(%i22) g :a*exp(-b*xˆ2)$
(%i23) gft:integrate(exp(-%i*k*x)*g,x,minf,inf)/sqrt(2*%pi);
(%o23) a*%eˆ-(kˆ2/(4*b))/(sqrt(2)*sqrt(b))

28

To check this relation with quag_qagi, let’s define f to be g for the case a, b and k are all set equal to 1.

(%i24) f : subst([a=1,b=1,k=1],g);
(%o24) %eˆ-xˆ2
(%i25) fft : subst([a=1,b=1,k=1],gft);
(%o25) %eˆ-(1/4)/sqrt(2)
(%i26) float(fft);
(%o26) 0.550695

If we try to submit an explicitly complex integrand to quad_qagiwe get a noun form back, indicating failure.
(A similar result occurs with any quadpack function.).

(%i27) quad_qagi(f*exp(-%i*x),x,minf,inf);
(%o27) quad_qagi(%eˆ(-xˆ2-%i*x),x,minf,inf,epsrel = 1.0E-8,epsabs = 0.0,limit

= 200)

You can use quad_qagi for numerical double integrals, following the pattern we used for quad_qags, and
you can choose different methods for each of the axes.

8.6 Numerical Integration: Sharper Tools
There are specialised Quadpack routines for particular kinds of one dimensional integrals. See Sec.(8.7) for a
“decision tree” for a finite region numerical integral using the Quadpack functions.

8.6.1 quad qagp for Internal Integrand Singularities

The quadpack function quad_qagp is both more efficient and more accurate than quad_qags for the case
of integrand singularities interior to the integration interval. The syntax is the same as quad_qags, except
that the fifth argument should be a list of either one or more points where the interior singularities occur. The
elements of the points list should evaluate to numbers.

We compare the use of quad_qagp and quad_qags for the numerical value of the integral
∫ 3

0

x3 ln
(∣∣(x2 − 1

) (
x2 − 2

)∣∣)
dx (8.11)

which has internal singularities of the integrand at x = 1 and x =
√

2.

(%i28) quad_qagp(xˆ3*log(abs((xˆ2-1)*(xˆ2-2))),x,0,3,[1,sqrt(2)]);
(%o28) [52.740748,2.62476263E-7,1029,0]
(%i29) quad_qags(xˆ3*log(abs((xˆ2-1)*(xˆ2-2))),x,0,3);
(%o29) [52.740748,4.08844336E-7,1869,0]

8.6.2 quad qawo for Fourier Series Coefficients

This function is the most efficient way to find numerical values of Fourier series coefficients, which require
finding integrals

∫ b

a
f(x) cos(ω x)dx or

∫ b

a
f(x) sin(ω x)dx.

This function has the syntax

quad_qawo(expr, var , a, b, omega, trig,[epsrel, epsabs, limit, maxp1])

29

For the integral
∫ 2

−2
(x + x4) cos(3x)dx (default options), use quad_qawo(x + xˆ4, x, -2, 2, 3, cos).

For the integral
∫ 2

−2
(x + x4) sin(5x)dx (default options), use quad_qawo(x + xˆ4, x, -2, 2, 5, sin).

Here we compare quad_qawo with quad_qags for the integral
∫ 2

−2
(x + x4) cos(3x)dx.

(%i1) fpprintprec:8$
(%i2) g : (x+xˆ4)*cos(3*x)$
(%i3) tval : bfloat(integrate(g,x,-2,2)),fpprec:20;
(%o3) 3.6477501b0
(%i4) quad_qawo(x+xˆ4,x,-2,2,3,cos);
(%o4) [3.6477502, 0.0, 25, 0]
(%i5) abs(first(%) - tval),fpprec:20;
(%o5) 4.0522056b-18
(%i6) %/tval,fpprec:20;
(%o6) 1.110878b-18
(%i7) quad_qags(g,x,-2,2);
(%o7) [3.6477502, 8.89609255E-14, 63, 0]
(%i8) abs(first(%) - tval),fpprec:20;
(%o8) 1.7723046b-15
(%i9) %/tval,fpprec:20;
(%o9) 4.8586239b-16

We see that quad_qawo finds the numerical value with “zero” relative error as compared with a “non-zero”
relative error using quad_qags, and with many less integrand evaluations.

8.6.3 quad qaws for End Point Algebraic and Logarithmic Singularities

The syntax is:

quad_qaws (f(x), x, a, b, alpha, beta, wfun,[epsrel, epsabs, limit])

This Maxima function is designed for the efficient evaluation of integrals of the form
∫ b

a
f(x)w(x)dx in which

the appropriate “singular end point weight function” is chosen from among different versions via the three pa-
rameters wfun, α (represented by alpha), and β (represented by beta).

The most general case in which one has both algebraic and logarithmic singularities of the integrand at both
end points corresponds to α 6= 0 and β 6= 0 and

w(x) = (x− a)α (b− x)β ln(x− a) ln(b− x) (8.12)

The parameters α and β govern the “degree” of algebraic singularity at the end points. One needs both α > −1
and β > −1 for convergence of the integrals.

In particular, one can choose α = 0 and/or β = 0 to handle an algebraic singularity at only one end of the
interval or no algebraic singularities at all.

The parameter wfun determines the existence and location of possible end point logarithmic singularities of
the integrand.

wfun w(x)
1 (x− a)α (b− x)β

2 (x− a)α (b− x)β ln(x− a)
3 (x− a)α (b− x)β ln(b− x)
4 (x− a)α (b− x)β ln(x − a) ln(b − x)

30

Example 1: Pure Logarithmic Singularities

For the case that α = 0 and β = 0, there are no end point algebraic singularities, only logarithmic singularities.
A simple example is

∫ 1

0
ln(x)dx, which corresponds to wfun = 2:

(%i1) fpprintprec:8$
(%i2) tval : bfloat(integrate(log(x),x,0,1)),fpprec:20;
(%o2) - 1.0b0
(%i3) quad_qaws(1,x,0,1,0,0,2);
(%o3) [- 1.0, 9.68809031E-15, 40, 0]
(%i4) abs(first(%) - tval),fpprec:20;
(%o4) 0.0b0
(%i5) quad_qags(log(x),x,0,1);
(%o5) [- 1.0, 1.11022302E-15, 231, 0]
(%i6) abs(first(%) - tval),fpprec:20;
(%o6) 0.0b0

which illustrates the efficiency of quad_qaws compared to quad_qags for this type of integrand.

Example 2: Pure Algebraic Singularity

The case wfun = 1 corresponds to purely algebraic end point singularities.

Here we compare quad_qaws with quad_qags for the evaluation of the integral
∫ 1

0
sin(x)√

x
dx. You will get

an exact symbolic answer in terms of erf(z) for this integral from integrate.

(%i7) expand(bfloat(integrate(sin(x)/sqrt(x),x,0,1))),fpprec:20;
(%o7) 1.717976b0 cos(0.25 %pi) - 8.404048b-1 sin(0.25 %pi)
(%i8) tval : bfloat(%),fpprec:20;
(%o8) 6.205366b-1
(%i9) quad_qaws(sin(x),x,0,1,-1/2,0,1);
(%o9) [0.620537, 4.31887834E-15, 40, 0]
(%i10) abs(first(%) - tval),fpprec:20;
(%o10) 8.8091426b-19
(%i11) %/tval,fpprec:20;
(%o11) 1.4196008b-18
(%i12) quad_qags(sin(x)/sqrt(x),x,0,1);
(%o12) [0.620537, 3.48387985E-13, 231, 0]
(%i13) abs(first(%) - tval),fpprec:20;
(%o13) 1.1014138b-16
(%i14) %/tval,fpprec:20;
(%o14) 1.7749378b-16

We see that quad_qaws uses about one sixth the number of function evaluations (as compared with quad_qags)
and returns a much more accurate answer.

Example 3: Both Algebraic and Logarithmic Singularity at an End Point

A simple example is
∫ 1

0
ln(x)√

x
dx. The integrand is singular at x = 0 but this is an “integrable singularity” since√

x ln(x) → 0 as x → 0+.

(%i1) fpprintprec:8$
(%i2) limit(log(x)/sqrt(x),x,0,plus);
(%o2) minf

31

(%i3) integrate(log(x)/sqrt(x),x);
(%o3) 2 (sqrt(x) log(x) - 2 sqrt(x))
(%i4) limit(%,x,0,plus);
(%o4) 0
(%i5) tval : bfloat(integrate(log(x)/sqrt(x),x,0,1)),fpprec:20;
(%o5) - 4.0b0
(%i6) quad_qaws(1,x,0,1,-1/2,0,2);
(%o6) [- 4.0, 3.59396672E-13, 40, 0]
(%i7) abs(first(%) - tval),fpprec:20;
(%o7) 0.0b0
(%i8) quad_qags(log(x)/sqrt(x),x,0,1);
(%o8) [- 4.0, 1.94066985E-13, 315, 0]
(%i9) abs(first(%) - tval),fpprec:20;
(%o9) 2.6645352b-15
(%i10) %/tval,fpprec:20;
(%o10) - 6.6613381b-16

Again we see the relative efficiency and accuracy of quad_qaws for this type of integral.

8.6.4 quad qawc for a Cauchy Principal Value Integral

This function has the syntax:

quad_qawc (f(x), x, c, a, b,[epsrel, epsabs, limit]).

The actual integrand is g(x) = f(x)/(x− c), with dependent variable x, to be integrated over the interval [a,b]
and you need to pick out f(x) by hand here. In using quad_qawc, the argument c is placed between the name
of the variable of integration (here x) and the lower limit of integration.

An integral with a “pole” on the contour does not exist in the strict sense, but if g(x) has a simple pole on the
real axis at x = c, one defines the Cauchy principal value as the symmetrical limit (with a < c < b)

P

∫ b

a

g(x)dx = lim
ε→0+

[∫ c−ε

a

g(x)dx +

∫ b

c+ε

g(x)dx

]
(8.13)

provided this limit exists. In terms of f(x) this definition becomes

P

∫ b

a

f(x)

x− c
dx = lim

ε→0+

[∫ c−ε

a

f(x)

x− c
dx +

∫ b

c+ε

f(x)

x− c
dx

]
(8.14)

We can find the default values of the optional method parameters of quad_qawc by including an undefined
symbol in our call:

(%i11) quad_qawc(1/(xˆ2-1),x,1,0,b);
1

(%o11) quad_qawc(------, x, 1, 0, b, epsrel = 1.0E-8, epsabs = 0.0, limit = 200)
2
x - 1

We see that the default settings cause the algorithm to look at the relative error of succeeding approximations
to the numerical answer.

32

As a simple example of the syntax we consider the principal value integral

P

∫ 2

0

1

x2 − 1
dx = P

∫ 2

0

1

(x− 1) (x + 1)
dx = −ln(3)/2 (8.15)

We use assume to prep integrate and then implement the basic definition provided by Eq. (8.13)

(%i1) fpprintprec:8$
(%i2) assume(eps>0, eps<1)$
(%i3) integrate(1/(xˆ2-1),x,0,1-eps) +

integrate(1/(xˆ2-1),x,1+eps,2);
log(eps + 2) log(2 - eps) log(3)

(%o3) ------------ - ------------ - ------
2 2 2

(%i4) limit(%,eps,0,plus);
log(3)

(%o4) - ------
2

(%i5) tval : bfloat(%),fpprec:20;
(%o5) - 5.4930614b-1

We now compare the result returned by integrate with the numerical value returned by quad_qawc, noting
that f(x) = 1/(1 + x).

(%i6) quad_qawc(1/(1+x),x,1,0,2);
(%o6) [- 0.549306, 1.51336373E-11, 105, 0]
(%i7) abs(first(%) - tval),fpprec:20;
(%o7) 6.5665382b-17
(%i8) %/tval,fpprec:20;
(%o8) - 1.1954241b-16

We see that the relative error of the returned answer is much less than the (default) requested minimum relative
error.

If we run quad_qawc requesting that convergence be based on absolute error instead of relative error,

(%i9) quad_qawc(1/(1+x),x,1,0,2,epsabs=1.0e-10,epsrel=0.0);
(%o9) [- 0.549306, 1.51336373E-11, 105, 0]
(%i10) abs(first(%) - tval),fpprec:20;
(%o10) 6.5665382b-17
(%i11) %/tval,fpprec:20;
(%o11) - 1.1954241b-16

we see no significant difference in the returned accuracy, and again we see that the absolute error of the returned
answer is much less than the requested minimum absolute error.

33

8.6.5 quad qawf for a Semi-Infinite Range Cosine or Sine Fourier Transform

The function quad_qawf calculates a Fourier cosine or Fourier sine transform (up to an overall normalization
factor) on the semi-infinite interval [a,∞]. If we let w stand for the angular frequency in radians, the integrand
is f(x)*cos(w*x) if the trig parameter is cos, and the integrand is f(x)*sin(w*x) if the trig parameter is sin.

The calling syntax is

quad_qawf (f(x), x, a, w, trig, [epsabs, limit, maxp1, limlst])

Thus quad_qawf (f(x), x, 0, w, ’cos) will find a numerical approximation to the integral
∫ ∞

0

f(x) cos(wx)dx (8.16)

If we call quad_qawf with undefined parameter(s), we get a look at the default values of the optional method
parameters:

(%i12) quad_qawf(exp(-a*x),x,0,w,’cos);
- a x

(%o12) quad_qawf(%e , x, 0, w, cos, epsabs = 1.0E-10, limit = 200,
maxp1 = 100, limlst = 10)

The manual has the optional parameter information:

The keyword arguments are optional and may be specified in any order.
They all take the form keyword = val. The keyword arguments are:
1. epsabs, the desired absolute error of approximation. Default is 1d-10.
2. limit, the size of the internal work array.

(limit - limlst)/2 is the maximum number of
subintervals to use. The default value of limit is 200.

3. maxp1, the maximum number of Chebyshev moments.
Must be greater than 0. Default is 100.

4. limlst, upper bound on the number of cycles.
Must be greater than or equal to 3. Default is 10.

The manual does not define the meaning of “cycles”. There is no “epsrel” parameter used for this function.

Here is the manual example, organised in our way. In this example w = 1 and a = 0.

(%i1) fpprintprec:8$
(%i2) integrate (exp(-xˆ2)*cos(x), x, 0, inf);

- 1/4
%e sqrt(%pi)

(%o2) -----------------
2

(%i3) tval : bfloat(%),fpprec:20;
(%o3) 6.9019422b-1
(%i4) quad_qawf (exp(-xˆ2), x, 0, 1, ’cos);
(%o4) [0.690194, 2.84846299E-11, 215, 0]
(%i5) abs(first(%) - tval),fpprec:20;
(%o5) 3.909904b-17
(%i6) %/tval,fpprec:20;
(%o6) 5.664933b-17

We see that the absolute error of the returned answer is much less than the (default) requested minimum absolute
error.

34

8.7 Finite Region of Integration Decision Tree
If you are in a hurry, use quad_qags. ∗

If your definite integral is over a finite region of integration [a, b], then

1. If the integrand has the form w(x)*f(x), where f(x) is a smooth function over the region of integration,
then

• If w(x) has the form of either cos(c*x) or sin(c*x), where c is a constant, use quad_qawo.

• Else if the factor w(x) has the form (note the limits of integration are [a, b]

(x - a)ˆae * (b - x)ˆbe * (log(x - a))ˆna * (log(b - x))ˆnb

where na, nb have the values 0 or 1, and both ae and be are greater than−1, then use quad_qaws.
(This is a case where we need a routine which is designed to handle end point singularities.)

• Else if the factor w(x) is 1/(x - c) for some constant c with a < c < b, then use quad_qawc, the
Cauchy principle value routine.

2. Otherwise, if you do not care too much about possible inefficient use of computer time, and do not want
to further analyze the problem, use quad_qags.

3. Otherwise, if the integrand is smooth, use quad_qag.

4. Otherwise, if there are discontinuities or singularities of the integrand or of the derivative of the inte-
grand, and you know where they are, split the integration range at these points and separately integrate
over each subinterval.

5. Otherwise, if the integrand has end point singularities, use quad_qags.

6. Otherwise, if the integrand has an oscillatory behavior of nonspecific type, and no singularities, use
quad_qag with the fifth key slot containing the value 6.

7. Otherwise, use quad_qags.

∗These “decision trees” are adapted from the web page
http://people.scs.fsu.edu/∼burkardt/f77 src/quadpack/quadpack.html.

35

8.8 Non-Finite Region of Integration Decision Tree
Here is the tree for the non-finite domain case:

A. If the integration domain is non-finite consider first making a
suitable change of variables to obtain a finite domain and

using the finite interval decision tree described above.

B. Otherwise, if the integrand decays rapidly to zero, truncate the
integration interval and use the finite interval decision tree.

C. Otherwise, if the integrand oscillates over the entire non-finite range,

1. If integral is a Fourier transform, use quad_qawf.

2. else if the integral is not a Fourier transform, then sum the
successive positive and negative contributions by integrating
between the zeroes of the integrand, using the finite
interval criteria.

D. Otherwise, if you are not constrained by computer time, and do not
wish to analyze the problem further, use quad_qagi.

E. Otherwise, if the integrand has a non-smooth behavior in the range of
integration, and you know where it occurs, split off these regions
and use the appropriate finite range routines to integrate over them.
Then begin this non-finite case tree again to handle the remainder

of the region.

F. Otherwise, truncation of the interval, or application of a suitable
transformation for reducing the problem to a finite range may be
possible.

G. Otherwise use quad_qagi.

