Maxima by Example:
Ch. 3, Ordinary Differential Equation Tools

Edwin L. Woollett
December 21, 2017

Contents

3.1 Solving Ordinary Differential Equations« .o . . 3

3.2 Solution of One First Order Ordinary Differential Egoat(ODE) 3
3.21 Summary Table e 3
3.2.2 Exact Solution witlkde2andicl 3
3.2.3 Exact Solution Usindesolve e 5
3.2.4 Numerical Solution and Plot wigilotdf, 6
3.2.5 Numerical Solution with 4th Order Runge-Kuttk: 7

3.3 Solution of One Second Order ODE or Two First Order ODE's... 9
3.3.1 SummaryTable e e 9
3.3.2 Exact Solution witlede2 ic2, andeliminate L oL 9
3.3.3 Exact Solution witldesolve, atvalueandeliminate 12
3.3.4 Numerical Solution and Plot wigilotdf 16
3.3.5 Numerical Solution with 4th Order Runge-Kuttk: 17

3.4 Examples of ODE Solutions e e e 19
3.4.1 Ex. 1. Fall in Gravity with Air Friction: Terminal Vetdty 19
3.4.2 Ex. 2:OneNonlinear First Order ODE u i 22
3.4.3 Ex. 3: One First Order ODE Whichis NotLinearinY’ 23
3.4.4 EX. 4: Linear Oscillator withDamping @ wu i i 24
3.4.5 Ex. 5: Underdamped Linear Oscillator with SinusoldaVving Force 28
3.4.6 EX. 6: Regular and Chaotic Motion of a Driven Dampech& &endulum 30
3.47 FreeOscillation Case e 31
3.4.8 DampedOscillation Case e e 32
3.4.9 Including a Sinusoidal Driving Torque e 33
3.4.10 Regular Motion Parameters Case i i i i i e e e e 33
3.4.11 Chaotic Motion Parameters Case. o it m e e 37

3.5 Usingcontrib_odefor ODE’'S e e e e 43

*This version useBlaxima 5.18.1 Check http://www.csulb.edu/ ~woollett/ for the latest version of these notes. Send comments

and suggestions twoollett@charter.net

Preface

COPYING AND DISTRIBUTION POLICY

This document is part of a series of notes titled

"Maxima by Example" and is made available

via the author's webpage http://www.csulb.edu/"woollett /
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them

to others as long as you charge no more than the costs of printi ng.
These notes (with some modifications) will be published in b ook form
eventually via Lulu.com in an arrangement which will contin ue

to allow unlimited free download of the pdf files as well as th e option

of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notbscome more helpful to new users of Maximall
comments and suggestions for improvements will be appgestend carefully considered

LOADING FILES

The defaults allow you to use the brief version load(fft) to | oad in the
Maxima file fft.lisp.

To load in your own file, such as gxxx.mac

using the brief version load(gxxx), you either need to place

gxxx.mac in one of the folders Maxima searches by default, or

else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"] file_search_maxima)$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quote S,
as in load("c:/work2/gxxx.mac"),

We always use the brief load version in our examples, which ar e generated
using the XMaxima graphics interface on a Windows XP compute r, and copied
into a fancy verbatim environment in a latex file which uses t he fancyvrb

and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra Syste m. Version 5.18.1
(2009). http://maxima.sourceforge.net/

The homemade functidii(x) (first, last, length) is used to return the first and last eleef lists (as well as the length), and is
automatically loaded in witmbeZluti.mac from Ch. 1. We will include a reference to this definition wheorking with lists.

This function has the definitions

flix) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxinid&lp manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html

The author would like to thank the Maxima developers forrtfrggndly help via the Maxima mailing list.

3.1 Solving Ordinary Differential Equations

3.2 Solution of One First Order Ordinary Differential Equat ion (ODE)
3.2.1 Summary Table

ode2 andicl
gsoln : ode2 (de, u, t);
where de involves ’diff(u,t).
psoln : icl (gsoln, t = t0, u = u0);
desolve
gsoln : desolve(de, u(t));
where de includes the equal sign (=)
and ’diff(u(t),t) and possibly u(t).
psoln : ratsubst(uOval,u(o),gsoln)
plotdf
plotdf (dudt, [t,u], [trajectory_at, tO, uO],
[direction,forward], [t, tmin, tmax],
[u, umin, umax])$
rk
points : rk (dudt, u, u0, [t, tO, tlast, dt])$
where dudt is a function of t and u which
determines diff(u,t).

Table 1: Methods for One First Order ODE

We will use these four different methods to solve the firseotdinary differential equation

d
d—‘tl —ettu (3.1)

subject to the condition that wheén= 2, u = —0.1.

3.2.2 Exact Solution with ode2 and icl

Most ordinary differential equations have no known exadttimn (or the exact solution is a complicated expression
involving many terms with special functions) and one noflynakes approximate methods. However, some ordinary

differential equations have simple exact solutions, andynwd these can be found usimgle2 desolve or contrib _ode
The manual has the following information abaate?2

Function:ode2 (eqn, dvar, ivar)

The functionode2 solves an ordinary differential equation (ODE)fokt or second order It takes three
arguments: an ODE given kggn, the dependent variablivar, and the independent variakilear. When
successful, it returns either an explicit or implicit sadutfor the dependent variabl@ocis used to represent
the integration constant in the case of first-order equatiand%k1 and%k2the constants for second-order
equations. The dependence of the dependent variable omdieandent variable does not have to be written
explicitly, as in the case afesolve but the independent variable must always be given as trebdigument.

If the differential equation has the structureft(dudt,u,t) = Right(dudt,u,t) (hereu is the dependent variable ahis
the independent variable), we can always rewrite thatrdifféal equation ade = Left(dudt,u,t) - Right(dudt,u,t) = 0,
orde=0Q

We can use the syntaxde2(de,u,t) with the first argument an expression which includes davies, instead of the com-
plete equation including the= 0" on the end, andde2will assume we meade = Ofor the differential equation. (Of
course you can also usele2 (de=0, u, t)

We rewrite our example linear first order differential egotEqg. 3.1 in the way just described, using tieun form
'diff , which uses a single quote. We then ose2 and call the general solutiggsoln

(%il) de : ’diff(u,t)- u - exp(-t);
du -t
(%01) - - u - %e
dt
(%i2) gsoln : ode2(de,u,t);
-2t
%e t
(%02) u = (%c - --—--—---) %e
2

The general solution returned byge2contains one constant of integratigst, and is an explicit solution fan as a func-
tion of t, although the above does not bind the symbhol

We next find the particular solution which héis= 2, u = —0.1 usingicl, and call this particular solutiopsoln. We
then check the returned solution in two ways: 1. does itfyatie conditions given tic1?, and 2. does it produce a zero
value for our expressiode?

(%i3) psoln : icl(gsoln,t = 2, u = -0.1) ratprint:false;
-t-4 2 2t 4
%e ((%e - 5) %e + 5 %e)
(%03) us= -
10

(%i4) rhs(psoln),t=2,ratsimp;

1
(%04) - -

10
(%i5) de,psoln,diff,ratsimp;
(%05) 0

Both tests are passed by this particular solution. We canmalte a quick plot of this solution usirgiot2d.

(%i6) us : rhs(psoln);
-t-4 2 2t 4
%e ((%e - 5) %e + 5 %e)

(%06)
10
(%i7) plot2d(us,[t,0,7],
[style,[lines,5]],[ylabel,” "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u$

which looks like

sl

-15 |
2t

25t

0 1 2 3 4 5 6 7
t0 =2, u0 =-0.1, du/dt = exp(-t) + u

Figure 1: Solution for whickt = 2, u = —0.1

3.2.3 Exact Solution Using desolve

desolveuses Laplace transform methods to find an exact solutione &ble to uselesolve we need to write our example
differential equation Eq.3.1 in a more explicit form, witheeyu -> u(t) , and include the sign in the definition of
the differential equation.

(%i1) eqn : 'diff(u(t),t) - exp(-t) - u() = O;
d

(%01) - (u() - u() - %e =0
dt
(%i2) gsoln : desolve(egn,u(t));
t -t
(2 u(0) + 1) %e %e
(%02) U(t) = e - e
2 2
(%i3) eqn,gsoln,diff,ratsimp;
(%03) 0=0
(%i4) bc : subst (t=2, rhs(gsoln)) = - 0.1;
2 -2
%e (2 u(0) + 1) %e
(%04) s - ———- = - 011
2 2
(%i5) solve (eliminate ([gsoln, bc],[u(0)]), u(t)),ratpr int:false;
-t t-2 t-4
- 5 %e - %e + 5 %e
(%05) fut) =]
10
(%i6) us : rhs(%[1]);
-t t-2 t-4
- 5 %e - %e + 5 %e

(%06)

10

(%i7) us, t=2, ratsimp;

(%07)
10
(%i8) plot2d(us,[t,0,7],
[style,[lines,5]],[ylabel,” "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u$

and we get the same plot as before. The functiesolvereturns a solution in terms of the “initial value{0) , which
here meang(t = 0) ,and we must go through an extra step to eliming@® in a way that assures our chosen bound-
ary conditiont = 2, u - -0.1 is satisfied.

We have checked that the general solution satisfies the giiffsmential equation ir#6i3, and have checked that our
particular solution satisfies the desired conditioh a 2 in %i7.

If your problem requires that the value of the solutios be specified at = 0 , the route to the particular solution is
much simpler than what we used above. You simplysugest (u(0) = -1, rhs (gsoln)) if, for example,
you wanted a particular solution to have the property thagmwth= 0 ,u = -1 .

(%i9) us : subst(u(0) = -1,rhs(gsoln)),ratsimp;
-t 2t
%e (%e + 1)

(%09) - mmmmemmeeeeeee-
2

(%i10) us,t=0,ratsimp;

(%010) -1

3.2.4 Numerical Solution and Plot with plotdf

We next uselotdf to numerically integrate the given first order ordinary eliéintial equation, draw a direction field plot
which governs any particular solution, and draw the paldicsolution we have chosen.

The default color choice oplotdf is to use small blue arrows give the local direction of théetrmry of the partic-
ular solution passing though that point. This direction bandefined by an angle such that ifu’ = f(t, u), then
tan(a) = f(t,u), and at the poinfto, ug),

d
du = f(to,up) x dt = dt x <—“> (3.2)
dt t=to, u=ug

This equation determines the increale in the value of the dependent variabléenduced by a small increaskt in the
independent variableat the pointtg, ug). We then define a local vector witltcomponentl t andu componentd u, and
draw a small arrow in that direction at a grid of chosen pdiatsonstruct a direction field associated with the given first
order differential equation. The length of the small arr@m be increased some to reflect large values of the magnitude
of du/dt.

For one first order ordinary differential equatigniotdf, has the syntax

plotdf(dudt,[t,u], [trajectory_at, tO, uO], options ...)

in whichdudt is the function ofit,u) which determines the rate of chande/d t.

(%il) plotdf(exp(-t) + u, [t, u], [trajectory_at,2,-0.1],
[direction,forward], [t,0,7], [u, -6, 1])$

produces the plot

r'd
v
e
©

— — — e e e
— — — — — — e e
— — — — — — e e
— e — — — — e e »
— — — e — — e e »
— — — — — — e e »
e — — — — — e e »
e e — e e e e »
e — — e — e e e »
— — — e — — e e »
— — — e — — e e »
— — — — — — i
— — — — —

Rl — — — & e

N
w.
IS
w
o
~

t
Figure 2: Direction Field for the Solutioh= 2, u = —0.1

(We have thickened the red curve using @anfig, Linewidth menu option oplotdf, followed byReplot).

The help manual has an extensive discussion and examples o$¢ of the direction field plot utilitglotdf.

3.2.5 Numerical Solution with 4th Order Runge-Kutta: rk

Although theplotdf function is useful for orientation about the shapes andsydesolutions possible, if you need a list
with coordinate points to use for other purposes, you carheséurth order Runge-Kutta functiok .

For one first order ordinary differential equation, the ayrttas some faint resemblance to thaplotdf:

rk (dudt, u, uO, [t, tO, tlast, dt])

in which we are assuming thatis the dependent variable ahd the independent variable, adddt is that function of
(t, u) which locally determines the value dfu/d t. This will numerically integrate the corresponding firster ordinary
differential equation and return a list of pairs(bfu) on the solution curve which has been requested:

[[tO, uQ], [tO + dt, y(t0 + dt)], ,[tlast, y(tlast)]]

For our example first order ordinary differential equationgosing the same initial conditions as above, and choosing
dt = 0.01 ,

(%il1) fpprintprec:8$
(%i2) points : rk (exp(-t) + u, u, -0.1, [t, 2, 7, 0.01])$
(%i3) %, fl;
(%03) [[2, - 0.1], [7.0, - 4.7990034], 501]
(%i4) plot2d([discrete, points], [t, 0, 7],
[style,[lines,5]],[ylabel,” "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u$

(We have used our homemade functitdfx) , loaded in at startup with the other functions definechime Lutil.mac
available with the Ch. 1 material. We have provided the diédimiof fll in the preface of this chapter. Instead of
%, fll ; ,you could usg%][1],last(%),length(%o)]; to get the same information.)

The plot looks like

-05

-1.5 ¢

-25 r

-35 +

A5 -

2 3 4 5 6 7
t0 =2, u0 =-0.1, du/dt = exp(-t) +u

Figure 3: Runge-Kutta Solution with= 2, u = —0.1

3.3 Solution of One Second Order ODE or Two First Order ODE'’s
3.3.1 Summary Table

ode2 and icl
gsoln : ode2 (de, u, t); where de involves 'diff(u,t,2)
and possibly 'diff(u,t).
psoln : ic2 (gsoln, t = t0, u = u0, ’diff(u,t) = up0);
desolve
atvalue (’diff(u,t), t = 0, v(0));
gsoln : desolve(de, u(t));

where de includes the equal sign (=), 'diff(u(t),t,2),

and possibly ’'diff(u(t),t) and u(t).
One type of particular solution is returned by using

psoln : subst([u(o) = u0, v(0) = v0] , gsoln)
plotdf
plotdf ([dudt, dvdt], [u, V], [trajectory_at, uO, v0],
[u, umin, umax],[v, vmin, vmax], [tinitial, tO],
[direction,forward], [versus_t, 1],[tstep, timestepval],
[nsteps, nstepsvalue])$
rk
points : rk ([dudt, dvdt],[u, v],[u0, vO],[t, tO, tlast, di])$
where dudt and dvdt are functions of t,u, and v which
determine diff(u,t) and diff(v,t).

Table 2: Methods for One Second Order or Two First Order ODE’s

We apply the above four methods to the simple second ordarasyddifferential equation:
d?u
dt?

subject to the conditions that whén= 2, u =1 anddu/dt = 0.

—4u (3.3)

3.3.2 Exact Solution with ode2, ic2, and eliminate

The main difference here is the useic rather tharicl.

(%il) de : 'diff(u,t,2) - 4 *U;

2

du
(%01) — -4u

2

dt
(%i2) gsoln : ode2(de,u,t);

2t -2t
(%02) u = %kl %e + %k2 %e
(%i3) de,gsoln,diff,ratsimp;
(%03) 0

10

(%i4) psoln : ic2(gsoln,t=2,u=1,'diff(u,t) = 0);

2t-4 4 -2t
%e %e
(%04) (T —— I
2 2
(%i5) us : rhs(psoln);
2t-4 4 -2t
%e %e
(%05) e e
2 2

(%i6) us, t=2, ratsimp;
(%06) 1
(%i7) plot2d(us,[t,0,4],[y,0,10],
[style,[lines,5]],[ylabel,” "],
[xlabel,” U versus t, U”(t) = 4 Ut), UR) =1, U@ =0 "%
plot2d: expression evaluates to non-numeric value somewhe re in plotting range.

which produces the plot

10

0 0.5 1 1.5 2 2.5 3 35 4
U versus t, U"(t) = 4 U(t), U(2) = 1, U'(2) = 0

Figure 4: Solution for which =2, u=1, ' =0

Next we make a “phase space plot” which is a plotcf d u/d t versusu over the rangd <t < 3.

(%i8) vs : diff(us,t),ratsimp;
-2t-4 4t 8
(%08) %e (Yoe - %e)
(%i9) for i thru 3 do
d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i10) plot2d([[parametric,us,vs,[t,1,3]],d[1],d[2], d[3j] 1,
[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],
[ylabel,” "],[xlabel," ",
[legend,” du/dt vs u "" t =1 ""t =2""t = 3")$

11

which produces the plot

du/dtvs u
L t=1 @
10 t=2 @
t=3 @
5,
0
5+
-10
0 1 2 3 4 5 6 7 8

Figure 5:t = 2, y = 1, y’ = 0 Solution

If your boundary conditions are, instead, t&0, u = 1 , and fort = 2, u = 4 , then one can eliminate the

two constants “by hand” instead of usiit@ (see also next section).

(%i4) bcl : subst(t=0,rhs(gsoln)) = 1$
(%i5) bc2 : subst(t = 2, rhs(gsoln)) = 4%
(%i6) solve(
eliminate([gsoln,bc1,bc2],[%k1,%k2]), u),
ratsimp, ratprint:false;

-2t 4 4t 8 4
%e (4 %e - 1) %e + %e - 4 %e)
(%06) [u=]
8
%e -1
(%i7) us : rhs(%][1]);
-2t 4 4t 8 4
%e (4 %e - 1) %e + %e - 4 %e)
(%07)
8
%e -1

(%i8) us,t=0,ratsimp;
(%08) 1
(%i9) us,t=2,ratsimp;
(%09) 4

12

3.3.3 Exact Solution with desolve, atvalue, and eliminate

The functiondesolveuses Laplace transform methods which are set up to expeasthef initial values for dependent
variables and their derivatives. (However, we will show hagw can impose more general boundary conditions.) If the
dependent variable ig(t) , for example, the solution is returned in terms of a conatéd} , which refers to the value
ofu(t = 0) (here we are assuming that the independent variahlg i$o get a simple result frordesolvewhich we
can work with (for the case of a second order ordinary difided equation), we can use tlavalue function with the
syntax (for example):

atvalue ('diff(u,t), t = 0, v(0))

which will allow desolveto return the solution to a second order ODE in terms of thegf@ionstantg u(0), v(0))
Of course, there is nothing sacred about using the syr(! here. The functioratvalue should be invoked before the
use ofdesolve

If the desired boundary conditions for a particular solutiefer tot = 0 , then you can immediately find that particular
solution using the syntax (ifg is the general solution, say)

us : subst([u(0) = uOval, v(0) = vOval], ug),

or else by usingatsubst twice.

In our present example, the desired boundary conditiors tef t = 2 , and impose conditions on the valuewénd
its first derivative at that value df. This requires a little more work, and we uskéminate to get rid of the constants

(u(0), v(0)) in a way that allows our desired conditions to be satisfied.
(%il) eqgn : 'diff(u(t)t,2) - 4 *u(t) = 0;

OI2
(%01) — (u(t)) - 4 u) =0

dt ’

(%i2) atvalue ('diff(u(t),t), t=0, v(0))$
(%i3) gsoln : desolve(eqgn,u(t));

2t -2t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%03) ut) =
4 4

(%i4) eqn,gsoln,diff,ratsimp;

(%04) 0=0

(%i5) ug : rhs(gsoln);

(v(0) + 2 u(0)) %e v(0) - 2 u(0)) %e

(%05)
4 4
(%i6) vg : diff(ug,t),ratsimp$
(%i7) ubc : subst(t = 2,ug) = 1$
(%i8) vbc : subst(t = 2,vg) = 0$
(%i9) solve (
eliminate([gsoln, ubc, vbc],[u(0), v(0)]), u(t)),
ratsimp,ratprint:false;
-2t-4 4t 8
%e (Yoe + %e)
(%09) [ut) =]
2

13

(%i10) us : rhs(%[1]);
-2t-4 4t 8

%e (%oe + %e)

(%010)

(%ill) subst(t=2, us),ratsimp;
(%011) 1
(%i12) vs : diff(us,t),ratsimp;

-2t-4 4t 8
(%012) %e (Yoe - %e)
(%i13) subst(t = 2,vs),ratsimp;
(%013) 0

(%i14) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel,” "],

[xlabel,” U versus t, U”(t) = 4 Ut), UR) =1, U@ =0 "%
plot2d: expression evaluates to non-numeric value somewhe re in plotting range.
(%il15) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i16) plot2d([[parametric,us,vs,[t,1,3]],d[1],d[2], d[3j] 1,
[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],
[ylabel,” "],[xlabel," ",
[legend,” du/dt vs u "" t =1 ""t = 2""t = 3")$

which generates the same plots found withdde2method above.

If the desired boundary conditions are thahave given values @t = 0 andt = 3, then we can proceed from the
same general solution above as follows wifh being a partially defined particular solution (assuaf@) = 1 and
u@) = 2).

(%i17) up : subst(u(0) = 1, ug);

2t -2t
(v(0) + 2) %e (v(0) - 2) %e
(%017) -
4 4
(%i18) ubc : subst (t=3, up) = 2;
6 -6
%e (v(0) + 2) %e (v(0) - 2)
(%018) - =2
4 4

(%i19) solve(
eliminate ([u(t) = up, ubc 1,[v(0)]), u(t)),
ratsimp, ratprint:false;

-2t 6 4t 12 6
%e ((2 %e - 1) %e + %e - 2 %e)
(%019) [u(t) = -]
12
%e -1
(%i20) us : rhs (%[1]);
-2t 6 4t 12 6
%e (2 %e - 1) %e + %e - 2 %e)
(%020)
12
%e -1

(%i21) subst(t = 0, us),ratsimp;
(%021) 1
(%i22) subst (t = 3, us),ratsimp;
(%022) 2

14

(%i23) plot2d(us,[t,0,4],[y,0,10],
[style,[lines,5]],[ylabel,” "],
[xlabel,” U versus t, U"(t) = 4 U(t), UO) = 1, UB) = 2 "\$
plot2d: expression evaluates to non-numeric value somewhe re in plotting range.

which produces the plot

10

T~

0 0.5 1 1.5 2 2.5 3 35 4
U versus t, U”(t) = 4 U(t), U(0) = 1, U(3) = 2

Figure 6: Solution fo(0) = 1, u(3) =2

If instead, you need to satisty(1) = -1 andu(3) = 2 , you could proceed frorgsoln andug as follows:

(%i24) ubcl : subst (t=1, ug) = -1$

(%i25) ubc2 : subst (t=3, ug) = 2%

(%i26) solve(
eliminate ([gsoln, ubcl, ubc2],[u(0),v(0)]), u(t)),
ratsimp, ratprint:false;

-2t 4 4t 12 8
%e (2 %e + 1) %e - %e -2 %e)
(%026) [utt) = -]
10 2
%e - %e
(%i27) us : rhs(%[1]);
-2t 4 4t 12 8
%e (2 e + 1) %e - %e -2 %e)
(%027)
10 2
%e - %e
(%i28) subst (t=1, us), ratsimp;
(%028) -1
(%i29) subst (t=3, us), ratsimp;
(%029) 2

(%i30) plot2d (us, [t,0,4], [y,-2,8],
[style,[lines,5]],[ylabel,” ",
[xlabel,” U versus t, U”(t) = 4 U(), U1) = -1, UEB) = 2 ")$

15

which produces the plot

0 0.5 1 15 2 25 3 35 4
Uversust, U"(t) =4 U(t), U(1) =-1,URB) =2

Figure 7: Solution fou(1) = -1, u(3) =2

The simplest case of usirdgsolveis the case in which you impose conditions on the solutionitnfirst derivative at
t = 0, inwhich case you simply use:

(%i4) psoln : subst([u(0) = 1,v(0)=0],gsoln);
2t -2t
%e %e
(%04) u) = ----- S
2 2
(%i5) us : rhs(psoln);
2t -2t
%e %e
(%05 e I
2 2

in which we have chosen the initial condition) = 1 ,andv(0) = 0 .

16

3.3.4 Numerical Solution and Plot with plotdf

Given a second order autonomous ODE, one needs to introckemad dependent variahlé) , say, which is defined
as the first derivative of the original single dependentaldau(t) . Then for our example, the starting ODE

is converted into two first order ODE’s
du dv 4 (3.5)
dat _ dt ¢ '
and theplotdf syntax for two first order ODE’s is
plotdf ([dudt, dvdt], [u, V], [trajectory_at, uO, vO], [u, u min, umax],

[v, vmin, vmax], [tinitial, t0], [versus_t, 1],
[tstep, timestepval], [nsteps, nstepsvalue])$

in which att = t0 ,u = u0 andv = vO. If tO = 0 you can omit the optiofftinitial, tO] . The options
[u, umin, umax] and[v, vmin, vmax] allow you to control the horizontal and vertical extent o¢ tbhase
space plot (herg versusu) which will be produced. The optiofversus_t,1] tells plotdf to create a separate plot

of bothu andv versus the dependent variable. The last two options areradgled if you are not satisfied with the plots
and want to experiment with other than the default valudstep andnsteps .

Another option you can add [direction,forward] , which will display the trajectory fot greater than or equal
to t0 , rather than for a default interval around the vaidiewhich corresponds t@irection,both]
Here we invokeplotdf for our example.

(%il) plotdf ([v, 4 *u], [u, v], [trajectory_at, 1, 0],
[u, 0, 8], [v, -10, 10], [versus_t, 1],
[tinitial, 2])$

The plot versus is

Figure 8: u(t) and u'(t) vst for u(2) =1, u'(2) =0

and the phase space plotis

NN
//'/'//»__._,\\\\\\
//'/'/'/v__>_,\\\\\\

— e —

S

i

!
/
/
/
e

e
o
~

Figure 9: u'(t) vs. u(t) foru(2) =1, v/(2) =0

17

In both of these plots we used t®nfig menu to increase the linewidth, and then clickedRaplot . We also cut and
pasted the colared to be the second choice on the color cycle (instead of gresd im the plot versus the independent
variablet . Note that no matter what you call your independent varjableill always be calledt on the plot of the

dependent variables versus the independent variable.

3.3.5 Numerical Solution with 4th Order Runge-Kutta: rk

To use the fourth order Runge-Kutta numerical integratofor this example, we need to follow the procedure used in
the previous section usirgotdf, converting the second order ODE to a pair of first order ODE'’s

The syntax for two first order ODE’s with dependent varialjles]

and independent variabteis

rk ([dudt, dvdt], [u,v], [uO,vO], [t, tO, tmax, dt])

which will produce the list of lists:

[[tO, uO,v0],[tO+dt, u(tO+dt),v(t0+dt)], ..., [tmax, u(t

max),v(tmax)]]

For our example, following our discussion in the previougtisa with plotdf, we use

~u], [u, v], [1, O], [t, 2, 3.6, 0.01])

points : rk ([v, 4

We again use the homemade functitin (see the preface) to look at the first element, the last eleraed the length

of various lists.

(%il1) fpprintprec:8$
(%i2) points : rk([v,4
(%i3) %, fll;

(%03) [[2, 1, O], [3.6, 12.286646, 24.491768], 161]
(%i4) uL : makelist([points[i][1],points][i][2]].i,1,le

(%i5) %, fll;
[[2, 1], [3.6, 12.286646], 161]

*u],[u,v],[1,0],[t,2,3.6,0.01])$

ngth(points))$

(%05)

18

(%i7) %, fl;
(%07)

(%i6) vL : makelist([points[i][1],points[i][3]]i,1,le

[[2, 0], [3.6, 24.491768], 161]

(%i8) plot2d([[discrete,uL],[discrete,vL]],[x,1,5],
[style,[lines,5]],[y,-1,24],[ylabel," "],
[xlabel,"t"],[legend,"u(t)","v(t)")$

ngth(points))$

which produces the plot

Next we make a phase space plot/ofersusu from the result of the Runge-Kutta integration.

20 -

15 -

10 -

u(f)
v(t)

Figure 10: Runge-Kutta fon(2) =1, u/(2) =0

35 4

4.5

(%i9) uvL : makelist([points[i][2],points[i][3]],i,1,! ength(points))$
(%i10) %, fll;
(%010) [[1, O], [12.286646, 24.491768], 161]
(%i1l1) plot2d([[discrete,uvL]],[x,0,13],[y,-1,25],
[style,[lines,5]],[ylabel,” "],
[xlabel," v vs. u "]$
which produces the phase space plot
25
20 +
15
10
5l
0 L L
0 2 4 8 10

Figure 11: R-K Phase Space Plot fof2) = 1, u'(2) =0

19

3.4 Examples of ODE Solutions
3.4.1 Ex. 1: Fall in Gravity with Air Friction: Terminal Velo city
Let’s explore a problem posed by Patrick T. Tam (A Physigi€tuide to Mathematica, Academic Press, 1997, page 349).

A small body falls downward with an initial velocityy from a heighth near the surface of the earth. For
low velocities (less than abo@4 m/s), the effect of air resistance may be approximated by aidriet
force proportional to the velocity. Find the displacememd gelocity of the body, and determine the terminal
velocity. Plot the speed as a function of time for severaiahvelocities.

The net vector forc&' acting on the object is thus assumed to be the (constan® @drgravity and the (variable) force
due to air friction, which is in a direction opposite to theeadition of the velocity vectov. We can then write Newton’s

Law of motion in the form J
A%
F = —bv=m— 3.6
meg v=m_ (3.6)
In this vector equatiomn is the mass in kg.g is a vector pointing downward with magnitude andb is a positive
constant which depends on the size and shape of the objecnaiing viscosity of the air. The velocity vecterpoints

down during the fall.

If we choose the axis positive downward, with the poigt= 0 the launch point, then the ngicomponents of the force

and Newton'’s Law of motion are: J
Uy

m _

dt
whereg is the positive numbe.8 m /s% and since the velocity componeny > 0 during the fall, the effects of gravity
and air resistance are in competition.

Fy=mg—bv, = (3.7)

We see that the rate of change of velocity will become zerbairstant thain g — bv, = 0, orv, = mg/b, and the
downward velocity stops increasing at that moment, teariinal velocity” having been attained.

While working with Maxima, we can simplify our notation aretb, — v and(b/m) — a so bothv anda represent
positive numbers. We then use Maxima to solve the equatiohlt = g — av. The dimension of each term of this
equation must evidently be the dimensiorvgt, soa has dimension /t.

(%il) de : 'diff(v,t) - g + a *V;
dv
(%01) - +av-g
dt
(%i2) gsoln : ode2(de,v,t);
at
at g %e
(%02) v = %e (------- + %ocC)
a
(%i3) de, gsoln, diff,ratsimp;
(%03) 0

We then usécl to get a solution such that= v0 whent = 0.

(%i4) psoln : expand (icl (gsolnt = 0, v = vO));
at
-at g %e g
(%04) v = %e |7/ JECTEE—— + -
a a
(%i5) vs : rhs(psoln);
at
at g %e g
(%05) %e 1Yo [— + -
a a

For consistency, we must get the corregininal speedfor larget:

20

(%i6) assume(a>0)$
(%i7) limit(vs, t, inf);

(%07) -

which agrees with our analysis.

To make some plots, we can introduce a dimensionlessiméh the replacement — u = at, and a dimensionless

speedw with the replacement — w = av/g.

(%i8) expand(vs *alg);

-at
a %e vO -at
(%08) e - %e + 1
g
(%i9) %,[t=u/a,v0=w0 *g/a];
-u - u
(%09) %e w0 - %e +1

(%i10) ws : collectterms (%, exp (-u));
-u
(%010) %e wo - 1) +1

As our dimensionless time gets largews — 1, which is the value of the terminal speed in dimensionless.un

Let's now plot three cases, two cases with initial speed tless terminal speed and one case with initial speed greater
than the terminal speed. (The use of dimensionless unifgdts generates what are called “universal curves”, sineg t

are generally valid, no matter what the actual numbers are).

subst(w0=1.5,ws)],[u,0,5],[y,0,2],
[style,[lines,2,7],[lines,4,1],[lines,4,2],[lines,4
[legend,"terminal speed”, "wO = 0", "wO0 = 0.6", "wO = 1.5"],
[ylabel, " ",
[xlabel, " dimensionless speed w vs dimensionless time u"])

3l

(%ill) plot2d([[discrete,[[0,1],[5,1]]],subst(w0=0,w s),subst(w0=0.6,ws),

$

which produces:

15

terminal speed

wo=0
w0 =0.6
wo=15

05

0 1 2 3
dimensionless speed w vs dimensionless time u

Figure 12: Dimensionless Speed Versus Dimensionless Time

4

21

An object thrown down with an initial speed greater than #reninal speed (as in the top curve) slows down until its

speed is the terminal speed.

Thus far we have been only concerned with the relation betwecity and time. We can now focus on the implications
for distance versus time. A dimensionless lengtis a2 y /g and the relatiordy/dt = v becomesiz/du = w, or
dz = wdu, which can be integrated over corresponding intervalsver the interval0, z¢], andu over the interval

[O, uf].

(%i12) integrate(1,z,0,zf) = integrate(ws,u,0,uf);
- uf

zf = - %e

expand(rhs(%)),uf = u;
-u

- %e

uf
(%012) (w0 - uf %e -1) + w0 -1
(%il3) zs :
-u
(%013) w0 + w0 + %e +u-1
(%il4) zs, u=0;

(%014) 0

(Remember the object is launchedyat= 0 which means ak = 0).

(dimensionless units) for the three cases considered above

Let's make a plot of distance travelled vs time

(%il15) plot2d([subst(w0=0,zs),subst(w0=0.6,zs),
subst(w0=1.5,zs)],[u,0,1],[style,[lines,4,1],[lines

[ylabel," "],
[xlabel,"dimensionless distance z vs dimensionless time u
[gnuplot_preamble,"set key top left;"])$

[lines,4,3]], [legend,"w0 = 0", "wO0 = 0.6", "wO0 = 1.5"],

4.2],

which produces:

14

wo=0 ——
w0=06 ——
w0=15 ——
1.2

0.6

0.2 0.4

0.6 0.8 1

dimensionless distance z vs dimensionless time u

Figure 13: Dimensionless Distance Versus Dimensionles®Ti

22

3.4.2 Ex. 2: One Nonlinear First Order ODE

Let’s solve d
xzy—y:xy2+x3—1 (3.8)
dx
for a solution such that whea =1, y = 1.
(%il) de : x2 xy*'diff(y,x) - X *y2 - X3 + 1;
2 dy 2 3
(%01) X y-—--xy -x +1
dx
(%i2) gsoln : ode2(de,y,x);
2 3
3xy -6x logx -2
(%02) e = %c
3
6 X
(%i3) psoln : icl(gsoln,x=1y=1);
2 3
3xy -6x logx) -2 1
(%03) e D -
3 6
6 X

This implicitly determinegy as a function of the independent variakldy inspection, we see that= 0 is a singular
point we should stay away from, so we assume from now onthato.

To look atexplicit solutionsy(x) we usesolve which returns a list of two expressions dependingo8ince themplicit
solution is a quadratic ig, we will get two solutions fronsolve which we callyl andy2.

(%i4) [yl,y2] : map(rhs, solve(psolnyy));
2 2 2 2 2 2
sqri(6 x log(x) + x + -) sqrt(6 x log(x) + x + -)
X X
(%04) - p o e]
sqrt(3) sqrt(3)
(%i5) [yl,y2], x = 1, ratsimp;
(%05) [1, 1]
(%i6) de, diff, y= y2, ratsimp;
(%06) 0

We see from the values &t= 1 thaty2 is the particular solution we are looking for, and we haveckbd thaty2 satisfies
the original differential equation. From this example, warh the lesson thatl sometimes needs some help in finding
the particular solution we are looking for.

Let's make a plot of the two solutions found.

(%i7) plot2d([y1,y2],[x,0.01,5],
[style,[lines,5]],[ylabel, " Y "],
[xlabel,” X "] , [legend,"Y1", "Y2"],
[gnuplot_preamble,"set key bottom center;"])$

23

which produces:

0.5 1 15 2 25 3 3.5 4 4.5
X

Figure 14: Positive X Solutions

3.4.3 Ex. 3: One First Order ODE Which is Not Linear in Y’

The differential equation to solve is

dx\? 9

with the initial conditionst =0, x = 0.
(%il1) de: 'diff(x,t)2 + 5 *X'2 - 8;

dx 2 2
(%01) (--) +5x -8

dt
(%i2) ode2(de,x,t);

dx 2 2
(%t2) () +5x -8

dt

first order equation not linear in y’

(%02) false

We see that direct use otle2does not succeed. We can gsdveto get equations which are linear in the first derivative,
and then usingde2on each of the resulting linear ODE'’s.

(%i3) solve(de, diff(x,t));

dx 2 dx 2
(%03) [-=-sgrt(8 - 5 x), - = sqrt(8 - 5 x)]
dt dt
(%id) ode2 (%[2], x, t);
5 x
asin(----------)
2 sqrt(10)
(04) e =t + %c

sqrt(5)

24

(%i5) solve(%,X);
2 sqgrt(10) sin(sqrt(5) t + sqrt(5) %c)
(%05) [x =

5
(%i6) gsoln2 : %[1];
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)
(%06) X =

5
(%i7) trigsimp (ev (de,gsoln2,diff));
(%07) 0
(%i8) psoln : icl (gsoln2, t=0, x=0);
solve: using arc-trig functions to get a solution.
Some solutions will be lost.
2 sqrt(10) sin(sqrt(5) t)

(%08) X =
5
(%i9) xs : rhs(psoln);
2 sqrt(10) sin(sqrt(5) t)
(%09)

5
(%i10) xs,t=0;
(%010) 0

We have selected only one of the linear ODE’s to concentratbere. We have shown that the solution satisfies the
original differential equation and the given boundary doad.

3.4.4 EX. 4: Linear Oscillator with Damping

The equation of motion for a particle of massexecuting one dimensional motion which is subject to a limeatoring
force proportional tgx| and subject to a frictional force proportional to its speed i

d?x dx
— +b—+kx= 3.10
Mgz TP gy TRx=0 (3.10)
Dividing by the massn, we note that if there were no damping, this motion would cedio a linear oscillator with the
angular frequency

wo = (%)1/2. (3.11)
In the presence of damping, we can define
Y % (3.12)
and the equation of motion becomes
%—F?y%—i—w%x:o (3.13)

In the presence of damping, there are now two natural timesca

1 1
tl = —, t2 == (3.14)
wo Y

and we can introduce a dimensionless tifhe wq t and the dimensionless positive constant «/wy, to get

a2 d
d—e};+2ad—z+x:0 (3.15)

25

The “underdamped” case correspondsyte wq, or a < 1 and results in damped oscillations around the finat 0.
The “critically damped” case correspondsate= 1, and the “overdamped” case corresponda te 1. We specialize to
solutions which have the initial conditios= 0, x=1, dx/dt=0 = dx/d6 =0.

(%il) de : 'diff(x,th,2) + 2 * a* 'diff(x,th) + x ;
2
d x dx
(%01) -+ 2 a - + X
2 dth
dth

(%i2) for i thru 3 do

x[i] : rhs (ic2 (ode2 (subst(a=i/2,de)x,th), th=0,x=1,d iff(x,th)=0))$
(%i3) plot2d([x[1],x[2],x[3]],[th,0,10],

[style,[lines,4]],[ylabel," "],

[xlabel," Damped Linear Oscillator "],

[gnuplot_preamble,"set zeroaxis lw 2",

[legend,"a = 0.5","a = 1""a = 1.5"])$

which produces

o)

)
X o

o
S u,

0.6 | ,

04} :

0.2 i

0.2 ‘ ‘ ‘ ‘
0 2 4 6 8 10

Damped Linear Oscillator: x vs theta

Figure 15: Damped Linear Oscillator

and illustrates why engineers seek the critical damping,aakich brings the system to= 0 most rapidly.

26

Now for a phase space plot wittx/dth versusx, drawn for the underdamped case:

(%i4) v1 : diff(x[1],th)$
(%i5) fpprintprec:8$
(%i6) [x5,v5] : [x[1],v1],th=5,numer;
(%06) [- 0.0745906, 0.0879424]
(%i7) plot2d ([[parametric, x[1], v1, [th,0,10],[nticks, 8011,
[discrete,[[1,0]]], [discrete,[[x5,v5] 11 1.
[x, -0.4, 1.2],[y,-0.8,0.2], [style,[lines,3,7],
[points,3,2,1],[points,3,6,1]],
[ylabel," "],[xlabel,"th = 0, x = 1, v = 0"],
[legend,” v vs x """ th = 0 "" th = 5 "]$

which shows

0.2 ‘
V VS X
th=0 []
/‘\ th=5 o
0)
-0.2
-04
-0.6 |
-0.8 ‘ ‘ ‘ ‘ ‘ ‘
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

th=0,x=1,v=0

Figure 16: Underdamped Phase Space Plot

Using plotdf for the Damped Linear Oscillator

Let's useplotdf to show the phase space plot of our underdamped linearaiscjllusing the syntax

plotdf ([dudt, dvdt],[u,v], options...)

which requires that we convert our single second order ODEnt@quivalent pair of first order ODE’s. If we let
dx/d 6 = v, assume the dimensionless damping parameterl/2, we then havelv/d § = —v — x, and we use
theplotdf syntax

plotdf ([dxdth, dvdth], [x, V], options...).

One has to experiment with the number of steps, the stepaizethe horizontal and vertical views. Théd) values
determine the vertical position and tkéboldsymbolf) values determine the horizontal position of a point on theesgh
space plot curve. The symbols used for the horizontal anit&kranges should correspond to the symbols used in the
second argument (hefe,v]). Since we want to get a phase space plot which agrees witlvarkrabove, we require
the trajectory begina@ =0, x=1, v =0, and we integrate forward in dimensionless tithe

27

(%i8) plotdf([v,-v-x],[x,V],[trajectory_at,1,0],
[direction,forward],[x,-0.4,1.2],[v,-0.6,0.2],
[nsteps,400],[tstep,0.01])$

This will bring up the phase space phlows. x, and you can thicken the red curve by clicking tenfig button (which
brings up thePlot Setuppanel), increasing thilnewidth to 3, and then clickingk . To actually see the thicker line, you

must then click on th&®eplot button. This plot is

— e e e e e e e e

/2 L U VL N S S
AT U U N N U i PR

B A e G U
//////»/r»aﬂ,‘,\x
A A R A S I T RN

A AR S R B A A N S
VARY.) £ B R B SO I
IV /2 T S S I

AN NN N e e e e e
NN N S e e e e e
\\\V\i\\\h«——_<;<_4__—‘—_

N ™ N e =

5 1

o
o

X

Figure 17: Underdamped Phase Space Plot Using plotdf

To see the separate curwe®) andx (@), you can click on th@lot Versus tbutton. (The symbdl is simply a placeholder
for the independent variable, which in our casé.lsAgain, you can change the linewidth and colors (we chamgyedn

to red) via theConfig andReplot button process, which yields

0.5

-0.5

Figure 18:x(0) andv(6) Using plotdf

28

3.4.5 EX. 5: Underdamped Linear Oscillator with SinusoidalDriving Force

We extend our previous oscillator example by adding a sidasdriving force. The equation of motion is now

d?x dx
mW—FbH—FkX—Acos(wt) (3.16)
We again divide by the mass and let
Kk 1/2
m
As before, we define
P (3.18)
2m
Finally, letB = A /m. The equation of motion becomes
dZx dx 5
W+2’ya+w0x—Bcos(wt) (3.19)
There are now three natural time scales
1 1 1
tl=—, t2=—, t3=— (3.20)
wo 4 w

and we can introduce a dimensionless tiéhe- wq t, the dimensionless positive damping constant v /wy, the di-
mensionless oscillator displacemgnt x/B, and the dimensionless driving angular frequeqcy w/wg to get

d*y dy
40° +2a T +y =cos(q0) (3.21)

The “underdamped” case correspondsyta wg, ora < 1, and we specialize to the case= 1/2.

(%i1) de : 'diff(y,th,2) + 'diff(y,th) + y - cos(q *th);
2
dy dy
(%01) -—-- + -+ y - cos(q th)
2 dth
dth
(%i2) gsoln : ode2(de,y,th);
2
g sin(g th) + (1 - g) cos(q th)
(%02) y =
4 2
g -q +1
- th/2 sqrt(3) th sqrt(3) th
+ %e (%k1 sin(----------) + %k2 cos(----------)
2 2

(%i3) psoln : ic2(gsoln,th=0,y=1,'diff(y,th)=0);
2

g sin(g th) + (1 - g) cos(q th)

(%03) y =
4 2
g -q +1
4 2 sqrt(3) th 4 sqrt(3) th
@ -24q) sin(—-) q COS(-mrmmr)
- th/2 2 2
+ %e (e —)

4 2 4 2
sqrt(3) q - sqrt(3) g + sqrt(3) qg -q +1

29

We now specialize to a high (dimensionless) driving angfiguency casey = 4, which means that we are assuming
that the actual driving angular frequency is four times agdas the natural angular frequency of this oscillator.

(%i4) ys : subst(q=4,rhs(psoln));

sqrt(3) th sqrt(3) th
224 sin(----------) 256 cos(----------)
- th/2 2 2
(%04) %e (+)
241 sqrt(3) 241

4 sin(4 th) - 15 cos(4 th)
+

241

(%i5) vs : diff(ys,th)$

We now plot both the dimensionless oscillator amplitude thieddimensionless oscillator velocity on the same plot.

(%i6) plot2d([ys,vs],[th,0,12],
[nticks,100],
[style,[lines,5]],
[legend,” Y " V "],
[xlabel," dimensionless Y and V vs. theta"])$

<<

0.8
0.6

0.4

- Aﬂ&& m
\7“ \7”

04

-0.6 +

-0.8 +

0 2 4 6 8 10 12
dimensionless Y and V vs. theta

Figure 19: Dimensionless Y and V versus Dimensionless Bme

We see that the driving force soon dominates the motion ofutiteerdamped linear oscillator, which is forced to
oscillate at the driving frequency. This dominance evitjelnas nothing to do with the actual strengtmewtonsof the
peak driving force, since we are solving for a dimensiontessllator amplitude, and we get the same qualitative curve
no matter what the size @ is.

30

We next make a phase space plot for the early “capture” pattieomotion of this system. (Note thptotdf cannot
numerically integrate this differential equation becaokthe explicit appearance of the dependent variable.)

(%i7) plot2d([parametric,ys,vs,[th,0,8]],
[style,[lines,5]],[nticks,100],
[xlabel," V (vert) vs. Y (hor) "])$

0.4

YA
. WV

04 |

-0.6

-0.8

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
V (vert) vs. Y (hor)

Figure 20: Dimensionless V Versus Dimensionless Y: Earlstotiy

We see the phase space plot being driven to regular osmiltatiboutyy = 0 andv = 0.

3.4.6 EX. 6: Regular and Chaotic Motion of a Driven Damped Plaar Pendulum

The motion is pure rotation in a fixed plane (one degree offfse®, and if the pendulum is a simple pendulum with all
the massn concentrated at the end of a weightless support of leibhgthen the moment of inertia about the support point
isI = m L2, and the angular accelerationds and rotational dynamics implies the equation of motion

d2e de
a=m — =T, =—Im sinf —c— + Acos(wqt .
I L2 . gLsin@ Tt A cos(wq't) (3.22)

dt?
We introduce a dimensionless tinre= wy t and a dimensionless driving angular frequeacy: wq /wo, Wherew?3 = g/L,
to get the equation of motion

d2e do

a2 —sin 6 —aq- + bcos(wT) (3.23)
To simplify the notation for our exploration of this differéal equation, we make the replacemefits> u, = — t, and
w — w (parameters, b, andw are dimensionless) to work with the differential equation:

d? d
d—tl; = —sinu—a d—ltl + bcos(wt) (3.24)

where now both andu are dimensionless, with the measuraidfeing radians, and the physical values of the pendulum
angle being limited to the ranger < u < 7, both extremes being the “flip-over-point” at the top of thetion.

We will use bothplotdf andrk to explore this system, with

du dv .
=V gqp - sinu-av + bcos(wt) (3.25)

31

3.4.7 Free Oscillation Case

Usingplotdf, the phase space plot for NO friction and NO driving torque is

(%il) plotdf([v,-sin(u)],[u,v],[trajectory_at,float(2*%pi/3),0],
[direction,forward],[u,-2.5,2.5],[v,-2.5,2.5],
[tstep, 0.01],[nsteps,600])$

T e L .

-2
NN N SN e —

2 -1 T

Figure 21: No Friction, No Driving Torque: V Versus Angle U

and now we use thBlot Versus tbutton ofplotdf to show the angle radians and the dimensionless rate of change of
anglev

Figure 22: No Friction, No Driving Torque: Angle U [blue] aM][red]

32

3.4.8 Damped Oscillation Case

We now include some damping with= 1/2.

(%i2) plotdf([v,-sin(u)-0.5 *V],[u,v],[trajectory_at,float(2 * %0pi/3),0],
[direction,forward],[u,-1,2.5],[v,-1.5,1],

[tstep, 0.01],[nsteps,450])
v

o R T Y N VA N VR

R T U R R

AR T T U A A A

\‘ L A

\Ji b

R R R R !

N AT AN A AN

N e vy yfr o

NS e e vy oy / 7

e NS ey s

N~ L -

1.2 \ ~ T T T T e e

NN~ — e —

Figure 23: With Friction, but No Driving Force: V Versus Argl

and now we use thBlot Versus tbutton ofplotdf to show the angle radians and the dimensionless rate of change of

angley for the friction present case.

Figure 24: With Friction, but No Driving Force: Angle U [bluand V [red]

33

3.4.9 Including a Sinusoidal Driving Torque

We now use the Runge-Kutta functiok to integrate the differential equation set forward in timericycles , which
is the same as setting the final dimensionkasax equal toncycles =*2* %pi/w , orncycles =*T, where we can call
T the dimensionless period defined by the dimensionless anfrelquencyw. The physical meaning df is the ratio of

the period of the driving torque to the period of unforced andamped small oscillations of the free simple pendulum.

For simplicity of exposition, we will calt the “time” andT the “period”. We again use our homemade functithn
described in the preface.

One cycle (period) of time is divided intesteps subdivisions, sat = T/nsteps

For both the regular and chaotic parameter cases, we hagdhessame parameters as usetamthematica in Theo-
retical Physics by Gerd Baumann, Springer/Telos, 1996, pages 46 - 53.
3.4.10 Regular Motion Parameters Case

We find regular motion of this driven system wigh= 0.2, b = 0.52, and w = 0.694 , and withu0O = 0.8 rad
andvO = 0.8 rad/unit-time

(%i1) fpprintprec:8%
(%i2) (nsteps : 31, ncycles : 30, a : 0.2, b : 0.52, w : 0.694)$
(%i3) [dudt : v, dvdt : -sin(u) - a *V + b*cos(w *t),
T : float(2 *%pilw) [;
(%03) [v, - 0.2 v - sin(u) + 0.52 cos(0.694 t), 9.0535811]
(%i4) [dt : T/nsteps, tmax : ncycles *T],
(%04) [0.292051, 271.60743]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt))$
(%i6) %, fll;
(%06) [[0, 0.8, 0.8], [271.60743, - 55.167003, 1.1281164], 931]
(%i7) 930 =dt;
(%07) 271.60743

Plot of u(t) and v(t)
Plot of u(t) and v(t) against t

(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,lengt h(tuvL))$
(%i9) %, fll;
(%09) [[0, 0.8], [271.60743, - 55.167003], 931]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]].i,1,leng th(tuvL))$
(%i11) %, fll;
(%011) [[0, 0.8], [271.60743, 1.1281164], 931]
(%i12) plot2d([[discrete,tul], [discrete,tvL]],[x,0,2 80],
[style,[lines,3]],[xlabel,"t"],
[legend, "u", "v',
[gnuplot_preamble,"set key bottom left;"])$

which produces

10

-10 +

-20

-30 +

-40 |

50

-60

<c

I\ AN ARAN AN A AN A AN AN
W NN NN NN NN NN NN

50 100 150 200 250

Figure 25: Angle u(t) and v(t)

The above plot shows nine flips of the pendulum at the top:
the first passage over the topuat= -3 pi/2 = -4.7 rad ,
the second passage over thetopat -7 pi/2 = -11 rad ,

and so on.

Phase Space Plot

We next construct a phase space plot.

34

(%i14) %, fiI
(%014)

(%i13) uvL : makelist ([tuvL[i[2],tuvL[i][3]],i,1,leng th(tuvL))$

[[0.8, 0.8], [- 55.167003, 1.1281164], 931]
(%il5) plot2d ([discrete,uvL],[x,-60,5],[y,-5,5],

[style,[lines,3]],
[ylabel," "],[xlabel," v vs u "])$

which produces (note that we include the early points whretnaore heavily influenced by the initial conditions):

A ORRAANAAN
LAV AVAVAVAV ALY

__/

-50 -40 -30 -20 -10 0
vvsu

Figure 26: Non-Reduced Phase Space Plot

35

Reduced Phase Space Plot

Let's define a Maxima functioreducewhich bringsu back to the interva(-pi, pi) and then make a reduced phase space
plot. Since this is a strictly numerical task, we can sinygliffaxima’s efforts by defining a floating point numbar once
and for all, and simply work with that definition. You can sée prigin of our definition ofeduce in the manual’s
entry on Maxima'’s modulus functiomod.

(%i16) pi : float(%pi);

(%016) 3.1415927

(%il7) reduce(yy) = pi - mod (pi - yy,2 *pi)$

(%i18) float([-7 *%pil2,-3 *%pi/2 3 *%pil2, 7 *%pil2]);
(%018) [- 10.995574, - 4.712389, 4.712389, 10.995574]
(%i19) map(reduce, %);

(%019) [1.5707963, 1.5707963, - 1.5707963, - 1.5707963]

(%i20) uvL_red : makelist ([reduce(tuvL[i][2]),
tuvL[i][3]],i,1,length(tuvL))$

(%i21) %, fll;

(%021) [[0.8, 0.8], [1.3816647, 1.1281164], 931]

To make a reduced phase space plot with our reduced regutaampmints, we will only use the last two thirds of the
pairs(u,v) . This will then show the part of the motion which has been taegrd” by the driving torque and shows little
influence of the initial conditions.

We use the Maxima functiorest (list, n) which returndlist with its first n elements removed ffi is positive. Thus we
userest (list, num/3) to get the last two thirds.

(%i22) uvL_regular : rest (uvL_red, round(length (uvL_red)3))%
(%i23) %, fll;

(%023) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 621]
(%i24) plot2d ([discrete,uvL_regular],[x,-3.2,3.2],[y -3.2,3.2],

[style,[lines,2]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces

Y
/S J

o

-3 -2 -1 0 1 2 3
reduced phase space v vs u

Figure 27: Reduced Phase Space Plot of Regular Motion Points

36

Poincare Plot

We next construct a Poincare plot of the regular (reduced$@lpace points by using a “stroboscopic view” of this phase
space, displaying only phase space points which corresjpantes separated by the driving peribdWe selec{u,v)

pairs which correspond to intervals of time T, wheren = 10, 11, ..., 30 which will give us21 phase space
points for our plot (this is roughly the same as taking thétlas thirds of the points).

The timet = 30 *T corresponds tda = 30 *31xdt = 930*dt which is the time associated with elemedl,
the last elementpf uvL_red . The value off used to select the last Poincare point is the solution of thaton
1 + 10*nsteps + | *nsteps = 1 + ncycles =*nsteps , which for this case is equivalent to

311 + j 31 = 931.

(%i25) solve(311 + j *31 = 931);

(%025) [= 20]

(%i26) pL : makelist (1+10 *nsteps + | *nsteps, j, 0, 20);

(%026) [311, 342, 373, 404, 435, 466, 497, 528, 559, 590, 621, 652, 683, 714,

745, 776, 807, 838, 869, 900, 931]
(%i27) length(pL);
(%027) 21
(%i28) poincareL : makelist (uvL_red[i], i, pL)$
(%i29) %,fll;
(%029) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 21]
(%i30) plot2d ([discrete,poincarel],[x,-0.5,2],[y,-1. 5,1.5],
[style,[points,1,1,1 T],
[ylabel," "],[xlabel," Poincare Section v vs u "])$

which produces the plot

15

_1.5 L L L
-0.5 0 0.5 1 15 2

Poincare Section v vs u

Figure 28: Reduced Phase Space Plot of Regular Motion Points

For this regular motion parameters case, the Poincare lphotsthe phase space point coming back to one of three
general locations in phase space at times separated byribd pe

37

3.4.11 Chaotic Motion Parameters Case.

To exhibit an example of chaotic motion for this system, we tiee same initial conditions far andv, but use the

parameter set =

1/2, b = 1.15 w = 2/3

(%i9) %, fll;

(%09)

(%i10) tvL : makel
(%i11) %, fll;
(%011)

(%i1) fpprintprec:8%

(%i2) (nsteps : 31,

(%i3) [dudt : v, dvdt : -sin(u) - a *V + b*cos(w *t),
T : float(2 *%pilw) I;

ncycles : 240, a : 1/2, b : 1.15, w : 2/3)$

v 2t
(%03) [v, - - - sin(u) + 1.15 cos(---), 9.424778]
2 3
(%i4) [dt : T/nsteps, tmax : ncycles *T],
(%04) [0.304025, 2261.9467]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dat))$
(%i6) %, fll;
(%06) [[0, 0.8, 0.8], [2261.9467, 26.374502, 0.937008], 74 41]
(%i7) dt =(last(%) - 1);
(%07) 2261.9467
(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,lengt h(tuvL))$

[[0, 0.8], [2261.9467, 26.374502], 7441]
ist ([tuvL[i][1],tuvL[i][3]],i,1,leng th(tuvL))$

[[0, 0.8], [2261.9467, 0.937008], 7441]

(%i12) plot2d([[discrete,tul], [discrete,tvL]],[x,0,2 000],

[y,-15,30],

[style,[lines,2]],[xlabel,"t"], [ylabel, " "],
[legend, "u","v"] ,[gnuplot_preamble,"set key bottom;"])$

which produces a plot af(t) andv(t) over0 <=t <= 2000 :

30

25

20

15

10

-10

-15

i

m“&“h M&U (it

< C

0 500 1000 1500
t

Figure 29: Angle u(t), and v(t) for Chaotic Parameters Céoic

2000

Phase Space Plot

We next construct aon-reducegbhase space plot, but show only the f2800 reduced phase space points.

38

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]].i,1,leng
(%i14) %, fll;
(%014) [[0.8, 0.8], [26.374502, 0.937008], 7441]
(%i15) uvL_first : rest(uvlL, -5441)$
(%i16) %, fll;
(%016) [[0.8, 0.8], [23.492001, 0.299988], 2000]
(%il7) plot2d ([discrete,uvL_first],[x,-12,30],[y,-3,
[style,[points,1,1,1]],
[ylabel," "],[xlabel," v vs u '"$

th(tuvL))$

3],

which produces

-10 -5 0 5 10
vvsu

15 20 25 30

Figure 30: non-reduced phase space plot using first 200@spoin

If we use thediscrete defaultstyle optionlines instead ofpoints

(%i18) plot2d ([discrete,uvL_first],[x,-12,30],[y,-3,
[ylabel," "],[xlabel," v vs u "])$

3],

we get the non-reduced phase space plot drawn with linesketthe points:

-3 -2 -1 0

1 2 3

reduced phase space v vs u

Figure 31: non-reduced phase space plot using first 200@spoin

Reduced Phase Space Plot

We now construct the reduced phase space points as in tHaregotion case and then omit the fir€0.

39

(%i19) pi : float(%opi);
(%019) 3.1415927
(%i20) reduce(yy) := pi - mod (pi - yy,2 *pi)$
(%i21) uvL_red : makelist ([reduce(first(uvL[i])),
second(uvL[i]) 1.i,1,length(tuvL))$
(%i22) %, flI;
(%022) [[0.8, 0.8], [1.2417605, 0.937008], 7441]
(%i23) uvL_cut : rest(uvL_red, 400)$
(%i24) %, flI;
(%024) [[0.25464, 1.0166641], [1.2417605, 0.937008], 704 1]

We have discarded the fir400 reduced phase space points in defining._cut
the points retained invL_cut :

. If we now only plot the firstL000 of

(%i25) uvL_first : rest (uvL_cut, -6041)$
(%i26) %, fll;
(%026) [[0.25464, 1.0166641], [2.2678603, 0.608686], 100 0]
(%i27) plot2d ([discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u ")$

we get the plot

reduced phase space v vs u

Figure 32: 1000 points reduced phase space plot

and the same set of points drawn with the defhnés option:

-3 -2 -1 0 1 2

(%i28) plot2d ([discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u ")$

produces the plot

N d e
\ N .S VAV N

-3 -2 -1 0 1 2 3
reduced phase space v vs u

Figure 33: 1000 points reduced phase space plot

3000 point phase space plot

We next draw the same reduced phase space plot, but use ti3®@6s points ofuvL_cut

40

(%i29) uvL_first : rest (uvL_cut, -4041)$
(%i30) %, fll;
(%030) [[0.25464, 1.0166641], [2.2822197, - 0.532184], 3 000]
(%i31) plot2d ([discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u ")$

which produces

-3 -2 -1 0 1 2 3
reduced phase space v vs u

Figure 34: 3000 points reduced phase space plot

41

and again, the same set of points drawn with the defengds option

(%i32) plot2d ([discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u ")$

which produces the plot

3 T T T T T T T
2 L
1 L
‘\\;7’0"// IR "\Xw\"!// A7) = NSy
N 2. N NI VAN NN - N
o b PRI e e
(AN N W NP /AN o e A
1+
2|
_3 1 1 1 | 1 1 1

reduced phase space vvsu

Figure 35: 3000 points reduced phase space plot

Poincare Plot

We now construct the Poincare section plot as before, udlitigegpoints available iuvL _red .

42

(%i33) pL : makelist(1+10 *nsteps + j *nsteps, j, 0, ncycles - 10)$
(%i34) %, fll;
(%034) [311, 7441, 231]
(%i35) poincareL : makelist(uvL_red[i], i, pL)$
(%i36) %, fll;
(%036) [[- 2.2070801, 1.3794391], [1.2417605, 0.937008], 231]
(%i37) plot2d ([discrete,poincarel],[x,-3,3],[y,-4,4] ,
[style,[points,1,1,1]],
[ylabel," "],[xlabel," Poincare Section v vs u "])$

which produces the plot

4 T T T T
3 L
° ®o ogman
2t o © 3°F oo .« ° ..:. .
o ® & e o
«* o. \ S
1}, " : ./
. :
% o
‘e o
* ® ® aom ave °° -
-1+
-2 r
3 r
_4 1 1 | 1
-3 -2 -1 0 1

Poincare Sectionv vs u

Figure 36: 231 poincare section points

43

3.5 Using contrib.ode for ODE’s

The syntax otontrib _odeis the same asde Let’s first solve the same first order ODE example used in thedéctions.

(%il) de : ’diff(u,t)- u - exp(-t);
du -t
(%01) - - u - %e
dt
(%i2) gsoln : ode2(de,u,t);
-2t
%e t
(%02) u = (%c - ------) %e
2
(%i3) contrib_ode(de,u,t);
du -t
(%03) contrib_ode(-- - u - %e ,u, 1t
dt

(%i4) load(’contrib_ode);
(%04) C:/PROGRA™1/MAXIMA"3.1/share/maxima/5.18.1/sha re/contrib/diffequations/c\
ontrib_ode.mac
(%i5) contrib_ode(de,u,t);

-2t

%e t

(%05) [u = (%c - ----—---) %e]

2
(%i6) ode_check(de, %[1]);
(%06) 0

We see thatontrib_ode , with the same syntax axle, returns a list (here with one solution, but in general mbeat
one solution) rather than simply one answer.

Moreover, the package includes the Maxima functole checkwhich can be used to confirm the general solution.

Here is a comparison for our second order ODE example.

(%i7) de : ’diff(u,t,2) - 4 * U,

2

du
(%07) - -4u

2

dt
(%i8) gsoln : ode2(de,u,t);

2t -2t
(%08) u = %kl %e + %k2 %e
(%i9) contrib_ode(de,u,t);

2t -2t
(%09) [u = %kl %e + %k2 %e]
(%i10) ode_check(de, %[1]);
(%010) 0

Here is an example of an ODE whiclde2cannot solve, butontrib _ode can solve.

(%ill) de : 'diff(u,t,2) + 'diff(ut) + t *U;
2
du du
(%011) — + -+ tu
2 dt
dt

(%i12) ode2(de,u,t);
(%012) false

44

(%i13) gsoln : contrib_ode(de,u,t);

32
1 4t-1) - /2
(%013) [u = bessel_y(-, ------------) %k2 sqrt(4 t - 1) %e
3 12
3/2
1 41t-1) - 2
+ bessel_j(-, ------------) %k1 sqrt(4 t - 1) %e]
3 12
(%i14) ode_check(de, %[1]);
(%014) 0

This section will probably be augmented in the future withrenexamples of usingontrib _ode

