
Maxima by Example: Ch.6: Differential Calculus ∗

Edwin L. Woollett

October 21, 2010

Contents
6 Differential Calculus 3

6.1 Differentiation of Explicit Functions . 4
6.1.1 All About diff . 4
6.1.2 The Total Differential . 5
6.1.3 Controlling the Form of a Derivative with gradef . 6

6.2 Critical and Inflection Points of a Curve Defined by an Explicit Function . 7
6.2.1 Example 1: A Polynomial . 7
6.2.2 Automating Derivative Plots with plotderiv . 9
6.2.3 Example 2: Another Polynomial . 11
6.2.4 Example 3: x2/3, Singular Derivative, Use of limit . 12

6.3 Tangent and Normal of a Point of a Curve Defined by an Explicit Function . 13
6.3.1 Example 1: x2 . 14
6.3.2 Example 2: ln(x) . 14

6.4 Maxima and Minima of a Function of Two Variables . 15
6.4.1 Example 1: Minimize the Area of a Rectangular Box of Fixed Volume . 16
6.4.2 Example 2: Maximize the Cross Sectional Area of a Trough . 18

6.5 Tangent and Normal of a Point of a Curve Defined by an Implicit Function . 19
6.5.1 Tangent of a Point of a Curve Defined by f(x,y) = 0 . 21
6.5.2 Example 1: Tangent and Normal of a Point of a Circle . 23
6.5.3 Example 2: Tangent and Normal of a Point of the Curve sin(2 x) cos(y) = 0.5 25
6.5.4 Example 3: Tangent and Normal of a Point on a Parametric Curve: x = sin(t),y = sin(2 t) 26
6.5.5 Example 4: Tangent and Normal of a Point on a Polar Plot: x = r(t) cos(t),y = r(t) sin(t) 27

6.6 Limit Examples Using Maxima’s limit Function . 28
6.6.1 Discontinuous Functions . 29
6.6.2 Indefinite Limits . 32

6.7 Taylor Series Expansions using taylor . 34
6.8 Vector Calculus Calculations and Derivations using vcalc.mac . 36
6.9 Maxima Derivation of Vector Calculus Formulas in Cylindrical Coordinates . 40

6.9.1 The Calculus Chain Rule in Maxima . 41
6.9.2 Laplacian ∇ 2 f(ρ, ϕ, z) . 43
6.9.3 Gradient ∇ f(ρ, ϕ, z) . 45
6.9.4 Divergence ∇ · B(ρ, ϕ, z) . 48
6.9.5 Curl ∇ × B(ρ, ϕ, z) . 49

6.10 Maxima Derivation of Vector Calculus Formulas in Spherical Polar Coordinates 50

∗This version uses Maxima 5.21.1 This is a live document. Check http://www.csulb.edu/˜woollett/ for the latest version of these
notes. Send comments and suggestions to woollett@charter.net

1

Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima)$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.21.1
(2010). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in with mbe1util.mac from Ch. 1. We will include a reference to this definition when working with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html.

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.

2

6 DIFFERENTIAL CALCULUS 3

6 Differential Calculus

The methods of calculus lie at the heart of the physical sciences and engineering.

The student of calculus needs to take charge of his or her own understanding, taking the subject apart and putting it back
together again in a way that makes logical sense. The best way to learn any subject is to work through a large collection
of problems. The more problems you work on your own, the more you “own” the subject. Maxima can help you make
faster progress, if you are just learning calculus.

For those who are already calculus savvy, the examples in this chapter will offer an opportunity to see some Maxima tools
in the context of very simple examples, but you will likely be thinking about much harder problems you want to solve as
you see these tools used here.

After examples of using diff and gradef, we present examples of finding the critical and inflection points of plane
curves defined by an explicit function.

We then present examples of calculating and plotting the tangent and normal to a point on a curve, first for explicit func-
tions and then for implicit functions.

We also have two examples of finding the maximum or minimum of a function of two variables.

We then present several examples of using Maxima’s powerful limit function, followed by several examples of using
taylor.

The next section shows examples of using the vector calculus functions (as well as cross product) in the package
vcalc.mac, developed by the author and available on his webpage with this chapter, to calculate the gradient, di-
vergence, curl, and Laplacian in cartesian, cylindrical, and spherical polar coordinate systems. An example of using this
package would be curl([r*cos(theta),0,0]); (if the current coordinate system has already been changed to
spherical polar) or curl([r*cos(theta),0,0], s(r,theta,phi)); if the coordinate system needs to be
shifted to spherical polar from either cartesian (the starting default) or cylindrical.

The order of list vector components corresponds to the order of the arguments in s(r,theta,phi). The Maxima
output is the list of the vector curl components in the current coordinate system, in this case [0, 0, sin(theta)]
plus a reminder to the user of what the current coordinate system is and what symbols are currently being used for the
independent variables.

Thus the syntax is based on lists and is similar (although better!) than Mathematica’s syntax.

There is a separate function to change the current coordinate system. To set the use of cylindrical coordinates(rho,phi,z):

setcoord(cy(rho,phi,z));

and to set cylindrical coordinates (r,t,z):

setcoord(cy(r,t,z));

The package vcalc.mac also contains the plotting function plotderiv which is useful for “automating” the plotting
of a function and its first n derivatives.

The next two sections dicuss the use of the batch file mode of problem solving by presenting Maxima based derivations
of the form of the gradient, divergence, curl, and Laplacian by starting with the cartesian forms and changing variables to
(separately) cylindrical and spherical polar coordinates. (The batch files used are cylinder.mac and sphere.mac.)
These two sections show Maxima’s implementation of the calculus chain rule at work with use of both depends and
gradef.

6 DIFFERENTIAL CALCULUS 4

6.1 Differentiation of Explicit Functions

We begin with explicit functions of a single variable. After giving a few examples of the use of Maxima’s diff function,
we will discuss critical and inflection points of curves defined by explicit functions, and the construction and plotting of
the tangent and normal of a point of such curves.

6.1.1 All About diff

The command diff(expr,var,num) will differentiate the expresssion in slot one with respect to the variable entered
in slot two a number of times determined by a positive integer in slot three. Unless a dependency has been established,
all parameters and “variables” in the expression are treated as constants when taking the derivative.

Thus diff(expr,x,2) will yield the second derivative of expr with respect to the variable x.

The simple form diff(expr, var) is equivalent to diff(expr,var,1).

If the expression depends on more than one variable, we can use commands such as diff(expr,x,2,y,1) to find
the result of taking the second derivative with respect to x (holding y fixed) followed by the first derivative with respect
to y (holding x fixed).

Here are some simple examples.

We first calculate the derivative of xn.

(%i1) diff(xˆn,x);
n - 1

(%o1) n x

Next we calculate the third derivative of xn.

(%i2) diff(xˆn,x,3);
n - 3

(%o2) (n - 2) (n - 1) n x

Here we take the derivative (with respect to x) of an expression depending on both x and y.

(%i3) diff(xˆ2 + yˆ2,x);
(%o3) 2 x

You can differentiate with respect to any expression that does not involve explicit mathematical operations.

(%i4) diff(x[1]ˆ2 + x[2]ˆ2, x[1]);
(%o4) 2 x

1

Note that x1 is Maxima’s way of “pretty printing” x[1]. We can use the grind function to display the output %o4 in
the “non-pretty print mode” (what would have been returned if we had set the display2d switch to false).

(%i5) grind(%)$
2*x[1]$
(%i6) display2d$

Note the dollar sign grind adds to the end of its output.

Finally, an example of using one invocation of diff to differentiate with respect to more than one variable:

(%i7) diff(xˆ2*yˆ3,x,1,y,2);
(%o7) 12 x y

6 DIFFERENTIAL CALCULUS 5

6.1.2 The Total Differential

If you use the diff function without a symbol in slot two, Maxima returns the “total differential” of the expression in
slot one, and by default assumes every parameter is a variable.

If an expression contains a single parameter, say x, then diff(expr) will generate

d f(x) =

(
d f(x)

dx

)
dx (6.1)

In the first example below, we calculate the differential of the expression x2, that is, the derivative of the expression (with
respect to the variable x) multiplied by “the differential of the independent variable x”, dx. Maxima uses del(x) for
the differential of x, a small increment of x.

(%i1) diff(xˆ2);
(%o1) 2 x del(x)

If the expression contains two parameters x and y, then the total differential is equivalent to the Maxima expression

diff(expr,x)*del(x) + diff(expr,y)*del(y) ,

which generates (using conventional notation):

d f(x,y) =

(
∂f(x,y)

∂x

)

y
dx +

(
∂f(x,y)

∂y

)

x
dy. (6.2)

Each additional parameter induces an additional term of the same form.

(%i2) diff(xˆ2*yˆ3);
2 2 3

(%o2) 3 x y del(y) + 2 x y del(x)
(%i3) diff(a*xˆ2*yˆ3);

2 2 3 2 3
(%o3) 3 a x y del(y) + 2 a x y del(x) + x y del(a)

We can use the subst function to replace, say del(x), by anything else:

(%i4) subst(del(x) = dx, %o1);
(%o4) 2 dx x
(%i5) subst([del(x)= dx, del(y) = dy, del(a) = da],%o3);

2 3 3 2 2
(%o5) da x y + 2 a dx x y + 3 a dy x y

You can use the declare function to prevent some of the symbols from being treated as variables when calculating the
total differential:

(%i6) declare (a, constant)$
(%i7) diff(a*xˆ2*yˆ3);

2 2 3
(%o7) 3 a x y del(y) + 2 a x y del(x)
(%i8) declare([b,c],constant)$
(%i9) diff(a*xˆ3 + b*xˆ2 + c*x);

2
(%o9) (3 a x + 2 b x + c) del(x)
(%i10) properties(a);
(%o10) [database info, kind(a, constant)]
(%i11) propvars(constant);
(%o11) [a, b, c]

6 DIFFERENTIAL CALCULUS 6

(%i12) kill(a,b,c)$
(%i13) propvars(constant);
(%o13) []
(%i14) diff(a*x);
(%o14) a del(x) + x del(a)

We can “map” diff on to a list of functions of x, say, and divide by del(x), to generate a list of derivatives, as in

(%i15) map(’diff,[sin(x),cos(x),tan(x)])/del(x);
2

(%o15) [cos(x), - sin(x), sec (x)]
(%i16) map(’diff,%)/del(x);

2
(%o16) [- sin(x), - cos(x), 2 sec (x) tan(x)]

6.1.3 Controlling the Form of a Derivative with gradef

We can use gradef to select one from among a number of alternative ways of writing the result of differentiation. The
large number of “trigonometric identities” means that any given expression containing trig functions can be written in
terms of a different set of trig functions.

As an example, consider trig identities which express sin(x), cos(x), and sec2(x) in terms of tan(x) and tan(x/2):

sec2(x) = 1 + tan2(x), (6.3)

sin x = 2 tan(x/2)/(1 + tan2(x/2)), (6.4)

cosx = (1− tan2(x/2))/(1 + tan2(x/2)). (6.5)
The default Maxima result for the first derivatives of sinx, cosx, and tanx is:

(%i1) map(’diff,[sin(x),cos(x),tan(x)])/del(x);
2

(%o1) [cos(x), - sin(x), sec (x)]

Before using gradef to alter the return value of diff for these three functions, let’s check that Maxima agrees with the
trig “identities” displayed above. Variable amounts of expression simplification are needed to get what we want.

(%i2) trigsimp(1 + tan(x)ˆ2);
1

(%o2) -------
2

cos (x)
(%i3) (trigsimp(2*tan(x/2)/(1 + tan(x/2)ˆ2)), trigreduce(%%));
(%o3) sin(x)
(%i4) (trigsimp((1-tan(x/2)ˆ2)/(1 + tan(x/2)ˆ2)),

trigreduce(%%), expand(%%));
(%o4) cos(x)

Recall that trigsimpwill convert tan, sec, etc to sin and cos of the same argument. Recall also that trigreduce
will convert an expression containing cos(x/2) and sin(x/2) into an expression containing cos(x) and sin(x).
Finally, remembering that secx = 1/cosx, we see that Maxima has “passed the test”.

6 DIFFERENTIAL CALCULUS 7

Now let’s use gradef to express the derivatives in terms of tanx and tan(x/2):

(%i5) gradef(tan(x), 1 + tan(x)ˆ2);
(%o5) tan(x)
(%i6) gradef(sin(x),(1-tan(x/2)ˆ2)/(1 + tan(x/2)ˆ2));
(%o6) sin(x)
(%i7) gradef(cos(x), -2*tan(x/2)/(1 + tan(x/2)ˆ2));
(%o7) cos(x)

Here we check the behavior:

(%i8) map(’diff,[sin(x),cos(x),tan(x)])/del(x);
2 x x

1 - tan (-) 2 tan(-)
2 2 2

(%o8) [-----------, - -----------, tan (x) + 1]
2 x 2 x

tan (-) + 1 tan (-) + 1
2 2

6.2 Critical and Inflection Points of a Curve Defined by an Explicit Function

The critical points of a function f(x) are the points xj such that f ′(xj) = 0. We will use f ′ to indicate the first derivative,
and f ′′ to indicate the second derivative. The extrema (ie., maxima and minima) are the values of the function at the
critical points, provided the “slope” f ′ actually has a different sign on the opposite sides of the critical point.

Maximum: f ′(a) = 0, f ′(x) changes from + to − , f ′′(a) < 0
Minimum: f ′(a) = 0, f ′(x) changes from − to + , f ′′(a) > 0

If f(x) is a function with a continuous second derivative, and if, as x increases through the value a, f ′′(x) changes sign,
then the plot of f(x) has an inflection point at x = a and f ′′(a) = 0. The inflection point requirement that f ′′(x) changes
sign at x = a is equivalent to f ′′′(a) 6= 0. We consider some simple examples taken from Sect. 126 of Analytic Geometry
and Calculus, by Lloyd L. Smail, Appleton-Century-Crofts, N.Y., 1953 (a reference which “dates” the writer of these
notes!).

6.2.1 Example 1: A Polynomial

To find the maxima and minima of the function f(x) = 2x3 − 3x2 − 12x + 13, we use an “expression” (called g)
rather than a Maxima function. We use gp (g prime) for the first derivative, and gpp (g double prime) as notation for the
second derivative. Since we will want to make some simple plots, we use the package qdraw, available on the author’s
webpage, and discussed in detail in chapter five of these notes.

(%i1) load(draw)$
(%i2) load(qdraw);

qdraw(...), qdensity(...), syntax: type qdraw();
(%o2) c:/work2/qdraw.mac
(%i3) g : 2*xˆ3 - 3*xˆ2 - 12*x + 13$
(%i4) gf : factor(g);

2
(%o4) (x - 1) (2 x - x - 13)
(%i5) gp : diff(g,x);

2
(%o5) 6 x - 6 x - 12
(%i6) gpf : factor(gp);
(%o6) 6 (x - 2) (x + 1)
(%i7) gpp : diff(gp,x);
(%o7) 12 x - 6
(%i8) qdraw(ex(g,x,-4,4), key(bottom))$

6 DIFFERENTIAL CALCULUS 8

Since the coefficients of the given polynomial are integral, we have tried out factor on both the given expression
and its first derivative. We see from output %o6 that the first derivative vanishes when x = -1, 2 . We can confirm
these critical points of the given function by using qdraw with the quick plotting argument ex, which gives us the plot:

-100

-80

-60

-40

-20

 0

 20

 40

-4 -3 -2 -1 0 1 2 3 4

1

Figure 1: Plot of g over the range [−4, 4]

We can use the cursor on the plot to find that g takes on the value of roughly -7 when x = 2 and the value of about
20 when x = -1. We can use solve to find the roots of the equation gp = 0, and then evaluate the given expression
g, as well as the second derivative gpp at the critical points found:

(%i9) solve(gp=0);
(%o9) [x = 2, x = - 1]
(%i10) [g,gpp],x=-1;
(%o10) [20, - 18]
(%i11) [g,gpp],x=2;
(%o11) [- 7, 18]

We next look for the inflection points, the points where the curvature changes sign, which is equivalent to the points
where the second derivative vanishes.

(%i12) solve(gpp=0);
1

(%o12) [x = -]
2

(%i13) g,x=0.5;
(%o13) 6.5

We have found one inflection point, that is a point on a smooth curve where the curve changes from concave downward
to concave upward, or visa versa (in this case the former).
We next plot g, gp, gpp together.

(%i14) qdraw2(ex([g,gp,gpp],x,-3,3), key(bottom),
pts([[-1,20]],ps(2),pc(magenta),pk("MAX")),

pts([[2,-7]],ps(2),pc(green),pk("MIN")),
pts([[0.5, 6.5]],ps(2),pk("INFLECTION POINT")))$

6 DIFFERENTIAL CALCULUS 9

with the resulting plot:

-40

-20

 0

 20

 40

 60

-3 -2 -1 0 1 2 3 4

1
2
3

MAX
MIN

INFLECTION POINT

Figure 2: Plot of 1: g, 2: gp, and 3: gpp

The curve g is concave downward until x = 0.5 and then is concave upward. Note that each successive differentia-
tion tends to flatten out the kinks in the previous expression (function). In other words, gp is “flatter” than g, and gpp is
“flatter” than gp. This behavior under diff is simply because each successive differentiation reduces by one the degree
of the polynomial.

6.2.2 Automating Derivative Plots with plotderiv

In a separate text file vcalc.mac (available on the author’s webpage) is a small homemade Maxima function called
plotderiv which will plot a given expression together with as many derivatives as you want, using qdraw from Ch.5.

/* vcalc.mac */
plotderiv_syntax() :=

disp("plotderiv(expr,x,x1,x2,y1,y2,numderiv) constructs a list of
the submitted expression expr and its first numderiv derivatives
with respect to the independent variable, and then passes
this list to qdraw(..). You need to have used load(draw)
and load(qdraw) before using this function ")$

/* version 1 commented out
plotderiv(expr,x,x1,x2,y1,y2,numderiv) :=

block([plist],
plist : [],
for i thru numderiv do

plist : cons(diff(expr,x,i), plist),
plist : reverse(plist),
plist : cons(expr, plist),
display(plist),
apply(’qdraw, [ex(plist,x,x1,x2),yr(y1,y2), key(bottom)]))$ */

6 DIFFERENTIAL CALCULUS 10

/* version 2 slightly more efficient */
plotderiv(expr,x,x1,x2,y1,y2,numderiv) :=

block([plist,aa],
plist : [],
aa[0] : expr,
for i thru numderiv do (

aa[i] : diff(aa[i-1],x),
plist : cons(aa[i], plist)
),

plist : reverse(plist),
plist : cons(expr, plist),
display(plist),
apply(’qdraw, [ex(plist,x,x1,x2),yr(y1,y2), key(bottom)]))$

We have provided two versions of this function, the first version commented out. If the expression to be plotted is a
very complicated function and you are concerned with computing time, you can somewhat improve the efficiency of
plotderiv by introducing a “hashed array” called aa[j], say, to be able to simply differentiate the previous deriva-
tive expression. That is the point of version 2 which is not commented out.

We have added the line display(plist) to print a list containing the expression as well as all the derivatives re-
quested. We test plotderiv on the expression uˆ3. Both draw.lisp and qdraw.mac must be loaded for this to
work.

(%i15) load(vcalc)$
vcalc.mac: for syntax, type: vcalc_syntax();

CAUTION: global variables set and used in this package:
hhh1, hhh2, hhh3, uuu1, uuu2, uuu3, nnnsys

(%i16) plotderiv(uˆ3,u,-3,3,-27,27,4)$
3 2

plist = [u , 3 u , 6 u, 6, 0]

which produces the plot:

-20

-10

 0

 10

 20

-3 -2 -1 0 1 2 3

1
2
3
4
5

Figure 3: 1: u3, 2: 3u2, 3: 6u, 4: 6, 5: 0

6 DIFFERENTIAL CALCULUS 11

6.2.3 Example 2: Another Polynomial

We find the critical points, inflection points, and extrema of the expression 3x4 − 4x3. We first look at the expression
and its first two derivatives using plotderiv.

(%i17) plotderiv(3*xˆ4 - 4*xˆ3,x,-1,3,-5,5,2)$
4 3 3 2 2

plist = [3 x - 4 x , 12 x - 12 x , 36 x - 24 x]

which produces the plot:

-4

-2

 0

 2

 4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

1
2
3

Figure 4: 1: f = 3x4 − 4x3, 2: f ′, 3: f ′′

We have inflection points at x = 0, 2/3 since the second derivative is zero at both points and changes sign as we
follow the curve through those points. The curve changes from concave up to concave down passing through x = 0,
and changes from concave down to concave up passing through x = 2/3. The following provides confirmation of our
inferences from the plot:

(%i18) g:3*xˆ4 - 4*xˆ3$
(%i19) g1: diff(g,x)$
(%i20) g2 : diff(g,x,2)$
(%i21) g3 : diff(g,x,3)$
(%i22) x1 : solve(g1=0);
(%o22) [x = 0, x = 1]
(%i23) gcrit : makelist(subst(x1[i],g),i,1,2);
(%o23) [0, - 1]
(%i24) x2 : solve(g2=0);

2
(%o24) [x = -, x = 0]

3
(%i25) ginflec : makelist(subst(x2[i],g),i,1,2);

16
(%o25) [- --, 0]

27
(%i26) g3inflec : makelist(subst(x2[i],g3),i,1,2);
(%o26) [24, - 24]

We have critical points where the first derivative vanishes at x = 0, 1. Since the first derivative does not change sign as
the curve passes through the point x = 0, that point is neither a maximum nor a mimimum point. The point x = 1 is a
minimum point since the first derivative changes sign from negative to positive as the curve passes through that point.

6 DIFFERENTIAL CALCULUS 12

6.2.4 Example 3: x2/3, Singular Derivative, Use of limit

Searching for points where a function has a minimum or maximum by looking at points where the first derivative is zero is
useful as long as the first derivative is well behaved. Here is an example in which the given function of x has a minimum
at x = 0, but the first derivative is singular at that point. Using the expression g = xˆ(2/3) with plotderiv:

(%i27) plotderiv(xˆ(2/3),x,-2,2,-2,2,1)$

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1
2

Figure 5: Plot of 1 : f(x) = x2/3, 2 : f ′

We see that the first derivative is singular at x = 0 and approaches either positive or negative infinity, depending on your
direction of approaching the point x = 0. We can see from the plot of f(x) = x2/3 that the tangent line (the “slope”) of
the curve is negative for x < 0 and becomes increasingly negative (approaching minus infinity) as we approach the point
x = 0 from the negative side. We also see from the plot of f(x) that the tangent line (“slope”) is positive for positive
values of x and as we pass x = 0, moving from smaller x to larger x that the sign of the first derivative f ′(x) changes
from − to +, which is a signal of a local minimum of a function.

We can practice using the Maxima function limit with this example:

(%i28) gp : diff(xˆ(2/3),x);
2

(%o28) ------
1/3

3 x
(%i29) limit(gp,x,0,plus);
(%o29) inf
(%i30) limit(gp,x,0,minus);
(%o30) minf
(%i31) limit(gp,x,0);
(%o31) und

The most frequent use of the Maxima limit function has the syntax

Function: limit (expr, x, val, dir)
Function: limit (expr, x, val)
The first form computes the limit of expr as the real variable x approaches the value val from the direction
dir. dir may have the value plus for a limit from above, minus for a limit from below.
In the second form, dir is omitted, implying a “two-sided limit” is to be computed.
limit uses the following special symbols: inf (positive infinity) and minf (negative infinity). On output
it may also use und (undefined), ind (indefinite but bounded) and infinity (complex infinity).

Returning to our example, if we ignore the point x = 0, the slope is always decreasing, so the second derivative is always
negative.

6 DIFFERENTIAL CALCULUS 13

6.3 Tangent and Normal of a Point of a Curve Defined by an Explicit Function

The equation of a line with the form y = m (x− x0) + y0, where m, x0, and y0 are constants, is identically satisfied if
we consider the point (x,y) = (x0,y0). Hence this line passes through the point (x0,y0). The “slope” of this line (the
first derivative) is the constant m.

Now we also assume that the point (x0,y0) is a point of a curve given by some explicit function of x, say y = f(x);
hence y0 = f(x0). The first derivative of this function, evaluated at the point x0 is the local “slope”, which defines the
local tangent line, y = m (x− x0) + y0, if we use for m the value of f ′(x0), where the notation means first take the
derivative for arbitrary x and then evaluate the derivative at x = x0.

Let the two dimensional vector tvec be a vector parallel to the tangent line (at the point of interest) with components
(tx,ty), such that the vector makes an angle θ with the positive x axis. Then tan(θ) = ty/tx = m = dy/dx is the
slope of the tangent (line) at this point. Let the two dimensional vector nvec with components (nx,ny) be parallel to
the line perpendicular to the tangent at the given point. This normal line will be perpendicular to the tangent line if the
vectors nvec and tvec are perpendicular (i.e., “orthogonal”).

In Maxima, we can represent vectors by lists:

(%i1) tvec : [tx,ty];
(%o1) [tx, ty]
(%i2) nvec : [nx, ny];
(%o2) [nx, ny]

Two vectors are “orthogonal” if the “dot product” is zero. A simple example will illustrate this general property. Consider
the pair of unit vectors: ivec = [1,0], parallel to the positive x axis and jvec = [0,1], parallel to the positive y
axis.

(%i3) ivec : [1,0]$
(%i4) jvec : [0,1]$
(%i5) ivec . jvec;
(%o5) 0

Since Maxima allows us to use a period to find the dot product (inner product) of two lists (two vectors), we will ensure
that the normal vector is “at right angles” to the tangent vector by requiring nvec . tvec = 0

(%i6) eqn : nvec . tvec = 0;
(%o6) ny ty + nx tx = 0
(%i7) eqn : (eqn/(nx*ty), expand(%%));

tx ny
(%o7) -- + -- = 0

ty nx

We represent the normal (the line perpendicular to the tangent line) at the point (x0,y0) as y = mn (x− x0) + y0,
where mn is the slope of the normal line: mn = ny/nx = - (1/(ty/tx)) = -1/m .

In words, the slope of the normal line is the negative reciprocal of the slope of the tangent line.

Thus the equation of the local normal to the curve at the point (x0,y0) can be written as y = −(x− x0)/m + y0,
where m is the slope of the local tangent.

6 DIFFERENTIAL CALCULUS 14

6.3.1 Example 1: x2

As an easy first example, let’s use the function f(x) = x2 and construct the tangent line and normal line to this plane
curve at the point x = 1, y = f(1) = 1. (We have discussed this same example in Ch. 5). The first derivative is
2x, and its value at x = 1 is 2. Thus the equation of the local tangent to the curve at (x,y) = (1,1) is y = 2x− 1.
The equation of the local normal at the same point is y = −x/2 + 3/2.

We will plot the curve y = x2, the local tangent, and the local normal together. Special care is needed to get the horizontal
“canvas” width about 1.4 times the vertical height to achieve a geometrically correct plot; otherwise the “normal” line
would not cross the tangent line at right angles.

(%i8) qdraw(ex([xˆ2,2*x-1,-x/2+3/2],x,-1.4,2.8), yr(-1,2) ,
pts([[1,1]],ps(2)))$

The plot looks like:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2 2.5

1
2
3

Figure 6: Tangent and Normal to x2 at point (1,1)

We can see directly from the plot that the slope of the tangent line has the value 2. Remember that we can think of
“slope” as being the number derived from dividing the “rise” by the “run”. Thus if we choose a “run” to be the x interval
(0,1), from the plot this corresponds to the “rise” of 1− (−1) = 2. Hence “rise/run” is 2.

6.3.2 Example 2: ln(x)

Our next example repeats the analysis of Example 1 for the function ln(x), using the point (x = 2,y = ln(2)). Maxima’s
natural log function is written log. Maxima does not have a “log to the base 10 function”, although you can “roll your
own” with a definition like log10(x) := log(x)/log(10), which is equivalent to log(x)/2.303. Thus in
Maxima, log(10) = 2.303, log(2) = 0.693, etc. We are constructing the local tangent and normal at the
point (x = 2,y = 0.693). The derivative of the natural log is

(%i9) diff(log(x),x);
1

(%o9) -
x

so the “slope” of our curve (and the tangent) at the chosen point is 1/2, and the slope of the local normal is -2.
The equation of the tangent is then (y − ln(2)) = (1/2) (x− 2), or y = x/2− 0.307. The equation of the normal

6 DIFFERENTIAL CALCULUS 15

is (y − ln(2)) = −2 (x− 2), or y = −2x + 4.693. In order to get a decent plot, we need to stay away from the sin-
gular point x = 0, so we start the plot with x a small positive number. We choose to use the x-axis range (0.1,4), then
∆x = 3.9. Since we want the “canvas width” ∆x ≈ 1.4∆y, we need ∆y = 2.786, which is satisfied if we choose the
y-axis range to be (−1,1.786).

(%i10) qdraw(key(bottom), yr(-1,1.786),
ex([log(x), x/2 - 0.307, -2*x + 4.693],x,0.1,4),
pts([[2,0.693]],ps(2)));

which produces the plot:

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

1
2
3

Figure 7: Tangent and Normal to ln(x) at point (2, ln(2))

6.4 Maxima and Minima of a Function of Two Variables
You can find proofs of the following criteria in calculus texts.

If f(x,y) and its first derivatives are continuous in a region including the point (a,b), a necessary condition that f(a,b)
shall be an extreme (maximum or minimum) value of the function f(x,y) is that (I):

∂f(a, b)

∂x
= 0,

∂f(a, b)

∂y
= 0 (6.6)

in which the notation means first take the partial derivatives for arbitrary x and y and then evaluate the resulting deriva-
tives at the point (x,y) = (a,b).

Examples show that these two conditions (I) do not guarantee that the function actually takes on an extreme value at the
point (a,b), although in many practical problems the existence and nature of an extreme value is often evident from
the problem itself and no extra test is needed; all that is needed is the location of the extreme value.

If condition (I) is satisfied and if, in addition, at the point (a,b) we have (II):

∆ =
(

∂2 f

∂ x2

) (
∂2 f

∂ y2

)
−

(
∂2 f

∂x ∂y

)2

> 0 (6.7)

then f(x,y) will have a maximum value or a minimum value given by f(a,b) according as ∂2 f/∂ x2

(or ∂2 f/∂ y2) is negative or positive for x = a,y = b. If condition (I) holds and ∆ < 0 then f(a,b) is neither a
maximum nor a minimum; if ∆ = 0 the test fails to give any information.

6 DIFFERENTIAL CALCULUS 16

6.4.1 Example 1: Minimize the Area of a Rectangular Box of Fixed Volume

Let the sides of a “rectangular box” (rectangular prism, or cuboid, if you wish) of fixed volume v be x, y, and z. We wish
to determine the shape of this box (for fixed v) which minimizes the surface area s = 2 (xy + y z + zx). We can use
the fixed volume relation to express z as a function of x and y and then achieve an expression for the surface area which
only depends of the two variables x and y. We then know that a necessary condition that the surface area be an extremum
is that the two equations of condition I above be satisfied. We need to expose the hidden dependence of z on x and y via
the volume constraint before we can correctly derive the two equations of condition I.

You probably already know the answer to this shape problem is a cube, in which all sides are equal in length, and the
length of a side is the same as the cube root of the volume.

We require three equations to be satisfied, the first being the fixed volume v = xy z, and the other two being the equations
of condition I above. There are multiple paths to such a solution in Maxima. Perhaps the simplest is to use solve to
generate a solution of the three equations for the variables (x,y, z), although the solutions returned will include non-
physical solutions and we must select the physically realizable solution.

(%i1) eq1 : v = x*y*z;
(%o1) v = x y z
(%i2) solz : solve(eq1,z);

v
(%o2) [z = ---]

x y
(%i3) s : (subst(solz,2*(x*y + y*z + z*x)), expand(%%));

2 v 2 v
(%o3) 2 x y + --- + ---

y x
(%i4) eq2 : diff(s,x)=0;

2 v
(%o4) 2 y - --- = 0

2
x

(%i5) eq3 : diff(s,y) = 0;
2 v

(%o5) 2 x - --- = 0
2

y
(%i6) solxyz: solve([eq1,eq2,eq3],[x,y,z]);

1/3 1/3 1/3
(%o6) [[x = v , y = v , z = v],

1/3 1/3
2 v (sqrt(3) %i + 1) v

[x = --------------, y = - ---------------------,
sqrt(3) %i - 1 2

1/3 1/3
(sqrt(3) %i + 1) v 2 v

z = - ---------------------], [x = - --------------,
2 sqrt(3) %i + 1

1/3 1/3
(sqrt(3) %i - 1) v (sqrt(3) %i - 1) v

y = ---------------------, z = ---------------------]]
2 2

Since the physical solutions must be real, the first sublist is the physical solution which implies the cubical shape as the
answer.

6 DIFFERENTIAL CALCULUS 17

An alternative solution path is to solve eq2 above for y as a function of x and v and use this to eliminate y from
eqn3.

(%i7) soly : solve(eq2,y);
v

(%o7) [y = --]
2

x
(%i8) eq3x : (subst(soly, eq3),factor(%%));

3
2 x (x - v)

(%o8) - ------------ = 0
v

The factored form %o7 shows that, since x 6= 0, the solution must have x = v1/3. We can then use this solution for x to
generate the solution for y and then for z.

(%i9) solx : x = vˆ(1/3);
1/3

(%o9) x = v
(%i10) soly : subst(solx, soly);

1/3
(%o10) [y = v]
(%i11) subst([solx,soly[1]], solz);

1/3
(%o11) [z = v]

We find that ∆ > 0 and that the second derivative of s(x,y) with respect to x is positive, as needed for the cubical
solution to define a minimum surface solution.

(%i12) delta : (diff(s,x,2)*diff(s,y,2) - diff(s,x,1,y,1), expand(%%));
2

16 v
(%o12) ----- - 2

3 3
x y

(%i13) delta : subst([xˆ3=v,yˆ3=v], delta);
(%o13) 14
(%i14) dsdx2 : diff(s,x,2);

4 v
(%o14) ---

3
x

(%i15) dsdy2 : diff(s,y,2);
4 v

(%o15) ---
3

y

6 DIFFERENTIAL CALCULUS 18

6.4.2 Example 2: Maximize the Cross Sectional Area of a Trough

A long rectangular sheet of aluminum of width L is to be formed into a flat bottom trough by bending both a left and right
hand length x up by an angle θ with the horizontal. A cross section view is then:

Figure 8: Flat Bottomed Trough

The lower base is l = L− 2x, the upper base is u = l + 2x cos(θ). The altitude is h = x sin(θ). The area of a trape-
zoid whose parallel sides are l and u and whose altitude is h is (h/2) (l + u) (ie., the height times the average width:
Exercise: check this by calculating the area of a rectange hu, where u is the larger base, and then subtracting the area
of the two similar right triangles on the left and right hand sides.) Hence the area of the cross section (called s in our
Maxima work) is A = L x sin(θ) − 2 x2 sin(θ) + x2 sin(θ) cos(θ)

Using condition I equations, we proceed to find the extremum solutions for x and θ (which is called th in our Maxima
work). Our method is merely one possible path to a solution.

(%i1) s : L*x*sin(th) - 2*xˆ2*sin(th) + xˆ2*sin(th)*cos(th);
2 2

(%o1) sin(th) x L + cos(th) sin(th) x - 2 sin(th) x
(%i2) dsdx : (diff(s,x), factor(%%));
(%o2) sin(th) (L + 2 cos(th) x - 4 x)

We see that one way we can get dsdx to be zero is to set sin(θ) = 0, however this would mean the angle of bend was zero degrees,
which is not the solution of interest. Hence our first equation comes from setting the second factor of dsdx equal to zero.

(%i3) eq1 : dsdx/sin(th) = 0;
(%o3) L + 2 cos(th) x - 4 x = 0
(%i4) solx : solve(eq1,x);

L
(%o4) [x = - -------------]

2 cos(th) - 4
(%i5) dsdth : (diff(s,th), factor(%%));

2 2
(%o5) x (cos(th) L - sin (th) x + cos (th) x - 2 cos(th) x)

6 DIFFERENTIAL CALCULUS 19

We see that we can get dsdth to be zero if we set x = 0, but this is not the physical situation we are examining. We
assume (of course) that x 6= 0, and arrive at our second equation of condition I by setting the second factor of dsdth
equal to zero.

(%i6) eq2 : dsdth/x = 0;
2 2

(%o6) cos(th) L - sin (th) x + cos (th) x - 2 cos(th) x = 0
(%i7) eq2 : (subst(solx,eq2), ratsimp(%%));

2 2
(sin (th) + cos (th) - 2 cos(th)) L

(%o7) ----------------------------------- = 0
2 cos(th) - 4

The only way we can satisfy eq2 is to set the numerator of the left hand side equal to zero, and divide out the factor L
which is positive:

(%i8) eq2 : num(lhs(eq2))/L = 0;
2 2

(%o8) sin (th) + cos (th) - 2 cos(th) = 0
(%i9) eq2 : trigsimp(eq2);
(%o9) 1 - 2 cos(th) = 0
(%i10) solcos : solve(eq2, cos(th));

1
(%o10) [cos(th) = -]

2
(%i11) solx : subst(solcos, solx);

L
(%o11) [x = -]

3
(%i12) solth : solve(solcos,th);
‘solve’ is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o12) [th = ---]

3

6.5 Tangent and Normal of a Point of a Curve Defined by an Implicit Function

In the following, Maxima assumes that y is independent of x:

(%i1) diff(xˆ2 + yˆ2,x);
(%o1) 2 x

We can indicate explicitly that y depends on x for purposes of taking this derivative by replacing y by y(x).

(%i2) diff(xˆ2 + y(x)ˆ2,x);
d

(%o2) 2 y(x) (-- (y(x))) + 2 x
dx

6 DIFFERENTIAL CALCULUS 20

Instead of using the functional notation to indicate dependency, we can use the depends function before taking the
derivative.

(%i3) depends(y,x);
(%o3) [y(x)]
(%i4) g : diff(xˆ2 + yˆ2, x);

dy
(%o4) 2 y -- + 2 x

dx
(%i5) grind(g)$
2*y*’diff(y,x,1)+2*x$
(%i6) gs1 : subst(’diff(y,x) = xˆ3, g);

3
(%o6) 2 x y + 2 x

In %i4 we defined g as the derivative (with respect to x) of the expression xˆ2 + yˆ2, after telling Maxima that the
symbol y is to be considered dependent on the value of x. Since Maxima, as yet, has no specific information about the
nature of the dependence of y on x, the output is expressed in terms of the ”noun form” of diff, which Maxima’s pretty
print shows as dy

dx . To see the ”internal” form, we again use the grind function, which shows the explicit noun form
’diff(y,x,1). This is useful to know if we want to later replace that unknown derivative with a known result, as we
do in input %i6.

However, Maxima doesn’t do anything creative with the derivative substitution done in %i6, like working backwards to
what the explicit function of x the symbol y might stand for (different answers differ by a constant). The output %o6 still
contains the symbol y.

Two ways to later implement our knowledge of y(x) are shown in steps %i7 and %i8, which use the ev function. (In
Chapter 1 we discussed using ev for making substitutions, although the use of subst is more generally recommended
for that job.)

(%i7) ev(g,y=xˆ4/4,diff);
7
x

(%o7) -- + 2 x
2

(%i8) ev(g,y=xˆ4/4,nouns);
7
x

(%o8) -- + 2 x
2

(%i9) y;
(%o9) y
(%i10) g;

dy
(%o10) 2 y -- + 2 x

dx

We see that Maxima does not bind the symbol y to anything when we call ev with an equation like y = xˆ4/4, and
that the binding of g has not changed.

A list which reminds you of all dependencies in force is dependencies. The Maxima function diff is the only
core function which makes use of the dependencies list. The functions integrate and laplace do not use the
depends assignments; one must indicate the dependence explicitly by using functional notation.

6 DIFFERENTIAL CALCULUS 21

In the following, we first ask for the contents of the dependencies list and then ask Maxima to remove the above
dependency of y on x, using remove, then check the list contents again, and carry out the previous differentiation with
Maxima no longer assuming that y depends on x.

(%i11) dependencies;
(%o11) [y(x)]
(%i12) remove(y, dependency);
(%o12) done
(%i13) dependencies;
(%o13) []
(%i14) diff(xˆ2 + yˆ2,x);
(%o14) 2 x

On can also remove the properties associated with the symbol y by using kill (y), although this is more drastic than
using remove.

(%i15) depends(y,x);
(%o15) [y(x)]
(%i16) dependencies;
(%o16) [y(x)]
(%i17) kill(y);
(%o17) done
(%i18) dependencies;
(%o18) []
(%i19) diff(xˆ2+yˆ2,x);
(%o19) 2 x

There are many varieties of using the kill function. The way we are using it here corresponds to the syntax:

Function: kill (a_1, ..., a_n)
Removes all bindings (value, function, array, or rule) from the arguments a_1, ..., a_n. An argument a_k may
be a symbol or a single array element.

The list dependencies is one of the lists Maxima uses to hold information introduced during a work session. You can
use the command infolists to obtain a list of the names of all of the information lists in Maxima.

(%i1) infolists;
(%o2) [labels, values, functions, macros, arrays, myoptions, props, aliases,

rules, gradefs, dependencies, let_rule_packages, structures]

When you first start up Maxima, each of the above named lists is empty.

(%i2) functions;
(%o2) []

6.5.1 Tangent of a Point of a Curve Defined by f(x,y) = 0

Suppose some plane curve is defined by the equation f(x,y) = 0. Every point (x,y) belonging to the curve must satisfy
that equation. For such pairs of numbers, changing x forces a change in y so that the equation of the curve is still satisfied.
When we start plotting tangent lines to plane curves, we will need to evaluate the change in y, given a change in x, such
that the numbers (x,y) are always points of the curve. Let’s then regard y as depending on x via the equation of the
curve. Given that the equation f(x,y) = 0 is valid, we obtain another valid equation by taking the derivative of both sides
of the equation with respect to x. Let’s work just on the left hand side of the resulting equation for now:

(%i1) depends(y,x);
(%o1) [y(x)]
(%i2) diff(f(x,y),x);

d
(%o2) -- (f(x, y))

dx

6 DIFFERENTIAL CALCULUS 22

We can make progress by assigning values to the partial derivative of f(x,y) with respect to the first argument x and
also to the partial derivative of f(x,y) with respect to the second argument y, using the gradef function. The assigned
values can be explicit mathematical expressions or symbols. We are going to adopt the symbol dfdx to stand for the
partial derivative

dfdx =
(

∂f(x,y)
∂x

)

y

,

where the y subscript means “treat y as a constant when evaluating this derivative”.

Likewise, we will use the symbol dfdy to stand for the partial derivative of f(x,y) with respect to y, holding x
constant:

dfdy =
(

∂f(x,y)
∂y

)

x

.

(%i3) gradef(f(x,y), dfdx, dfdy);
(%o3) f(x, y)
(%i4) g : diff(f(x,y), x);

dy
(%o4) dfdy -- + dfdx

dx
(%i5) grind(g)$
dfdy*’diff(y,x,1)+dfdx$
(%i6) g1 : subst(’diff(y,x) = dydx, g);
(%o6) dfdy dydx + dfdx

We have adopted the symbol dydx for the “rate of change” of y as x varies, subject to the constraint that the numbers
(x,y) always satisfy the equation of the curve f(x,y) = 0, which implies that g1 = 0.

(%i7) solns : solve(g1=0, dydx);
dfdx

(%o7) [dydx = - ----]
dfdy

We see that Maxima knows enough about the rules for differentiation to allow us to get to a famous calculus formula. If

x and y are constrained by the equation f(x,y) = 0, then the “slope” of the local tangent to the point (x,y) is

dy

dx
= −

(
∂f(x,y)

∂x

)
y(

∂f(x,y)
∂y

)
x

. (6.8)

Of course, this formal expression has no meaning at a point where the denominator is zero.

In your calculus book you will find the derivation of the differentiation rule embodied in our output %o4 above:

d

d x
f(x, y(x)) =

(
∂f(x, y)

∂x

)

y

+

(
∂f(x, y)

∂y

)

x

d y(x)

d x
(6.9)

Remember that Maxima knows only what the code writers put in; we normally assume that the correct laws of mathemat-
ics are encoded as an aid to calculation. If Maxima were not consistent with the differentiation rule Eq. (6.9), then a bug
would be present and would have to be removed.

The result Eq.(6.8) provides a way to find the slope (which we call m) at a general point (x,y).
This “slope” should be evaluated at the curve point (x0,y0) of interest to get the tangent and normal in numerical

form. Recall our discussion in the first part of Section(6.3) where we derived the relation between the slopes of the tangent
and normal. If the numerical value of the slope is m0, then the tangent (line) is the equation y = m0 (x− x0) + y0, and
the normal (line) is the equation y = −(x− x0)/m0 + y0

6 DIFFERENTIAL CALCULUS 23

A Function which Solves for dy/dx given that f(x,y) = 0

Given an equation relating x and y, we assume we can rewrite that equation in the form f(x,y) = 0, and then define the
following function:

(%i1) dydx(expr,x,y) := -diff(expr,x)/diff(expr,y);
- diff(expr, x)

(%o1) dydx(expr, x, y) := ---------------
diff(expr, y)

As a first example, consider finding dy/dx given that x3 + y3 = 1.

(%i2) dydx(xˆ3+yˆ3-1,x,y);
2

x
(%o2) - --

2
y

Next find dy/dx given that cos(x2 − y2) = y cos(x).

(%i3) r1 : dydx(cos(xˆ2 - yˆ2) - y*cos(x),x,y);
2 2

- 2 x sin(y - x) - sin(x) y
(%o3) -----------------------------

2 2
- 2 y sin(y - x) - cos(x)

(%i4) r2 : (-num(r1))/(-denom(r1));
2 2

2 x sin(y - x) + sin(x) y
(%o4) ---------------------------

2 2
2 y sin(y - x) + cos(x)

Maxima does not simplify r1 by cancelling the minus signs automatically, and we have resorted to dividing the negative
of the numerator by the negative of the denominator(!) to get the form of r2. Notice also that Maxima has chosen to
write sin(y2 − x2) instead of sin(x2 − y2).

Finally, find dy/dx given that 3y4 + 4x− x2 sin(y)− 4 = 0.

(%i5) dydx(3*yˆ4 +4*x -xˆ2*sin(y) - 4, x, y);
2 x sin(y) - 4

(%o5) -----------------
3 2

12 y - x cos(y)

6.5.2 Example 1: Tangent and Normal of a Point of a Circle

As an easy first example, lets consider a circle of radius r defined by the equation x2 + y2 = r2. Let’s choose r = 1.
Then f(x,y) = x2 + y2 − 1 = 0 defines the circle of interest, and we use the “slope” function above to calculate the
slope m for a general point (x,y).

(%i1) dydx(expr,x,y) := -diff(expr,x)/diff(expr,y)$
(%i2) f:xˆ2 + yˆ2-1$
(%i3) m : dydx(f,x,y);

x
(%o3) - -

y

6 DIFFERENTIAL CALCULUS 24

We then choose a point of the circle, evaluate the slope at that point, and construct the tangent and normal at that point.

(%i4) fpprintprec:8$
(%i5) [x0,y0] : [0.5,0.866];
(%o5) [0.5, 0.866]
(%i6) m : subst([x=x0,y=y0],m);
(%o6) - 0.577367
(%i7) tangent : y = m*(x-x0) + y0;
(%o7) y = 0.866 - 0.577367 (x - 0.5)
(%i8) normal : y = -(x-x0)/m + y0;
(%o8) y = 0.866 - 1.732 (0.5 - x)

We can then use qdraw to show the circle with both the tangent and normal.

(%i9) load(draw);
(%o9) C:/PROGRA˜1/MAXIMA˜4.0/share/maxima/5.15.0/share/draw/draw.lisp
(%i10) load(qdraw);

qdraw(...), qdensity(...), syntax: type qdraw();

(%o10) c:/work2/qdraw.mac
(%i11) ratprint:false$
(%i12) qdraw(key(bottom),ipgrid(15),

imp([f = 0,tangent,normal],x,-2.8,2.8,y,-2,2),
pts([[0.5,0.866]],ps(2)))$

The result is

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1 0 1 2

1
2
3

Figure 9: Tangent and Normal to x2 + y2 = 1 at point (0.5,0.866)

6 DIFFERENTIAL CALCULUS 25

6.5.3 Example 2: Tangent and Normal of a Point of the Curve sin(2 x) cos(y) = 0.5

A curve is defined by f(x,y) = sin(2x) cos(y)− 0.5 = 0, with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. Using Eq. (6.8) we
calculate the slope of the tangent to this curve at some point (x,y) and then specialize to the point (x = 1,y = y0) with
y0 to be found:

(%i13) f : sin(2*x)*cos(y) - 0.5$
(%i14) m : dydx(f,x,y);

2 cos(2 x) cos(y)
(%o14) -----------------

sin(2 x) sin(y)
(%i15) s1 : solve(subst(x=1,f),y);
‘solve’ is using arc-trig functions to get a solution.
Some solutions will be lost.

1
(%o15) [y = acos(--------)]

2 sin(2)
(%i16) fpprintprec:8$
(%i17) s1 : float(s1);
(%o17) [y = 0.988582]
(%i18) m : subst([x=1, s1[1]], m);

1.3166767 cos(2)
(%o18) ----------------

sin(2)
(%i19) m : float(m);
(%o19) - 0.602587
(%i20) mnorm : -1/m;
(%o20) 1.6595113
(%i21) y0 : rhs(s1[1]);
(%o21) 0.988582
(%i22) qdraw(imp([f = 0, y - y0 = m*(x - 1),

y - y0 = mnorm*(x - 1)],x,0,2,y,0,1.429),
pts([[1,y0]], ps(2)), ipgrid(15))$

which produces the plot

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

1
2
3

Figure 10: Tangent and Normal to sin(2x) cos(y) = 0.5 at point (1,0.988)

6 DIFFERENTIAL CALCULUS 26

6.5.4 Example 3: Tangent and Normal of a Point on a Parametric Curve: x = sin(t),y = sin(2 t)

This example is the parametric curve example we plotted in Ch. 5. If we divide the differential of y by the differential of
x, the common factor of d t will cancel out and we will have an expression for the slope of the tangent to the curve at a
point determined by the value the parameter t, which in this example must be an angle expressed in radians (as usual in
calculus).

We then specialize to a point on the curve corresponding to x = 0.8, with 0 ≤ t ≤ π/2, which we solve for:

(%i23) m : diff(sin(2*t))/diff(sin(t));
2 cos(2 t)

(%o23) ----------
cos(t)

(%i24) x0 : 0.8;
(%o24) 0.8
(%i25) tsoln : solve(x0 = sin(t), t);

4
(%o25) [t = asin(-)]

5
(%i26) tsoln : float(tsoln);
(%o26) [t = 0.927295]
(%i27) t0 : rhs(tsoln[1]);
(%o27) 0.927295
(%i28) m : subst(t = t0, m);
(%o28) - 0.933333
(%i29) mnorm : -1/m;
(%o29) 1.0714286
(%i30) y0 : sin(2*t0);
(%o30) 0.96
(%i31) qdraw(xr(0, 2.1), yr(0,1.5), ipgrid(15),nticks(200),

para(sin(t),sin(2*t),t,0,%pi/2, lc(brown)),
ex([y0+m*(x-x0),y0+mnorm*(x-x0)],x,0,2.1),

pts([[0.8, 0.96]],ps(2)))$

with the resulting plot

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

1
2

Figure 11: Tangent and Normal to x = sin(t), y = sin(2 t) at point t = 0.927 radians

6 DIFFERENTIAL CALCULUS 27

6.5.5 Example 4: Tangent and Normal of a Point on a Polar Plot: x = r(t) cos(t),y = r(t) sin(t)

We use the polar plot example from ch. 5, in which we took r(t) = 10/t, and again t is in radians, and we consider
the interval 1 ≤ t ≤ π and find the tangent and normal at the curve point corresponding to t = 2 radians. We find the
general slope of the tangent by again forming the ratio of the differential dy to the differential dx.

(%i32) r : 10/t$
(%i33) xx : r * cos(t)$
(%i34) yy : r * sin(t)$
(%i35) m : diff(yy)/diff(xx)$
(%i36) m : ratsimp(m);

sin(t) - t cos(t)
(%o36) -----------------

t sin(t) + cos(t)
(%i37) m : subst(t = 2.0, m);
(%o37) 1.2418222
(%i38) mnorm : -1/m;
(%o38) - 0.805268
(%i39) x0 : subst(t = 2.0, xx);
(%o39) - 2.0807342
(%i40) y0 : subst(t = 2.0, yy);
(%o40) 4.5464871
(%i41) qdraw(polar(10/t,t,1,3*%pi,lc(brown)),

xr(-6.8,10),yr(-3,9),
ex([y0 + m*(x-x0),y0 + mnorm*(x-x0)],x,-6.8,10),
pts([[x0,y0]], ps(2),pk("t = 2 rad")));

which produces the plot:

-2

 0

 2

 4

 6

 8

-6 -4 -2 0 2 4 6 8 10

1
2

t = 2 rad

Figure 12: Tangent and Normal to x = 10 cos(t)/t, y = 10 sin(t)/t at point t = 2 radians

6 DIFFERENTIAL CALCULUS 28

6.6 Limit Examples Using Maxima’s limit Function
Maxima has a powerful limit function which uses l’Hospital’s rule and Taylor series expansions to investigate the limit
of a univariate function as the variable approaches some point. The Maxima manual has the following description the
Maxima function limit:

Function: limit(expr, x, val, dir)
Function: limit(expr, x, val)
Function: limit(expr)
Computes the limit of expr as the real variable x approaches the value val from the direction dir. dir may have
the value plus for a limit from above, minus for a limit from below, or may be omitted (implying a two-sided limit
is to be computed).
limit uses the following special symbols: inf (positive infinity) and minf (negative infinity). On output it may also
use und (undefined), ind (indefinite but bounded) and infinity (complex infinity).
lhospitallim is the maximum number of times L’Hospital’s rule is used in limit. This prevents infinite looping
in cases like limit (cot(x)/csc(x), x, 0).
tlimswitch when true will allow the limit command to use Taylor series expansion when necessary.
limsubst prevents limit from attempting substitutions on unknown forms. This is to avoid bugs like
limit (f(n)/f(n+1),n,inf) giving 1. Setting limsubst to true will allow such substitutions.
limit with one argument is often called upon to simplify constant expressions, for example, limit (inf-1).
example (limit) displays some examples.

Here is the result of calling Maxima’s example function:

(%i1) example(limit)$
(%i2) limit(x*log(x),x,0,plus)
(%o2) 0
(%i3) limit((x+1)ˆ(1/x),x,0)
(%o3) %e
(%i4) limit(%eˆx/x,x,inf)
(%o4) inf
(%i5) limit(sin(1/x),x,0)
(%o5) ind

Most use of limit will use the first two ways to call limit. The “direction” argument is optional. The default values
of the option switches mentioned above are:

(%i6) [lhospitallim,tlimswitch,limsubst];
(%o6) [4, true, false]

Thus the default Maxima behavior is to allow the use of a Taylor series expansion in finding the correct limit. (We will
discuss Taylor series expansions soon in this chapter.) The default is also to prevent “substitutions” on unknown (formal)
functions. The third (single argument) syntax is illustrated by

(%i7) limit(inf - 1);
(%o7) inf

The expression presented to the limit function in input %i7 contains only known constants, so there are no unbound
(formal) parameters like x for limit to worry about.

Here is a use of limit which mimics the calculus definition of a derivative of a power of x.

(%i8) limit(((x+eps)ˆ3 - xˆ3)/eps, eps, 0);
2

(%o8) 3 x

And a similar use of limit with ln(x):

(%i9) limit((log(x+eps) - log(x))/eps, eps,0);
1

(%o9) -
x

6 DIFFERENTIAL CALCULUS 29

What does Maxima do with a typical calculus definition of a derivative of a trigonometric function?

(%i10) limit((sin(x+eps)-sin(x))/eps, eps,0);
Is sin(x) positive, negative, or zero?
p;
Is cos(x) positive, negative, or zero?
p;
(%o10) cos(x)

We see above a typical Maxima query before producing an answer. Using p; instead of positive; is allowed. Likewise
one can use n; instead of negative;.

6.6.1 Discontinuous Functions

A simple example of a discontinuous function can be created using Maxima’s abs function.
abs(expr) returns either the absolute value expr, or (if expr is complex) the complex modulus of expr.

We first plot the function |x|/x.

(%i11) load(draw)$
(%i12) load(qdraw)$
(%i13) qdraw(yr(-2,2),lw(8),ex(abs(x)/x,x,-1,1))$

Here is that plot of |x|/x:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

1

Figure 13: |x|/x

6 DIFFERENTIAL CALCULUS 30

Maxima correctly evaluates the one-sided limits:

(%i14) limit(abs(x)/x,x,0,plus);
(%o14) 1
(%i15) limit(abs(x)/x,x,0,minus);
(%o15) - 1
(%i16) limit(abs(x)/x,x,0);
(%o16) und

and Maxima also computes a derivative:

(%i17) g : diff(abs(x)/x,x);
1 abs(x)

(%o17) ------ - ------
abs(x) 2

x
(%i18) g, x = 0.5;
(%o18) 0.0
(%i19) g, x = - 0.5;
(%o19) 0.0
(%i20) g,x=0;
Division by 0
-- an error. To debug this try debugmode(true);

(%i21) limit(g,x,0,plus);
(%o21) 0
(%i22) limit(g,x,0,minus);
(%o22) 0
(%i23) load(vcalc)$
(%i24) plotderiv(abs(x)/x,x,-2,2,-2,2,1)$

abs(x) 1 abs(x)
plist = [------, ------ - ------]

x abs(x) 2
x

The derivative does not simplify to 0 since the derivative is undefined at x = 0. The plot of the step function and its
derivative, as returned by plotderiv is

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

1
2

Figure 14: |x|/x and its Maxima derivative

6 DIFFERENTIAL CALCULUS 31

A homemade unit step function can now be defined by adding 1 to lift the function up to the value of 0 for x < 0 and
then dividing the result by 2 to get a ”unit step function”.

(%i25) mystep : ((1 + abs(x)/x)/2 , ratsimp(%%));
abs(x) + x

(%o25) ----------
2 x

We then use qdraw to plot the definition

(%i26) qdraw(yr(-1,2),lw(5),ex(mystep,x,-1,1))$

with the result:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

1

Figure 15: mystep

Maxima has a function called unit_step available if you load the orthopoly package. This function is “left
continuous”, since it has the value 0 for x ≤ 1. However, no derivative is defined, although you can use gradef.

(%i27) load(orthopoly)$
(%i28) map(unit_step,[-1/10,0,1/10]);
(%o28) [0, 0, 1]
(%i29) diff(unit_step(x),x);

d
(%o29) -- (unit_step(x))

dx
(%i30) gradef(unit_step(x),0);
(%o30) unit_step(x)
(%i31) diff(unit_step(x),x);
(%o31) 0

Of course, defining the derivative to be 0 everywhere can be dangerous in some circumstances. You can use unit_step
in a plot using, say, qdraw(yr(-1,2),lw(5),ex(unit_step(x),x,-1,1));. Here we use unit_step to
define a “unit pulse” function upulse(x,x0,w) which is a function of x which becomes equal to 1 when x = x0 and
has width w.

(%i32) upulse(x,x0,w) := unit_step(x-x0) - unit_step(x - (x0+w))$

and then make a plot of three black pulses of width 0.5.

(%i33) qdraw(yr(-1,2), xr(-3,3),
ex1(upulse(x,-3,0.5),x,-3,-2.49,lw(5)),

ex1(upulse(x,-1,0.5),x,-1,-.49,lw(5)),
ex1(upulse(x,1,0.5),x,1,1.51,lw(5)))$

6 DIFFERENTIAL CALCULUS 32

with the result:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

Figure 16: Using upulse(x,x0,w)

Of course, the above drawing can be done more easily with the poly function in qdraw, which uses draw2d’s
polygon function.

6.6.2 Indefinite Limits

The example run showed that sin(1/x) has no definite limit as the variable x approaches zero. This function oscillates
increasingly rapidly between ±1 as x → 0. It is instructive to make a plot of this function near the origin using the
smallest line width:

(%i34) qdraw(lw(1),ex(sin(1/x),x,0.001,0.01));

The eps image reproduced here actually uses a finer line width than the Windows Gnuplot console window:

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

1

Figure 17: sin(1/x) Behavior Near x = 0

6 DIFFERENTIAL CALCULUS 33

The Maxima limit function correctly returns ind for “indefinite but bounded” when asked to find the limit as
x → 0+.

(%i35) limit(sin(1/x),x,0,plus);
(%o35) ind

An example of a function which is well behaved at x = 0 but whose derivative is indefinite but bounded is x2 sin(1/x),
which approaches the value 0 at x = 0.

(%i36) g : xˆ2*sin(1/x)$
(%i37) limit(g,x,0);
(%o37) 0
(%i38) dgdx : diff(g,x);

1 1
(%o38) 2 sin(-) x - cos(-)

x x
(%i39) limit(dgdx,x,0);
(%o39) ind

In the first term of the derivative, x sin(1/x) is driven to 0 by the factor x, but the second term oscillates increasingly
rapidly between ±1 as x → 0. For a plot, we use the smallest line width and color blue for the derivative, and use a
thicker red curve for the original function x2 sin(1/x).

(%i40) qdraw(yr(-1.5,1.5),ex1(2*x*sin(1/x)-cos(1/x),x,-1,1,lw(1),lc(blue)),
ex1(xˆ2*sin(1/x),x,-1,1,lc(red)))$

Here is the plot:

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

Figure 18: Indefinite but Bounded Behavior of Derivative

6 DIFFERENTIAL CALCULUS 34

6.7 Taylor Series Expansions using taylor

A Taylor (or Laurent) series expansion of a univariate expression has the syntax
taylor(expr, x, a, n)

which will return a Taylor or Laurent series expansion of expr in the variable x about the point x = a, through terms
proportional to (x - a)ˆn . Here are some examples of first getting the expansion, then evaluating the expansion at
some other point, using both at and subst.

(%i1) t1 : taylor(sqrt(1+x),x,0,5);
2 3 4 5

x x x 5 x 7 x
(%o1)/T/ 1 + - - -- + -- - ---- + ---- + . . .

2 8 16 128 256
(%i2) [at(t1, x=1),subst(x=1, t1)];

365 365
(%o2) [---, ---]

256 256
(%i3) float(%);
(%o3) [1.42578125, 1.42578125]
(%i4) t2: taylor (cos(x) - sec(x), x, 0, 5);

4
2 x

(%o4)/T/ - x - -- + . . .
6

(%i5) [at(t2, x=1),subst(x=1, t2)];
7 7

(%o5) [- -, - -]
6 6

(%i6) t3 : taylor(cos(x),x,%pi/4,4);
%pi %pi 2 %pi 3

sqrt(2) (x - ---) sqrt(2) (x - ---) sqrt(2) (x - ---)
sqrt(2) 4 4 4

(%o6)/T/ ------- - ----------------- - ------------------ + ------------------
2 2 4 12

%pi 4
sqrt(2) (x - ---)

4
+ ------------------ + . . .

48
(%i7) (at(t3, x = %pi/3), factor(%%));

4 3 2
sqrt(2) (%pi + 48 %pi - 1728 %pi - 41472 %pi + 497664)

(%o7) ---
995328

To expand an expression depending on two variables, say (x,y), there are two essentially different forms. The first form
is
taylor(expr, [x,y], [a,b],n)

which will expand in x about x = a and expand in the variable y about y = b, up through combined powers of order
n. If a = b, then the simpler syntax:
taylor(expr, [x,y], a, n)

will suffice.

6 DIFFERENTIAL CALCULUS 35

(%i8) t4 : taylor(sin(x+y),[x,y],0,3);
3 2 2 3

x + 3 y x + 3 y x + y
(%o8)/T/ y + x - ------------------------- + . . .

6
(%i9) (subst([x=%pi/2, y=%pi/2], t4), ratsimp(%%));

3
%pi - 6 %pi

(%o9) - ------------
6

(%i10) (at(t4, [x=%pi/2,y=%pi/2]), ratsimp(%%));
3

%pi - 6 %pi
(%o10) - ------------

6

Note the crucial difference between this last example and the next.

(%i11) t5 : taylor(sin(x+y),[x,0,3],[y,0,3]);
3 2 3
y y y y 2

(%o11)/T/ y - -- + . . . + (1 - -- + . . .) x + (- - + -- + . . .) x
6 2 2 12

2
1 y 3

+ (- - + -- + . . .) x + . . .
6 12

(%i12) (subst([x=%pi/2,y=%pi/2],t5),ratsimp(%%));
5 3

%pi - 32 %pi + 192 %pi
(%o12) ------------------------

192

Thus the syntax
taylor(expr, [x,a,nx], [y,b,ny])

will expand to higher combined powers in x and y.

We can differentiate and integrate a taylor series returned expression:

(%i13) t6 : taylor(sin(x),x,0,7);
3 5 7

x x x
(%o13)/T/ x - -- + --- - ---- + . . .

6 120 5040
(%i14) diff(t6,x);

2 4 6
x x x

(%o14)/T/ 1 - -- + -- - --- + . . .
2 24 720

(%i15) integrate(%,x);
7 5 3

x x x
(%o15) - ---- + --- - -- + x

5040 120 6
(%i16) integrate(t6,x);

8 6 4 2
x x x x

(%o16) - ----- + --- - -- + --
40320 720 24 2

6 DIFFERENTIAL CALCULUS 36

A common use of the Taylor series is to expand a function of x in the form f(x + dx), for dx small.

(%i17) taylor(f(x+dx),dx,0,3);
!

2 !
d ! 2

(---- (f(x + dx))!) dx
2 !

! ddx !
d ! !dx = 0

(%o17)/T/ f(x) + (--- (f(x + dx))!) dx + -----------------------------
ddx ! 2

!dx = 0
!

3 !
d ! 3

(---- (f(x + dx))!) dx
3 !

ddx !
!dx = 0

+ ----------------------------- + . . .
6

(%i18) taylor(cos(x+dx),dx,0,4);
2 3 4

cos(x) dx sin(x) dx cos(x) dx
(%o18)/T/ cos(x) - sin(x) dx - ---------- + ---------- + ---------- + . . .

2 6 24

Another frequent use of the Taylor series is the expansion of a function which contains a small parameter which we will
symbolize by e.

(%i19) g : log(a/e + sqrt(1+(a/e)ˆ2));
2

a a
(%o19) log(- + sqrt(-- + 1))

e 2
e

(%i20) taylor(g,e,0,2);
2

e
(%o20)/T/ - log(e) + log(2 a) + . . . + ---- + . . .

2
4 a

More examples of Taylor and Laurent series expansions can be found in the Maxima manual.

6.8 Vector Calculus Calculations and Derivations using vcalc.mac

The package vcalc.mac has been mentioned in the introduction to this chapter. Here we give a few examples of using
this package for vector calculus work.

General Comments: Working with the Batch File vcalcdem.mac

A separate file vcalcdem.mac is available with this chapter on the author’s webpage. This file is designed to be intro-
duced into Maxima using the command batch(vcalcdem) (if vcalcdem.mac is in your work directory, say, and
you have set up your file search paths as suggested in Ch. 1) or batch("vcalcdem.mac"). You should first load in
the vcalc.mac file which contains the definitions of the vcalc vector calculus functions.

There are three points to emphasize when using batch files in this mode. The first feature is the use of lines like
"this is a comment"$ in the file, which allow you to place readable comments between the usual Maxima in-
put lines. Secondly, a Maxima input which simply defines something and for which there is no need to see the “output”
line should end with the dollar sign $. Finally, when you “batch in” the file, you see neither the dollar signs, nor the
semi-colons which end the other inputs. However, input and output numbers of the form (%i12) and (%o12) will be

6 DIFFERENTIAL CALCULUS 37

seen for inputs which end with a semi-colon, whereas there are no output numbers for inputs which end with the dollar
sign. Once you get a little practice reading the text form of the batch file and comparing that to the Maxima display of the
“batched in” file, you should have no problem understanding what is going on. The first lines of vcalcdem.mac are:

" vcalcdem.mac: sample calculations and derivations"$
" default coordinates are cartesian (x,y,z)"$
" gradient and laplacian of a scalar field "$
depends(f,[x,y,z]);
grad(f);
lap(f);

Here is what you will see in your Maxima session:

(%i1) load(vcalc);
vcalc.mac: for syntax, type: vcalc_syntax();

CAUTION: global variables set and used in this package:

hhh1, hhh2, hhh3, uuu1, uuu2, uuu3, nnnsys, nnnprint, tttsimp

(%o1) c:/work2/vcalc.mac
(%i2) batch(vcalcdem)$
read and interpret file: #pc:/work5/vcalcdem.mac
(%i3) vcalcdem.mac: sample calculations and derivations
(%i4) default coordinates are cartesian (x,y,z)
(%i5) gradient and laplacian of a scalar field
(%i6) depends(f, [x, y, z])
(%o6) [f(x, y, z)]
(%i7) grad(f)
cartesian [x, y, z]

df df df
(%o7) [--, --, --]

dx dy dz
(%i8) lap(f)
cartesian [x, y, z]

2 2 2
d f d f d f

(%o8) --- + --- + ---
2 2 2

dz dy dx

The default coordinates are cartesian (x,y,z), and by telling Maxima that the otherwise undefined symbol f is to be
treated as an explicit function of (x,y,z), we get symbolic output from grad(f) and lap(f) which respectively
produce the gradient and laplacian in the current coordinate system.

For each function used, a reminder is printed to your screen concerning the current coordinate system and the current
choice of independent variables.

Three dimensional vectors (the only kind allowed by this package) are represented by lists with three elements. In the
default cartesian coordinate system (x,y,z), the first slot is the x component of the vector, the second slot is the y
component, and the third slot is the z component.

Now that you have seen the difference between the file vcalcdem.mac and the Maxima response when using “batch”,
we will just show the latter for brevity. You can, of course, look at the file vcalcdem.mac with a text editor.

6 DIFFERENTIAL CALCULUS 38

Here the batch file displays the divergence and curl of a general 3-vector in a cartesian coordinate system.

(%i9) divergence and curl of a vector field
(%i10) avec : [ax, ay, az]
(%o10) [ax, ay, az]
(%i11) depends(avec, [x, y, z])
(%o11) [ax(x, y, z), ay(x, y, z), az(x, y, z)]
(%i12) div(avec)
cartesian [x, y, z]

daz day dax
(%o12) --- + --- + ---

dz dy dx
(%i13) curl(avec)
cartesian [x, y, z]

daz day dax daz day dax
(%o13) [--- - ---, --- - ---, --- - ---]

dy dz dz dx dx dy

We next have two vector calculus identities:

(%i14) vector identities true in any coordinate system
(%i15) curl(grad(f))
cartesian [x, y, z]
cartesian [x, y, z]
(%o15) [0, 0, 0]
(%i16) div(curl(avec))
cartesian [x, y, z]
cartesian [x, y, z]
(%o16) 0

and an example of finding the Laplacian of a vector field (rather than a scalar field) with an explicit example:

(%i17) laplacian of a vector field
3 3 2 3

(%i18) aa : [x y, x y z, x y z]
3 3 2 3

(%o18) [x y, x y z, x y z]
(%i19) lap(aa)
cartesian [x, y, z]

3 2
(%o19) [6 x y, 6 x y z, 2 y z + 6 x y z]

and an example of the use of the vector cross product which is included with this package:

(%i20) vector cross product
(%i21) bvec : [bx, by, bz]
(%o21) [bx, by, bz]
(%i22) lcross(avec, bvec)
(%o22) [ay bz - az by, az bx - ax bz, ax by - ay bx]

We next change the current coordinate system to cylindrical with a choice of the symbols rho, phi, and z as the
independent variables. We again start with some general expressions

(%i23) cylindrical coordinates using (rho,phi,z)
(%i24) setcoord(cy(rho, phi, z))
(%o24) true
(%i25) gradient and laplacian of a scalar field
(%i26) depends(g, [rho, phi, z])
(%o26) [g(rho, phi, z)]

6 DIFFERENTIAL CALCULUS 39

(%i27) grad(g)
cylindrical [rho, phi, z]

dg

dg dphi dg
(%o27) [----, ----, --]

drho rho dz
(%i28) lap(g)
cylindrical [rho, phi, z]

2
d g

dg -----
---- 2 2 2
drho dphi d g d g

(%o28) ---- + ----- + --- + -----
rho 2 2 2

rho dz drho
(%i29) divergence and curl of a vector field
(%i30) bvec : [brh, bp, bz]
(%o30) [brh, bp, bz]
(%i31) depends(bvec, [rho, phi, z])
(%o31) [brh(rho, phi, z), bp(rho, phi, z), bz(rho, phi, z)]
(%i32) div(bvec)
cylindrical [rho, phi, z]

dbp

brh dphi dbz dbrh
(%o32) --- + ---- + --- + ----

rho rho dz drho
(%i33) curl(bvec)
cylindrical [rho, phi, z]

dbz dbrh
---- ----
dphi dbp dbrh dbz dphi bp dbp

(%o33) [---- - ---, ---- - ----, - ---- + --- + ----]
rho dz dz drho rho rho drho

Instead of using setcoord to change the current coordinate system, we can insert an extra argument in the vector
calculus function we are using. Here is an example of not changing the coordinate system, but telling Maxima to use r
instead of rho with the currently operative cylindrical coordinates.

(%i34) change from cylindrical coordinate label rho to r on the fly:
1

(%i35) bvec : [0, -, 0]
r

(%i36) div(bvec, cy(r, phi, z))
cylindrical [r, phi, z]
(%o36) 0

Here is an example of using this method to switch to spherical polar coordinates:

(%i37) change to spherical polar coordinates on the fly
sin(theta)

(%i38) cvec : [0, 0, ----------]
2

r
(%i39) div(cvec, s(r, theta, phi))
spherical polar [r, theta, phi]
(%o39) 0

6 DIFFERENTIAL CALCULUS 40

(%i40) coordinate system remains spherical unless explicitly changed
(%i41) cvec : [0, 0, r sin(theta)]
(%i42) div(cvec)
spherical polar [r, theta, phi]
(%o42) 0
(%i43) example of div(vec) = 0 everywhere except r = 0

1
(%i44) div([--, 0, 0])

2
r

spherical polar [r, theta, phi]
(%o44) 0

The best way to get familiar with vcalc.mac is just to play with it. Some syntax descriptions are built into the package.

6.9 Maxima Derivation of Vector Calculus Formulas in Cylindrical Coordinates

In this section we start with the cartesian (rectangular) coordinate expressions for the gradient and Laplacian of a scalar
expression, and the divergence and curl of a vector expression. We then use Maxima to find the correct forms of these
vector calculus formulas in a cylindrical coordinate system.

Figure 19: ρ and φ unit vectors

Consider a change of variable from cartesian coordinates (x, y, z) to cylindrical coordinates (ρ, ϕ, z). Given (ρ, ϕ),
we obtain (x, y) from the pair of equations x = ρ cosϕ and y = ρ sinϕ. Given (x, y), we obtain (ρ, ϕ) from the equa-
tions ρ =

√
x2 + y2 (or ρ2 = x2 + y2) and tanϕ = y/x (or ϕ = arctan(y/x)).

We consider the derivatives of a general scalar function f(ρ, ϕ, z) which is an explicit function of the cylindrical coordi-
nates (ρ, ϕ, z) and an implicit function of the cartesian coordinates (x, y) via the dependence of ρ and ϕ on x and y.

Likewise we consider a general three dimensional vector B(ρ, ϕ, z) which is an explicit function of ρ, ϕ, and z and an
implicit function of (x, y).

Since many of the fundamental equations governing processes in the physical sciences and engineering can be written
down in terms of the Laplacian, the divergence, the gradient, and the curl, we concentrate on using Maxima to do the
“heavy lifting” (ie., the tedious algebra) to work out formulas for these operations in cylindrical coordinates.

Our approach to the use of vectors here is based on choosing an explicit set of three element lists to represent the cartesian
unit vectors. We then use the built-in dot product of lists to implement the scalar product of three-vectors, used to check
orthonormality, and we also provide a simple cross product function which can be used to check that the unit vectors we
write down are related by the vector cross product to each other in the conventional way (the “right hand rule”).

6 DIFFERENTIAL CALCULUS 41

6.9.1 The Calculus Chain Rule in Maxima

Let g be some scalar function which depends implicitly on (x,y, z) via an explicit dependence on (u,v,w). We want
to express the partial derivative of g with respect to x, y, or z in terms of derivatives of g with respect to u, v, and w.

We first tell Maxima to treat g as an explicit function of (u,v,w).

(%i1) depends(g,[u,v,w]);
(%o1) [g(u, v, w)]

If, at this point, we ask for the derivative of g with respect to x, we get zero, since Maxima has no information yet about
dependence of u, v, and w on x.

(%i2) diff(g,x);
(%o2) 0

We now need to use further depends statements, as in

(%i3) depends([u,v,w],[x,y,z]);
(%o3) [u(x, y, z), v(x, y, z), w(x, y, z)]

which now allows Maxima to demonstrate its knowledge of the “calculus chain rule”, which Maxima writes as:

(%i4) diff(g,x);
dg dw dg dv dg du

(%o4) -- -- + -- -- + -- --
dw dx dv dx du dx

Note how Maxima writes the “chain rule” in this example, which would be written (using partial derivative notation) in a
calculus text as

∂g(u,v,w)
∂x

=
∂g(u,v,w)

∂u
∂ u(x,y, z)

∂ x
+

∂g(u,v,w)
∂v

∂ v(x,y, z)
∂ x

+
∂g(u,v,w)

∂w
∂ w(x,y, z)

∂ x
(6.10)

In addition to using a depends statement to tell Maxima about the (x,y, z) dependence of (u,v,w) , we can use the
gradef function to replace derivatives with chosen substitutes.

(%i5) (gradef(u,x,dudx),gradef(u,y,dudy),gradef(u,z,dudz),
gradef(v,x,dvdx),gradef(v,y,dvdy),gradef(v,z,dvdz),
gradef(w,x,dwdx),gradef(w,y,dwdy),gradef(w,z,dwdz))$

Use of diff now produces the expression:

(%i6) diff(g,x);
dg dg dg

(%o6) dwdx -- + dvdx -- + dudx --
dw dv du

(%i7) grind(%)$
dwdx*’diff(g,w,1)+dvdx*’diff(g,v,1)+dudx*’diff(g,u,1)$

This is the method we will use in both this section on cylindrical coordinates and in the next section on spherical polar
coordinates.

In the following sections we discuss successive parts of a batch file cylinder.mac, available with this chapter on
the author’s webpage. This file is designed to be introduced into Maxima with the input: batch(cylinder) (if
cylinder.mac is in your work directory, say, and you have set up your file search paths as suggested in Ch. 1), or
batch("c:/work5/cylinder.mac") if you need to supply the complete path. We have given some orientation
concerning batch files in the previous section.

6 DIFFERENTIAL CALCULUS 42

Relating (x, y) to (ρ, ϕ)

In cylinder.mac we use rh to represent ρ and p to represent the angle ϕ expressed in radians. The ranges of the
independent variables are 0 < ρ < ∞, 0 ≤ ϕ ≤ 2π, and −∞ ≤ z ≤ +∞.

Here is the beginning of the batch file cylinder.mac. First is defined c3rule as a list of replacement “rules” in the
form of equations which can be used later by the subst function as described by c3sub. rhxy stands for an expression
which produces ρ given (x, y). To get automatic simplification of rh/abs(rh) we use the assume function.

" ------------ cylinder.mac ----------------------------"$
" cylindrical coordinates (rho, phi, z) = (rh, p, z) "$

" replacement rules x,y,z to rh, p, z "$

c3rule : [x = rh*cos(p), y = rh*sin(p)]$
c3sub(expr) := (subst(c3rule,expr),trigsimp(%%))$

rhxy : sqrt(xˆ2 + yˆ2)$

assume(rh > 0)$

which Maxima displays as:

(%i1) batch("cylinder.mac")$
read and interpret file: #pc:/work5/cylinder.mac
(%i2) ------------ cylinder.mac ----------------------------
(%i3) cylindrical coordinates (rho, phi, z) = (rh, p, z)
(%i4) replacement rules x,y,z to rh, p, z
(%i5) c3rule : [x = rh cos(p), y = rh sin(p)]
(%i6) c3sub(expr) := (subst(c3rule, expr), trigsimp(%%))

2 2
(%i7) rhxy : sqrt(y + x)
(%i8) assume(rh > 0)

Now that you have seen what Maxima does with a file introduced into Maxima via batch("cylinder.mac"),
we will stop displaying the contents of cylinder.mac but just show you Maxima’s response. You can look at
cylinder.mac with a text editor to compare input with output.

We next tell Maxima how to work with the cylindrical coordinates and their derivatives: We let the symbol drhdx, for
example, hold (for later use) ∂ ρ/∂ x.

(%i9) partial derivatives of rho and phi wrt x and y
(%i10) drhdx : (diff(rhxy, x), c3sub(%%))
(%o10) cos(p)
(%i11) drhdy : (diff(rhxy, y), c3sub(%%))
(%o11) sin(p)

y
(%i12) dpdx : (diff(atan(-), x), c3sub(%%))

x
sin(p)

(%o12) - ------
rh
y

(%i13) dpdy : (diff(atan(-), y), c3sub(%%))
x

cos(p)
(%o13) ------

rh

6 DIFFERENTIAL CALCULUS 43

We thus have established the derivatives
∂ρ(x, y)/∂x = cosϕ (6.11)

∂ρ(x, y)/∂y = sinϕ (6.12)

∂ϕ(x, y)/∂x = −sinϕ/ρ (6.13)

∂ϕ(x, y)/∂y = cosϕ/ρ (6.14)

The batch file has not used any depends or gradef assignments so far. What the batch file did could have been done
interactively, starting with the derivative of ρ with respect to x, say, as follows

(%i1) rhxy : sqrt(xˆ2 + yˆ2);
2 2

(%o1) sqrt(y + x)
(%i2) diff(rhxy,x);

x
(%o2) -------------

2 2
sqrt(y + x)

(%i3) subst([x=rh*cos(p),y=rh*sin(p)],%);
cos(p) rh

(%o3) -------------------------------
2 2 2 2

sqrt(sin (p) rh + cos (p) rh)
(%i4) trigsimp(%);

cos(p) rh
(%o4) ---------

abs(rh)
(%i5) assume(rh > 0)$
(%i6) ev (%o4);
(%o6) cos(p)

and if we had used assume(rh > 0) earlier, we would not have had to include the ev step later, as you can verify by
restarting Maxima or using kill(all) to redo the calculation.

Returning to the batch file, the necessary variable dependencies and the desired derivative replacements are assigned:

(%i14) tell Maxima rh=rh(x,y) and p = p(x,y)
(%i15) (gradef(rh, x, drhdx), gradef(rh, y, drhdy))
(%i16) (gradef(p, x, dpdx), gradef(p, y, dpdy))
(%i17) depends([rh, p], [x, y])

6.9.2 Laplacian ∇ 2 f(ρ, ϕ, z)

The Laplacian of a scalar function f depending on (x, y, z),is defined as

∇ 2 f(x, y, z) ≡ ∂ 2 f(x, y, z)
∂ x 2

+
∂ 2 f(x, y, z)

∂ y 2
+

∂ 2 f(x, y, z)
∂ z 2

(6.15)

The batch file now calculates the Laplacian of a scalar function f when the function depends explicitly on the cylindrical
coordinates (ρ, ϕ, z) and hence depends implicitly on (x, y) since ρ and ϕ each depend on (x, y). This latter dependence
has already been introduced via depends, together with an automatic derivative substitution via gradef.

6 DIFFERENTIAL CALCULUS 44

The batch file tells Maxima to treat f as an explicit function of rh, p, and z via depends(f,[rh,p,z]). At that
point, if the batch file had asked for the first derivative of f with respect to x, the response would be

(%i98) diff (f,x);
df
-- sin(p)

df dp
(%o98) --- cos(p) - ---------

drh rh

The cartesian form of the Laplacian of f can thus be expressed in terms of the fundamental set of derivatives ∂ ρ/∂ x,
etc., which have already been established above. The next section of cylinder.mac then produces the response:

(%i18) --
(%i19) Laplacian of a scalar function f
(%i20) --
(%i21) tell Maxima to treat scalar function f as an
(%i22) explicit function of (rh,p,z)
(%i23) depends(f, [rh, p, z])
(%o23) [f(rh, p, z)]
(%i24) calculate the Laplacian of the scalar function f(rh,p,z)
(%i25) using the cartesian definition
(%i26) (diff(f, z, 2) + diff(f, y, 2) + diff(f, x, 2), trigsimp(%%),

multthru(%%))
2

d f
df ---
--- 2 2 2
drh dp d f d f

(%o26) --- + --- + --- + ----
rh 2 2 2

rh dz drh
(%i27) grind(%)
’diff(f,rh,1)/rh+’diff(f,p,2)/rhˆ2+’diff(f,z,2)+’diff(f,rh,2)$

We then have the result:

∇ 2 f(ρ, ϕ, z) =
1
ρ

∂ f

∂ ρ
+

∂ 2 f

∂ ρ

2

+
1
ρ 2

∂ 2 f

∂ ϕ 2
+

∂ 2 f

∂ z2
(6.16)

The two terms involving derivatives with respect to ρ can be combined:

1
ρ

∂ f

∂ ρ
+

∂ 2 f

∂ ρ 2
=

1
ρ

∂

∂ ρ

(
ρ

∂ f

∂ρ

)
(6.17)

We clearly need to avoid points for which ρ = 0.

It is one thing to use Maxima to help derive the correct form of an operation like the Laplacian operator in cylindrical
coordinates, and another to build a usable function which can be used (without repeating a derivation each time!) to
calculate the Laplacian when we have some concrete function we are interested in.

The file vcalc.mac, available with this chapter on the author’s webpage, contains usable functions for the Laplacian,
gradient, divergence, and curl for the three coordinate systems: cartesian, cylindrical, and spherical polar.

However, here is a Maxima function specifically designed only for cylindrical coordinates which will calculate the Lapla-
cian of a scalar expression in cylindrical coordinates. No effort at simplification is made inside this function; the result
can be massaged by the alert user which Maxima always assumes is available. (Note: the Laplacian and other functions
in vcalc.mac start with the general expressions valid in any orthonormal coordinate system, using the appropriate
“scale factors” (h1,h2,h3), and some simplification is done. Also, the laplacian in vcalc.mac will correctly compute
the Laplacian of a vector field as well as a scalar field.)

6 DIFFERENTIAL CALCULUS 45

(%i1) cylaplacian(expr,rho,phi,z) :=
(diff(expr,rho)/rho + diff(expr,phi,2)/rhoˆ2 +

diff(expr,rho,2) + diff(expr,z,2))$

We can show that the combinations ρn cos(n ϕ) and ρ n sin(n ϕ) are each solutions of Laplace’s equation
∇2 u = 0.

(%i2) (cylaplacian(rhˆn*cos(n*p),rh,p,z), factor(%%));
(%o2) 0
(%i3) (cylaplacian(rhˆn*sin(n*p),rh,p,z), factor(%%));
(%o3) 0
(%i4) (cylaplacian(rhˆ(-n)*cos(n*p),rh,p,z), factor(%%));
(%o4) 0
(%i5) (cylaplacian(rhˆ(-n)*sin(n*p),rh,p,z), factor(%%));
(%o5) 0

Another general solution is ln(ρ):

(%i6) cylaplacian(log(rh),rh,p,z);
(%o6) 0

Here is another example of the use of this Maxima function. The expression u = (2/3) (ρ − 1/ρ) sin(ϕ) is proposed
as the solution to a problem defined by: (partial differential equation: pde) ∇2 u = 0 for 1 ≤ ρ ≤ 2, and (boundary
conditions: bc) u(1,ϕ) = 0, and u(2,ϕ) = sin(ϕ). Here we use Maxima to check the three required solution properties.

(%i7) u : 2*(rh - 1/rh)*sin(p)/3$
(%i8) (cylaplacian(u,rh,p,z), ratsimp(%%));
(%o8) 0
(%i9) [subst(rh=1,u),subst(rh=2,u)];
(%o9) [0, sin(p)]

6.9.3 Gradient ∇ f(ρ, ϕ, z)

There are several ways one can work with vector calculus problems. One method (not used here) is to use symbols for
a set of orthogonal unit vectors, and assume a set of properties for these unit vectors without connecting the set to any
specific list basis representation. One can then construct the dot product, the cross product and the derivative operations
in terms of the coefficients of these symbolic unit vectors (using ratcoeff, for example).

Alternatively (and used here), one can define 3-vectors in terms of three element lists, in which the first element of the list
contains the x axis component of the vector, the second element of the list contains the y axis component, and the third
element contains the z component.

This second method is less abstract and closer to the beginning student’s experience of vectors, and provides a straight-
forward path which can be used with any orthonormal coordinate system.

The unit vector along the x axis (x̂) is represented by xu = [1,0,0] (for “x - unit vector”), the unit vector along the
y axis (ŷ) is represented by yu = [0,1,0], and the unit vector along the z axis (ẑ) is represented by zu = [0,0,1].

Let’s return to the batch file cylinder.mac, where we define lcross(u,v) to calculate the vector cross product
u × v when we are using three element lists to represent vectors.

Note that our “orthonormality checks” use the built-in “dot product” of lists provided by the period . (which is also used for non-
commutative matrix multiplication). The dot product of two vectors represented by Maxima lists is obtained by placing a period
between the lists. We have checked that the cartesian vectors defined are “unit vectors” (the dot product yields unity) and are also
mutually orthogonal (ie., at right angles to each other) which is equivalent to the dot product of a pair of different unit vectors being
zero.

6 DIFFERENTIAL CALCULUS 46

This section of cylinder.mac begins with the code for lcross which looks like:

lcross(u,v) := (
(u[2]*v[3] - u[3]*v[2])*xu +
(u[3]*v[1] - u[1]*v[3])*yu +
(u[1]*v[2] - u[2]*v[1])*zu)$

Note, in the batch file output, using display2d:true (the default), how the list element numbers are displayed as
subscripts.

(%i28) --
(%i29) Unit Vectors
(%i30) --
(%i31) cross product rule when using lists for vectors
(%i32) lcross(u, v) := (u v - u v) zu + (u v - u v) yu

1 2 2 1 3 1 1 3
+ (u v - u v) xu

2 3 3 2
(%i33) cross product of parallel vectors is zero
(%i34) lcross([a, b, c], [n a, n b, n c])
(%o34) 0
(%i35) a function we can use with map
(%i36) apcr(ll) := apply(’lcross, ll)
(%i37) 3d cartesian unit vectors using lists
(%i38) (xu : [1, 0, 0], yu : [0, 1, 0], zu : [0, 0, 1])
(%i39) orthonormality checks on cartesian unit vectors
(%i40) [xu . xu, yu . yu, zu . zu, xu . yu, xu . zu, yu . zu]
(%o40) [1, 1, 1, 0, 0, 0]
(%i41) low tech check of cross products of cartesian unit vectors
(%i42) lcross(xu, yu) - zu
(%o42) [0, 0, 0]
(%i43) lcross(yu, zu) - xu
(%o43) [0, 0, 0]
(%i44) lcross(zu, xu) - yu
(%o44) [0, 0, 0]
(%i45) [lcross(xu, xu), lcross(yu, yu), lcross(zu, zu)]
(%o45) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i46) high tech checks of cross products of cartesian unit vectors
(%i47) map(’apcr, [[xu, yu], [yu, zu], [zu, xu]]) - [zu, xu, yu]
(%o47) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i48) map(’apcr, [[xu, xu], [yu, yu], [zu, zu]])
(%o48) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

Thus we have cartesian unit vector relations such as x̂ · x̂ = 1, and x̂ · ŷ = 0, and x̂ × ŷ = ẑ.

The unit vector ρ̂ along the direction of increasing ρ at the point (ρ, ϕ, z) is defined in terms of the cartesian unit vectors
x̂ and ŷ via

ρ̂ = x̂ cosϕ + ŷ sinϕ (6.18)

Because the direction of ρ̂ depends on ϕ, a more explicit notation would be ρ̂(ϕ), but following convention, we surpress
that dependence in the following.

The unit vector ϕ̂ along the direction of increasing ϕ at the point (ρ, ϕ, z) is

ϕ̂ = −x̂ sinϕ + ŷ cosϕ (6.19)

Again, because the direction of ϕ̂ depends on ϕ, a more explicit notation would be ϕ̂(ϕ), but following conventional use
we surpress that dependence in the following. We use the symbol rhu (“rh-unit-vec”) for ρ̂, and the symbol pu for ϕ̂.

6 DIFFERENTIAL CALCULUS 47

(%i49) cylindrical coordinate unit vectors rho-hat, phi-hat
(%i50) rhu : sin(p) yu + cos(p) xu
(%o50) [cos(p), sin(p), 0]
(%i51) pu : cos(p) yu - sin(p) xu
(%o51) [- sin(p), cos(p), 0]
(%i52) orthonormality checks on unit vectors
(%i53) ([rhu . rhu, pu . pu, zu . zu, rhu . pu, rhu . zu, pu . zu],

trigsimp(%%))
(%o53) [1, 1, 1, 0, 0, 0]
(%i54) low tech check of cross products
(%i55) (lcross(rhu, pu), trigsimp(%%)) - zu
(%o55) [0, 0, 0]
(%i56) (lcross(pu, zu), trigsimp(%%)) - rhu
(%o56) [0, 0, 0]
(%i57) (lcross(zu, rhu), trigsimp(%%)) - pu
(%o57) [0, 0, 0]
(%i58) [lcross(rhu, rhu), lcross(pu, pu)]
(%o58) [[0, 0, 0], [0, 0, 0]]
(%i59) high tech checks of cross products
(%i60) (map(’apcr, [[rhu, pu], [pu, zu], [zu, rhu]]), trigsimp(%%))

- [zu, rhu, pu]
(%o60) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i61) map(’apcr, [[rhu, rhu], [pu, pu]])
(%o61) [[0, 0, 0], [0, 0, 0]]

Thus we have cylindrical unit vector relations such as ρ̂ · ρ̂ = 1, ρ̂ · ϕ̂ = 0, and ρ̂ × ϕ̂ = ẑ.

The gradient of a scalar function f(x, y, z) is defined by

∇ f(x, y, z) = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(6.20)

For a scalar function f which depends explicitly on (ρ, ϕ, z) and hence implicitly on (x, y), we can use the relations al-
ready established in cylinder.mac to convert the cartesian expression of the gradient of f (called here fgradient)
into an expression in terms of derivatives with respect to (ρ, ϕ, z).

Returning to the output of cylinder.mac:

(%i62) --
(%i63) Gradient of a Scalar Function f
(%i64) --
(%i65) cartesian def. of gradient of scalar f
(%i66) fgradient : diff(f, z) zu + diff(f, y) yu + diff(f, x) xu

The ρ component of a vector A (at the point (ρ, ϕ, z)) is given by

Aρ = ρ̂ · A, (6.21)

and the ϕ component of a vector A at the point (ρ, ϕ, z) is given by

Aϕ = ϕ̂ · A. (6.22)

Our batch file follows this pattern to get the (ρ, ϕ, z) components of the vector ∇ f :

(%i67) rho, phi, and z components of grad(f)
(%i68) fgradient_rh : (rhu . fgradient, trigsimp(%%))

df
(%o68) ---

drh

6 DIFFERENTIAL CALCULUS 48

(%i69) fgradient_p : (pu . fgradient, trigsimp(%%))
df
--
dp

(%o69) --
rh

(%i70) fgradient_z : (zu . fgradient, trigsimp(%%))
df

(%o70) --
dz

Hence we have derived
∇ f(ρ, ϕ, z) = ρ̂

∂f

∂ρ
+ ϕ̂

1
ρ

∂f

∂ϕ
+ ẑ

∂f

∂z
. (6.23)

6.9.4 Divergence ∇ · B(ρ, ϕ, z)

In cartesian coordinates the divergence of a three dimensional vector field B(x, y, z) can be calculated with the equation

∇ · B(x, y, z) =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
(6.24)

Consider a vector field B(ρ, ϕ, z) which is an explicit function of the cylindrical coordinates ρ, ϕ, z) and hence an im-
plicit function of (x, y). We will use the symbol bvec to represent B(ρ, ϕ, z), and use the symbols bx, by, and bz to
represent the x, y, and z components of B(ρ, ϕ, z).

The ρ component (the component in the direction of increasing ρ with constant ϕ and constant z) of B(ρ, ϕ, z) at the
point (ρ, ϕ, z) is given by

Bρ(ρ, ϕ, z) = ρ̂ · B(ρ, ϕ, z). (6.25)

We use the symbol brh for Bρ(ρ, ϕ, z) . The component of B(ρ, ϕ, z) at the point (ρ, ϕ, z) in the direction of increasing
ϕ (with constant ρ and constant z) is given by the equation

Bϕ(ρ, ϕ, z) = ϕ̂ · B(ρ, ϕ, z). (6.26)

We use the symbol bp for Bϕ(ρ, ϕ, z). Returning to the output of cylinder.mac batch file:

(%i71) ---
(%i72) Divergence of a Vector bvec
(%i73) ---
(%i74) bvec : bz zu + by yu + bx xu
(%o74) [bx, by, bz]
(%i75) two equations which relate cylindrical components
(%i76) of bvec to the cartesian components
(%i77) eq1 : brh = rhu . bvec
(%o77) brh = by sin(p) + bx cos(p)
(%i78) eq2 : bp = pu . bvec
(%o78) bp = by cos(p) - bx sin(p)
(%i79) invert these equations
(%i80) sol : (linsolve([eq1, eq2], [bx, by]), trigsimp(%%))
(%o80) [bx = brh cos(p) - bp sin(p), by = brh sin(p) + bp cos(p)]
(%i81) [bx, by] : map(’rhs, sol)
(%i82) tell Maxima to treat cylindrical components as
(%i83) explicit functions of (rh,p,z)
(%i84) depends([brh, bp, bz], [rh, p, z])
(%o84) [brh(rh, p, z), bp(rh, p, z), bz(rh, p, z)]
(%i85) calculate the divergence of bvec
(%i86) bdivergence : (diff(bz, z) + diff(by, y) + diff(bx, x), trigsimp(%%),

multthru(%%))
dbp

brh dp dbz dbrh
(%o86) --- + --- + --- + ----

rh rh dz drh

6 DIFFERENTIAL CALCULUS 49

Hence we have derived the result:

∇ · B(ρ, ϕ, z) =
1
ρ

∂

∂ ρ
(ρBρ) +

1
ρ

∂

∂ ϕ
Bϕ +

∂ Bz

∂ z
, (6.27)

in which we have used the identity
1
ρ

∂

∂ ρ
(ρBρ) =

Bρ

ρ
+

∂

∂ ρ
Bρ (6.28)

6.9.5 Curl ∇ × B(ρ, ϕ, z)

In cartesian coordinates the curl of a three dimensional vector field B(x, y, z) can be calculated with the equation

∇ × B(x, y, z) = x̂
(

∂Bz

∂y
− ∂By

∂z

)
+ ŷ

(
∂Bx

∂z
− ∂Bz

∂x

)
+ ẑ

(
∂By

∂x
− ∂Bx

∂y

)
(6.29)

Remember that we have already bound the symbols bx and by to linear combinations of brh and bp, and have told
Maxima (using depends) to treat brh and bp as explicit functions of (rh,p,z). Hence our assignment of the symbol
bcurl in cylinder.mac will result in Maxima using the calculus chain rule. We can then extract the cylindrical
components of B by taking the dot product of the cylindrical unit vectors with B, just as we did to get the cylindrical
components of ∇f .

Returning to the output of cylinder.mac:

(%i87) --
(%i88) Cylindrical Components of Curl(bvec)
(%i89) --
(%i90) cartesian definition of curl(vec)
(%i91) bcurl : (diff(by, x) - diff(bx, y)) zu + (diff(bx, z) - diff(bz, x)) yu

+ (diff(bz, y) - diff(by, z)) xu
(%i92) find cylindrical components of curl(bvec)
(%i93) bcurl_rh : (rhu . bcurl, trigsimp(%%), multthru(%%))

dbz

dp dbp

(%o93) --- - ---
rh dz

(%i94) bcurl_p : (pu . bcurl, trigsimp(%%), multthru(%%))
dbrh dbz

(%o94) ---- - ---
dz drh

(%i95) bcurl_z : (zu . bcurl, trigsimp(%%), multthru(%%))
dbrh

dp bp dbp

(%o95) - ---- + -- + ---
rh rh drh

(%i96) ---

Hence we have derived

∇ × B(ρ, ϕ, z) = ρ̂

(
1
ρ

∂ Bz

∂ ϕ
− ∂ Bϕ

∂ z

)
+ ϕ̂

(
∂ Bρ

∂ z
− ∂ Bz

∂ ρ

)
+ ẑ

(
1
ρ

∂

∂ ρ
(ρBϕ)− 1

ρ

∂ Bρ

∂ ϕ

)
(6.30)

in which we have used
Bϕ

ρ
+

∂ Bφ

∂ ρ
=

1
ρ

∂

∂ ρ
(ρBϕ). (6.31)

6 DIFFERENTIAL CALCULUS 50

6.10 Maxima Derivation of Vector Calculus Formulas in Spherical Polar Coordinates

The batch file sphere.mac, available on the author’s webpage with this chapter, uses Maxima to apply the same
method we used in the previous section, but here we derive spherical polar coordinate expressions for the gradient,
divergence, curl and Laplacian. We will include less commentary in this section since the general approach is the same.

We consider a change of variable from cartesian coordinates (x, y, z) to spherical polar coordinates (r, θ, ϕ). Given
(r, θ, ϕ), we obtain (x, y, z) from the equations x = r sin θ cosϕ, y = r sin θ sinϕ, and z = r cos θ. Given (x, y, z),
we obtain (r, θ, ϕ) from the equations r =

√
x2 + y2 + z2, cos θ = z/

√
x2 + y2 + z2, and tanϕ = y/x.

In sphere.mac we use t to represent the angle θ and p to represent the angle ϕ (both expressed in radians). The ranges
of the independent variables are 0 < r < ∞, 0 < θ < π, and 0 ≤ ϕ < 2π.

We first define s3rule as a list of replacement “rules” in the form of equations which can be used later by the subst
function employed by s3sub. To get automatic simplification of r/abs(r) and sin(t)/abs(sin(t)we use the
assume function.

Here is the beginning of the sphere.mac batch file output when used with Maxima ver. 5.21.1:

(%i1) batch("sphere.mac")$
read and interpret file: #pc:/work5/sphere.mac
(%i2) ------------ sphere.mac ----------------------------
(%i3) spherical polar coordinates (r,theta,phi) = (r,t,p)
(%i4) replacement rules x,y,z to r,t,p
(%i5) s3rule : [x = r sin(t) cos(p), y = r sin(t) sin(p), z = r cos(t)]
(%i6) s3sub(expr) := (subst(s3rule, expr), trigsimp(%%))
(%i7) assume(r > 0, sin(t) > 0)

2 2 2
(%i8) rxyz : sqrt(z + y + x)
(%i9) partial derivatives of r, theta, and phi wrt x, y, and z
(%i10) drdx : (diff(rxyz, x), s3sub(%%))
(%o10) cos(p) sin(t)
(%i11) drdy : (diff(rxyz, y), s3sub(%%))
(%o11) sin(p) sin(t)
(%i12) drdz : (diff(rxyz, z), s3sub(%%))
(%o12) cos(t)

z
(%i13) dtdx : (diff(acos(----), x), s3sub(%%))

rxyz
cos(p) cos(t)

(%o13) -------------
r
z

(%i14) dtdy : (diff(acos(----), y), s3sub(%%))
rxyz

sin(p) cos(t)
(%o14) -------------

r
z

(%i15) dtdz : (diff(acos(----), z), s3sub(%%))
rxyz

sin(t)
(%o15) - ------

r
y

6 DIFFERENTIAL CALCULUS 51

(%i16) dpdx : (diff(atan(-), x), s3sub(%%))
x

sin(p)
(%o16) - --------

r sin(t)
y

(%i17) dpdy : (diff(atan(-), y), s3sub(%%))
x

cos(p)
(%o17) --------

r sin(t)
(%i18) tell Maxima r=r(x,y,z), t = t(x,y,z),
(%i19) and p = p(x,y)
(%i20) (gradef(r, x, drdx), gradef(r, y, drdy), gradef(r, z, drdz))
(%i21) (gradef(t, x, dtdx), gradef(t, y, dtdy), gradef(t, z, dtdz))
(%i22) (gradef(p, x, dpdx), gradef(p, y, dpdy))
(%i23) depends([r, t], [x, y, z])
(%i24) depends(p, [x, y])

The batch file next calculates the Laplacian of a scalar function f .

(%i25) --
(%i26) Laplacian of a scalar function f
(%i27) --
(%i28) tell Maxima to treat scalar function f as an
(%i29) explicit function of (r,t,p)
(%i30) depends(f, [r, t, p])
(%o30) [f(r, t, p)]
(%i31) calculate the Laplacian of the scalar function f(r,t,p)
(%i32) using the cartesian definition
(%i33) (diff(f, z, 2) + diff(f, y, 2) + diff(f, x, 2), trigsimp(%%),

scanmap(’multthru, %%))
2 2

d f d f
df --- df ---
-- cos(t) 2 2 -- 2 2
dt dp dr dt d f

(%o33) --------- + ---------- + ---- + --- + ---
2 2 2 r 2 2

r sin(t) r sin (t) r dr
(%i34) grind(%)
’diff(f,t,1)*cos(t)/(rˆ2*sin(t))+’diff(f,p,2)/(rˆ2*sin(t)ˆ2)+2*’diff(f,r,1)/r

+’diff(f,t,2)/rˆ2+’diff(f,r,2)$

Hence the form of the Laplacian of a scalar field in spherical polar coordinates:

∇2 f(r, θ, ϕ) =
1
r2

∂

∂ r

(
r2 ∂f

∂r

)
+

1
r2 sin θ

∂

∂ θ

(
sin θ

∂f

∂θ

)
+

1
r2 sin2 θ

∂ 2 f

∂ ϕ 2
(6.32)

in which we have used the identities
∂ 2f

∂ r2
+

2
r

∂f

∂ r
=

1
r2

∂

∂ r

(
r2 ∂f

∂ r

)
(6.33)

and
∂ 2f

∂ θ 2
+

cos θ

sin θ

∂f

∂ θ
=

1
sin θ

∂

∂ θ

(
sin θ

∂f

∂ θ

)
(6.34)

We need to avoid r = 0 and sin θ = 0. The latter condition means avoiding θ = 0 and θ = π.

6 DIFFERENTIAL CALCULUS 52

Gradient of a Scalar Field

Figure 20: r and θ unit vectors

The batch file sphere.mac introduces the cartesian and spherical polar unit vectors corresponding to the coordinates
(r, θ, ϕ). The unit vector ϕ̂ is the same as in cylindrical coordinates:

ϕ̂ = −x̂ sinϕ + ŷ cosϕ (6.35)

We can express r̂ and θ̂ in terms of the cylindrical ρ̂ and ẑ (from the figure above):

r̂ = ẑ cos θ + ρ̂ sin θ (6.36)

and
θ̂ = −ẑ sin θ + ρ̂ cos θ. (6.37)

Hence we have
r̂ = x̂ sin θ cosϕ + ŷ sin θ sinϕ + ẑ cos θ (6.38)

and
θ̂ = x̂ cos θ cosϕ + ŷ cos θ sinϕ− ẑ sin θ (6.39)

Maxima has already been told to treat f as an explicit function of (r,t,p) which we are using for (r, θ, ϕ). The vector
components of ∇f are isolated by using the dot product of the unit vectors with ∇f . For example,

(∇f)r = r̂ · ∇f (6.40)

(%i35) --
(%i36) Unit Vectors
(%i37) --
(%i38) cartesian unit vectors
(%i39) (xu : [1, 0, 0], yu : [0, 1, 0], zu : [0, 0, 1])
(%i40) spherical polar coordinate unit vectors
(%i41) ru : cos(t) zu + sin(t) sin(p) yu + sin(t) cos(p) xu
(%o41) [cos(p) sin(t), sin(p) sin(t), cos(t)]
(%i42) tu : - sin(t) zu + cos(t) sin(p) yu + cos(t) cos(p) xu
(%o42) [cos(p) cos(t), sin(p) cos(t), - sin(t)]
(%i43) pu : cos(p) yu - sin(p) xu
(%o43) [- sin(p), cos(p), 0]

6 DIFFERENTIAL CALCULUS 53

(%i44) --
(%i45) Gradient of a Scalar Function f
(%i46) --
(%i47) cartesian def. of gradient of scalar f
(%i48) fgradient : diff(f, z) zu + diff(f, y) yu + diff(f, x) xu
(%i49) r, theta, and phi components of grad(f)
(%i50) fgradient_r : (ru . fgradient, trigsimp(%%))

df
(%o50) --

dr
(%i51) fgradient_t : (tu . fgradient, trigsimp(%%))

df
--
dt

(%o51) --
r

(%i52) fgradient_p : (pu . fgradient, trigsimp(%%))
df
--
dp

(%o52) --------
r sin(t)

Thus we have the gradient of a scalar field in spherical polar coordinates:

∇ f(r, θ, ϕ) = r̂
∂f

∂r
+ θ̂

1
r

∂f

∂θ
+ ϕ̂

1
r sin θ

∂f

∂ϕ
(6.41)

Divergence of a Vector Field

The path here is the same as in the cylindrical case. For example, we define the spherical polar components of the vector
B via

Br = r̂ · B, Bθ = θ̂ · B, Bϕ = ϕ̂ · B. (6.42)

(%i53) ---
(%i54) Divergence of a Vector bvec
(%i55) ---
(%i56) bvec : bz zu + by yu + bx xu
(%o56) [bx, by, bz]
(%i57) three equations which relate spherical polar components
(%i58) of bvec to the cartesian components
(%i59) eq1 : br = ru . bvec
(%o59) br = by sin(p) sin(t) + bx cos(p) sin(t) + bz cos(t)
(%i60) eq2 : bt = tu . bvec
(%o60) bt = - bz sin(t) + by sin(p) cos(t) + bx cos(p) cos(t)
(%i61) eq3 : bp = pu . bvec
(%o61) bp = by cos(p) - bx sin(p)
(%i62) invert these equations
(%i63) sol : (linsolve([eq1, eq2, eq3], [bx, by, bz]), trigsimp(%%))
(%o63) [bx = br cos(p) sin(t) + bt cos(p) cos(t) - bp sin(p),
by = br sin(p) sin(t) + bt sin(p) cos(t) + bp cos(p),
bz = br cos(t) - bt sin(t)]
(%i64) [bx, by, bz] : map(’rhs, sol)
(%i65) tell Maxima to treat spherical polar components as
(%i66) explicit functions of (r,t,p)
(%i67) depends([br, bt, bp], [r, t, p])

6 DIFFERENTIAL CALCULUS 54

(%i68) divergence of bvec
(%i69) bdivergence : (diff(bz, z) + diff(by, y) + diff(bx, x), trigsimp(%%),

scanmap(’multthru, %%))
dbp dbt
--- ---

bt cos(t) dp dt 2 br dbr
(%o69) --------- + -------- + --- + ---- + ---

r sin(t) r sin(t) r r dr

Hence we have the spherical polar coordinate version of the divergence of a vector field:

∇ · B(r, θ, ϕ) =
1
r2

∂

∂ r

(
r2 Br

)
+

1
r sin θ

∂

∂ θ
(sin θ Bθ) +

1
r sin θ

∂ Bϕ

∂ ϕ
(6.43)

using the identities
2
r

Br +
∂ Br

∂ r
=

1
r2

∂

∂ r

(
r2 Br

)
(6.44)

and
cos θ

sin θ
Bθ +

∂ Bθ

∂ θ
=

1
sin θ

∂

∂ θ
(sin θ Bθ) (6.45)

Curl of a Vector Field

Again the path is essentially the same as in the cylindrical case:

(%i70) --
(%i71) Spherical Polar Components of Curl(bvec)
(%i72) --
(%i73) cartesian curl(bvec) definition
(%i74) bcurl : (diff(by, x) - diff(bx, y)) zu + (diff(bx, z) - diff(bz, x)) yu

+ (diff(bz, y) - diff(by, z)) xu
(%i75) spherical polar components of curl(bvec)
(%i76) bcurl_r : (ru . bcurl, trigsimp(%%), scanmap(’multthru, %%))

dbt dbp
--- ---

bp cos(t) dp dt
(%o76) --------- - -------- + ---

r sin(t) r sin(t) r
(%i77) bcurl_t : (tu . bcurl, trigsimp(%%), scanmap(’multthru, %%))

dbr

dp bp dbp

(%o77) -------- - -- - ---
r sin(t) r dr

(%i78) bcurl_p : (pu . bcurl, trigsimp(%%), scanmap(’multthru, %%))
dbr

bt dt dbt
(%o78) -- - --- + ---

r r dr
(%i79) ---

which produces the spherical polar coordinate version of the curl of a vector field:

(∇ × B)r =
1

r sin θ

[
∂

∂θ
(sin θ Bϕ)− ∂ Bθ

∂ ϕ

]
(6.46)

(∇ × B)θ =
1
r

[
1

sin θ

∂ Br

∂ϕ
− ∂

∂ r
(r Bϕ)

]
(6.47)

(∇ × B)ϕ =
1
r

[
∂

∂r
(r Bθ)− ∂ Br

∂ θ

]
(6.48)

in which we have used Eq.(6.45) with Bθ replaced by Bϕ and also Eq.(6.31) with ρ replaced by r.

