
Maxima by Example:
Ch.13: 2D Plots and Graphics using qdraw and wxqdraw∗

Edwin L. (Ted) Woollett

April 16, 2018

Contents
1 2D Plots and Graphics using the qdraw package 4

2 qdraw or wxqdraw Syntax Summary 5

3 Quick Plots for Explicit Functions: ex(...) and ex1(...) 6
3.1 Default colors and available colors 10
3.2 Explicit Plots with ex1(...) and Log Scaled Axes 13
3.3 Placing discrete points: the syntax of pts(...) 16
3.4 Using the linetype option with draw2d 17

4 Parametric plots with para(...) 18

5 Polar Plots with polar(...) 19

6 Implicit plots with imp(...) and imp1(...) 20
6.1 Quick implicit plots withimp(...) . 20
6.2 implicit plot (r = 1− cos(θ), r, 0, 2, θ, 0, 2 π) . 22
6.3 Implicit plot with two equations .. 24
6.4 Implicit plot of a circle .. 25
6.5 Implicit plot of concentric circles 25
6.6 Implicit Plots with Greater Control:imp1(...) . 26

7 Contour Plots with contour(...) 27

8 Density Plots 30
8.1 qdensity (expr, [x, x1, x2, dx], ...) orwxqdensity (expr, [x, x1, x2, dx], ...) . 30
8.2 qdensity mat (Amatrix, [x1,x2],[y1,y2] , options) orwxqdensity mat . 32

9 Scatterplot Example: Old Faithful Wait Times vs. Eruption Durations 34

10 Data Plots, Error Bars, Least Squares Fit 36

11 Geometric Figures 39
11.1 line(...) 39
11.2 rect(...) 41
11.3 poly(...) 42
11.4 circle(...) andellipse(...) . 45
11.5 vector(...) 47
11.6 arrowhead(..) 50

∗This version uses Maxima 5.36.1 for Windows. This is a live document. Checkhttp://www.csulb.edu/ ˜ woollett/
for the latest version of these notes. Send comments and suggestions towoollett@charter.net

1

12 Greek Letters, Math Symbols, and Adjustable Font Size with Labels 50

13 Even More with more(...) 56

14 Basic Elements of the draw Program 57
14.1 Introduction .. 57
14.2 Graphic objects .. 57
14.3 Global options .. 58
14.4 Local Options .. 59

15 Programming Homework Exercises 59

16 Acknowledgements 62

2

3

This document is Ch. 13 of the series “Maxima by Example” and is made available via the author’s
webpage http://www.csulb.edu/˜woollett/ to aid new users of the Maxima computer algebra sys-
tem.

Supplementary files available in the Ch. 13 section are
qdraw.mac, wxqdraw.wxm, qdrawcode.txt, faithful.dat, fit1.dat, and fit2.dat.

COPYING AND DISTRIBUTION POLICY

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.
You may make copies of this document and distribute them to others as long as you charge no more than the
costs of printing.

1 2D PLOTS AND GRAPHICS USING THE QDRAW PACKAGE 4

1 2D Plots and Graphics using the qdraw package

Chapter 13 provides an introduction to a graphics interfaceto thedraw package...share\draw\draw.lisp . Us-
ing thexMaxima interface, just useload(qdraw); or load("c:/work5/qdraw.mac"); , etc to load the qdraw
file. If you are using thewxMaxima interface, you can either use the same command, or else use the menus at the top,
File, Open... and select the fileqdraw.mac .

If you plan to exclusively use theqdraw syntax, (as you must usingxMaxima , or as you can inwxMaxima, then you
must separately load the draw package, for example useing:load(draw); . If you are usingwxMaxima, and at least
your first plot command will use the syntaxwxqdraw , then the draw package loads automatically.

(%i1) load("C:/work5/qdraw.mac")$

qdraw.mac: see Maxima by Example, Ch. 13

qdraw(...), wxqdraw(...), qdensity(...), wxqdensity(...)

for syntax info, type: qdraw();

Using thexMaxima interface, you always need to load both thedraw and qdraw packages separately (and in any
order).

Maxima 5.36.1 http://maxima.sourceforge.net
using Lisp SBCL 1.2.7
Distributed under the GNU Public License. See the file COPYI NG.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting informat ion.
(%i1) load(draw);
;; loading #P"C:/Documents and Settings/Edwin Woollett/m axima/binary/5_36_1/sbcl/1_2_7/share/draw/grcommon. fasl"
;; loading #P"C:/Documents and Settings/Edwin Woollett/m axima/binary/5_36_1/sbcl/1_2_7/share/draw/gnuplot.f asl"
;; loading #P"C:/Documents and Settings/Edwin Woollett/m axima/binary/5_36_1/sbcl/1_2_7/share/draw/vtk.fasl"
;; loading #P"C:/Documents and Settings/Edwin Woollett/m axima/binary/5_36_1/sbcl/1_2_7/share/draw/picture.f asl"
(%o1)

C:/Program Files/Maxima-sbcl-5.36.1/share/maxima/5.3 6.1/share/draw/draw.lisp
(%i2) load(qdraw);

qdraw.mac: see Maxima by Example, Ch. 13
qdraw(...), wxqdraw(...), qdensity(...), wxqdensity(.. .)

for syntax info, type: qdraw();
(%o2) c:/work5/qdraw.mac

The examples we show here usingqdraw(...) or qdensity(...) using thexMaxima interface can also be used
with thewxMaxima interface. If you replaceqdraw with wxqdraw , and replaceqdensity with wxdensity (inside
thewxMaxima interface), and if you havedisplay2d set totrue , then you will generate inline plots in your* .wxm
worksheet. You can open the filewxqdraw.wxm and execute selected cells to see a variety of graphics examples from
those we discuss here. (Remember that you must havedisplay2d set totrue to see inline plots, and you must execute
the cell which loads (opens) ourqdraw.mac package of routines.

Our functionqdraw callsdraw2d and our functionwxqdraw callswxdraw2d . To save space and editing effort, we
normally show here thexMaxima interface input and output (withdisplay2d set equal tofalse), using theqdraw

syntax.

2 QDRAW OR WXQDRAW SYNTAX SUMMARY 5

2 qdraw or wxqdraw Syntax Summary

All arguments toqdraw (or wxqdraw) are optional and can be entered in any order.

You can have no more than onexr(..) argument. Likewise, no more than oneyr(..) , onecut(..) , one
lw(n) (as an arg ofqdraw), onenticks(n) and oneipgrid(n) .

You can have an arbitrary number of the other args in any order.

The complete set of possible arguments (in alphabetic order) with the maximum number and type of arguments
follow. In general, arguments with nameslc,lw,lk,fill,pc,ps,pt,pk,pj,ha,hb,hl ,andht are op-
tional.

qdraw(
arrowhead(x,y,theta-degrees,s,lc(c),lw(n)),
circle(x,y,radius,lc(c),lw(n),fill(cc)),
contour(expr,x,x1,x2,y,y1,y2,crange(n,min,max),opti ons)

or contour(expr,x,x1,x2,y,y1,y2,cvals(v1,v2,..),opti ons),
contour options are lc(c),lw(n), add(add-options);

add-options are grid,xaxis,yaxis,and xyaxes,
cut(cut-options);

cut-options are key,grid,xaxis,yaxis,xyaxes,edge,all,
ellipse(xc,yc,xsma,ysma,th0-deg,dth-deg,lw(n),lc(c) ,fill(cc)),
errorbars(ptlist,dylist,lc(c),lw(n)),
ex(exprlist,x,x1,x2),
ex1(expr,x,x1,x2,lc(c),lw(n),lk(string)),
imp(eqnlist,x,xx1,xx2,y,yy1,yy2),
imp1(eqn,x,x1,x2,y,y1,y2,lc(c),lw(n),lk(string)),
ipgrid(n),
key(bottom)

or key(top),
label([string1,x1,y1],[string2,x2,y2],...),
label_align(p-options); p-options are l, r, or c,
line(x1,y1,x2,y2,lc(c),lw(n),lk(string)),
log(log-options);

log-options are x, y, or xy,
lw(n),
more(any legal draw2d arguments),
nticks(n),
para(xofu,yofu,u,u1,u2,lc(c),lw(n),lk(string)),
polar(expr,theta,th1,th2,lc(c),lw(n),lk(string));

expr depends on variable theta, and limits th1 and th2 must be in radians,
poly([[x1,y1],[x2,y2],.,[xN,yN]], lc(c),lw(n),fill(c c)),
pts([[x1,y1],[x2,y2],.,[xN,yN]],pc(c),ps(s),pt(t),p k(string)),
pic(type, fname(string)); type is either eps or eps_color
rect(x1,y1,x2,y2, lc(c),lw(n),fill(cc)),
vector([x,y],[dx,dy],lw(n),lc(c),lk(string),ha(deg) ,hb(v),hl(v),ht(t)),

type vector_use(); to see vector option details,
xr(xa,xb),
yr(ya,yb))

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 6

3 Quick Plots for Explicit Functions: ex(...) and ex1(...)

The primary motivation for theqdraw package is to provide “quick” (hence the “q” in “qdraw”) plotting software which
provides the kinds of plotting defaults which are of interest to students and researchers in the physical sciences and engi-
neering. There are two “quick” plotting functions you can use with qdraw for plotting explicit functions:ex(...), ex1(...).
Both of these functions call thedraw2d functionexplicit .

The simplest plot of one or more expressions uses theqdraw argex(expr,x,x1,x2) , for example for one expression,
ex(xˆ3/5,x,0,2) , or ex(exp(u),u,-2,5) . For the simultaneous plot of two expressions, use alist for the first
arg ofex , such asex([x,xˆ2],x,-2,3) or ex([v,vˆ2],v,-2,3) (which will both produce the same plot).

(%i3) qdraw (ex (cos(x), x, 0, 6))$

which produces the “plane jane” plot

Figure 1:cos(x) using ex(...)

Theex(...) method does not allow you to control the color, as seen here:

(%i4) qdraw (ex (cos(x), x, 0, 6, lc(red)))$
...syntax error
ex() should have exactly four arguments

You get more control options if you useex1(...) , but this second method can only be used for one expression; if you
want to simultaneously plot several expressions using theex1 method, you must include several separateex1(...)
invocations inside yourqdraw wrapper. Sticking to our single expression for now,lc(red) stands for “line color red”,

(%i5) qdraw (ex1 (cos(x), x, 0, 6, lc(red)))$

which produces

Figure 2:cos(x) using ex1(...)

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 7

We can add labels to the x and y axes, and add a title using the optional argmore which can contain any extra legal
draw2d assignments:

(%i6) qdraw (ex1 (cos(x), x, 0, 6, lc(red)),
more (xlabel = "X", ylabel = "COS(X)", title = "single functi on"))$

which produces

Figure 3: Adding labels, title using more(...)

We can use theline command to add a brown x-axis. The arglw(1) forces the line width to be small;lw(5) would
be a thick line.

(%i7) qdraw (ex1 (cos(x), x, 0, 6, lc(red)),
line (0,0,6,0, lc(brown), lw(1)),
more (xlabel = "X", ylabel = "COS(X)", title = "single functi on"))$

which produces

Figure 4: Adding a brown x-axis using line(...)

Thus far the vertical canvas range (y-axis range) has been the default. We can control the vertical range using the extra
argyr(y1,y2) as shown here:

(%i8) qdraw (ex1 (cos(x), x, 0, 6, lc(red)), yr (-1.2, 1.2),
line (0,0,6,0, lc(brown), lw(1)),
more (xlabel = "X", ylabel = "COS(X)", title = "single functi on"))$

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 8

which produces

Figure 5: Controlling the vertical range with yr(y1,y2)

All of the above additions to the basic plot can also be done when using the argex(...) , which controls its own colors,
but can be used for fast simultaneous plots, as shown here

(%i9) qdraw (ex ([x,xˆ2,xˆ3],x,-3,3),
line (-3,0,3,0, lc(brown), lw(1)),
more (xlabel = "X", title = "Using ex(..) for three functions "))$

which produces

Figure 6: Using ex(...) for three expressions

We can add a vertical range control and move the “key” to the bottom:

(%i10) qdraw (ex ([x,xˆ2,xˆ3],x,-3,3), yr (-2, 2),
line (-3,0,3,0, lc(brown), lw(1)), key (bottom),

more (xlabel = "X", title = "Using ex(..) for three functions "))$

which produces

Figure 7: Controlling the vertical range and key position

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 9

We can usepts(...) to add three points to this plot.

(%i11) qdraw (ex ([x,xˆ2,xˆ3],x,-3,3), yr (-2, 2),
line (-3,0,3,0, lc(brown), lw(1)), key (bottom),
pts ([[-1,-1], [0,0],[1,1]]),
more (xlabel = "X", title = "Using ex(..) for three functions "))$

which produces

Figure 8: Adding three points using pts (...)

We can usepc(..) to control the color andps(..) to control the size of these points

(%i12) qdraw (ex ([x,xˆ2,xˆ3],x,-3,3), yr (-2, 2),
line (-3,0,3,0, lc(brown), lw(1)), key (bottom),
pts ([[-1,-1], [0,0],[1,1]], ps(2), pc(magenta)),
more (xlabel = "X", title = "Using ex(..) for three functions "))$

which produces

Figure 9: Adjusting point size with ps(..), point color withpc(..)

We can add a key entry for the points usingpk(..) .

(%i13) qdraw (ex ([x,xˆ2,xˆ3],x,-3,3), yr (-2, 2),
line (-3,0,3,0, lc(brown), lw(1)), key (bottom),
pts ([[-1,-1], [0,0],[1,1]], ps(2), pc(magenta), pk("int ersections")),
more (xlabel = "X", title = "Using ex(..) for three functions "))$

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 10

which produces

Figure 10: Adding points legend (key) entry with pk(..)

3.1 Default colors and available colors

Usingex(...) to plot a set (list) of expressions means that thecolor choices are controlled by the program,
namely a local list calledcc inside theqdraw1 code. You can see the default color names and what they look
like by using the functiondefault_colors(nwidth) :

(%i14) default_colors(15)$
default color list = [blue, red, turquoise, brown, magenta, green, black]

which prints out the default color list and draws the graphic:

Figure 11: Default colors used by ex(...)

Repeated use ofpts(..) doesnot cycle through colors (note use ofxr(x1,x2) to control horizontal range):

(%i15) (L1:[[-1,-1],[-1,0],[-1,1]], L2:[[1,-1],[1,0], [1,1]],
qdraw (pts(L1), pts(L2), xr(-2,2),yr(-2,2)))$

which produces

Figure 12: Default color used by pts(...) is blue

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 11

We can gain control of colors used for plotting expressions,and also include a meaningful legend (key entry),
if we useex1(..) instead ofex(..) . The downside is that we have to use a separateex1(..) entry for each
expression to be included in the plot. We can then choose any color available in thedraw package. In thedraw

package section of the Maxima help manual, in the description of Graphic option: color, one finds a list which
includes:

white black gray0 grey0
gray grey light_gray light_grey
dark_gray dark_grey red light_red
dark_red yellow light_yellow dark_yellow
green light_green dark_green spring_green
forest_green sea_green blue light_blue
dark_blue midnight_blue navy medium_blue
royalblue skyblue cyan light_cyan
dark_cyan magenta light_magenta dark_magenta
turquoise light_turquoise dark_turquoise pink
light_pink dark_pink coral light_coral
orange_red salmon light_salmon dark_salmon
aquamarine khaki dark_khaki goldenrod
light_goldenrod dark_goldenrod gold beige
brown orange dark_orange violet
dark_violet plum purple

You can use the functionshow_colors(color_list, nlw) to display the colors corresponding to any of
these names. (Note that you can use hyphenated names withoutquotes.)

(%i16) mycL : [aquamarine,beige,blue,brown,cyan,gold,g oldenrod,green,khaki,
magenta,orange,pink,plum,purple,red,salmon,skyblue, turquoise,
violet,yellow]$

(%i17) show_colors(mycL,10)$
show color list = [aquamarine, beige, blue, brown, cyan, gol d, goldenrod, green,

khaki, magenta, orange, pink, plum, purple, red, salmon, sk yblue, turquoise, violet,
yellow]

which produces

Figure 13: Some of the available colors in the draw package

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 12

As an example of multiple uses ofex1 to gain control over the colors of individual expression plots, we make
a simultaneous plot of the first few Bessel functions of the first kindJ

n
(x) for integraln and realx,

(%i18) qdraw(ex1(bessel_j(0,x),x,0,20,lc(red),lw(6), lk("bessel_j (0, x)")),
ex1(bessel_j(1,x),x,0,20,lc(blue),lw(5),lk("bessel_ j (1, x)")),
ex1(bessel_j(2,x),x,0,20,lc(brown),lw(4),lk("bessel _j (2, x)")),
ex1(bessel_j(3,x),x,0,20,lc(green),lw(3),lk("bessel _j (3, x)")))$

which produces the plot:

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

bessel_j (0, x)
bessel_j (1, x)
bessel_j (2, x)
bessel_j (3, x)

Figure 14:J
n
(x)

Here is a plot ofJ0(
√
x) usingex1(..) :

(%i19) qdraw(line(0,0,50,0,lc(red),lw(2)),
ex1(bessel_j(0, sqrt(x)),x,0,50 ,lc(blue),

lw(7),lk("J0(sqrt(x))")))$

Figure 15:J0(
√
x)

We chose to emphasize the axisy = 0 with a red line supplied by another of theqdraw functions,line, which
we will discuss later in the section on geometric figures. Placing theline element beforeex1(..) causes the
curve to write “over” the line, rather than the reverse.

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 13

3.2 Explicit Plots with ex1(...) and Log Scaled Axes

The name “log plot” usually refers to a plot ofln(y) vs x using linear graph paper, which is equivalent to a
plot of y vs x on graph paper which uses a “logarithmic scale” on the vertical axis. Given an expressiong
depending on x, you can either use the syntaxqdraw(ex1(log(g),x,x1,x2), other options) to
generate such a “log plot” orqdraw(ex1(g, x, x1, x2), log(y) , other options) .

Let’s show the behavior using the expressionx e−x bound to the symbolg.

(%i20) g : x * exp(-x)$
(%i21) qdraw(ex1(log(g),x,0.001,10, lc(red)),yr(-8,0))$

which displays the plot

Figure 16: Linear Graph Paper Plot ofln(g)

The numbers on the vertical axis correspond to values ofln(g). Sinceg is singular atx = 0, we have avoided
that region by usingx1 = 0.001.

The second way to get a “log plot” ofg is to request “semi-log” graph paper which has the vertical axis marked
using a logarithmic scale for the values ofg. Using thelog(y) option of theqdraw function, we use:

(%i22) qdraw(ex1(g, x, 0.001,10,lc(red)),
yr(0.0001, 1), log(y))$

Theyr(y1,y2) option takes into account the numerical limits ofg over thex interval requested. The minimum
value ofg is 0.005 which occurs atx = 10. The maximum value ofg is about0.37.

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 14

The resulting plot is:

Figure 17: Log Paper Plot ofg

The name “log-linear plot” can be used to mean “x axis marked with a log scale, y axis marked with a linear
scale”. Using the same expressiong, we generate this plot by using thelog(x) option toqdraw:

(%i23) qdraw(ex1(g, x, 0.001,10,lc(red),lw(7)),
yr(0,0.4), log(x))$

This generates the plot

Figure 18: Log-Linear Plot ofg

Scientists and engineers normally like to use a log scaled axis for a variable which varies over many powers of
ten, which is not the case for our example.

Finally, we can request “log-log paper” which has both axes marked with a log scale, by using thelog(xy)
option toqdraw.

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 15

(%i24) qdraw(ex1(g, x, 0.001,10,lc(red)),
yr(0.0001,1), log(xy))$

which produces

Figure 19: Log-Log Plot ofg

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 16

3.3 Placing discrete points: the syntax of pts(...)

The syntax ofpts(...) is

pts (pointlist, pc(color), ps(nsize), pt(ntype), pj(nwid th), pk(string))

The only required argument is the first argumentpointlist which has the form:
[[x1,y1], [x2,y2], [x3,y3],...] .
The remaining arguments, such asps , are all optional and may be entered in any order following the first re-
quired argument.

The optional argumentpc(color) (point color) overrides the default color (blue); an example ispc(red) . The
point color should be aname, not a number.
The optional argumentps(nsize) (point size) overrides the default size (3), and an example is ps(2) . The
point size should be a positive integer.
The optional argumentpt(ntype) (point type), in whichntype is a positive integer in the range (1 - 15) over-
rides the default type (7), which is the integer used for a filled circle type. For example,pt(6) would request
an dot surrounded by an open circle rather than the default filled circle.

The functionpoint_types() , defined inqdraw.mac , makes a graphic which shows the correspondence be-
tween the integert used and the point image produced.

(%i25) point_types()$

This produces

Figure 20: Point Type Integer Table

The optional argumentpj(nwidth) , (points joined) if present, will cause the points providedby the nested list
pointlist to be joined using a line whose width is given by the integernwidth ; an example ispj(2) which
would use the line width 2.
The optional argumentpk(string) (points key) provides text for a key entry for the set of points represented
by pointlist ; an example ispk("case xˆ2") .

Here is a simple example of two sets of points, using different types, colors, sizes, legends, and usingpj(n)

for the second set of points.

(%i26) (L1:[[-1,-1],[-1,0],[-1,1]], L2:[[1,-1],[1,0], [1,1]],
qdraw (pts(L1,pt(3),ps(1),pc(red),pk("type 3")),

pts(L2, pt(10),ps(2),pc(black),pj(3),pk("type 10")),
xr(-2,2),yr(-2,2)))$

3 QUICK PLOTS FOR EXPLICIT FUNCTIONS: EX(...) AND EX1(...) 17

which produces

Figure 21: Two examples of pts(...) with different options

You can construct your own “line types” by combining different types and colors of points, either joining or not joining
them.

3.4 Using the line type option with draw2d

The qdraw program doesnot allow access to thedraw2d line_type option. If you want to construct an eps file
which incorporates theline_type specification allowed bydraw2d , you should use the standarddraw2d syntax we
show here.

(%i27) draw2d(title = "draw2d line type examples",
file_name = "c:/work5/linetype1", terminal = ’eps,
line_width = 4, yrange = [-0.2,2.2],
line_type = dots, explicit (xˆ2,x,-1,1),
color = red, line_type = solid, explicit (0.2 + xˆ2,x,-1,1),
color = turquoise, line_type = dashes, explicit (0.4 + xˆ2,x ,-1,1),
color = brown,line_type = dot_dash, explicit (0.6 + xˆ2,x,- 1,1),
color = magenta,line_type = short_long_dashes, explicit (0.8 + xˆ2,x,-1,1),
color = green, line_type = short_short_long_dashes, expli cit (1 + xˆ2,x,-1,1))$

which yields the figure

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

draw2d line type examples

Figure 22: line type options in draw2d with eps terminal

4 PARAMETRIC PLOTS WITHPARA(...) 18

The inputfile_name = "c:/work5/linetype1", terminal = ’eps, in the abovedraw2d command
causes the produced filelinetype.eps to be written to thec:\work5 folder when using a Microsoft Win-
dows operating system. You can use theGSview graphical interface forGhostscript (www.gsview.com)
for an independent* .eps file viewer. If you replace’eps with ’svg , the resulting graphics file can be viewed
with Inkscape.

4 Parametric plots with para(...)

Theqdraw functionpara can be used to draw parametric plots and has the syntax

para(xofu, yofu, u,u1,u2, lw(n), lc(c), lk(string))

where, as usual, the line width, line color, and key string entries are optional and can be in any order. The
parameteru should match the parameter used in the first two args.

A simple example, in which we uset for the parameter, with the x coordinate corresponding to some value of
t set tosin(t), and with the y coordinate corresponding to that same value of t set tosin(2 t), is:

(%i3) qdraw(xr(-1.5,2),yr(-2,2),
para(sin(t),sin(2 * t),t,0,2 * %pi),
pts([[0,0]],ps(1),pc(brown),pk("t = 0")),
pts([[sin(%pi/8),sin(%pi/4)]],ps(1),pc(red),pk("t = p i/8")),
pts([[1,0]],ps(1),pc(green),pk("t = pi/2")),
more (title = "parametric plot", xlabel = "sin(t)", ylabel = "sin(2 * t)"))$

which produces the plot:

Figure 23: Parametric plot withx = sin(t), y = sin(2 t)

5 POLAR PLOTS WITHPOLAR(...) 19

A second example of a parametric plot hasu as the parameter,x = 2 cos(u), andy = u2:

(%i4) qdraw(xr(-3,4),yr(-1,40), para(2 * cos(u),uˆ2,u,0,2 * %pi) ,
pts([[2,0]],ps(1),pc(blue),pk("u = 0")),
pts([[0,(%pi/2)ˆ2]],ps(1), pc(red), pk("u = pi/2")),
pts([[-2,%piˆ2]],ps(1),pc(green),pk("u = pi")),
pts([[0,(3 * %pi/2)ˆ2]],ps(1),pc(magenta),pk("u = 3 * pi/2")),
more (title = "parametric plot",xlabel = "2 * cos(u)",ylabel = "uˆ2"))$

which yields the plot:

Figure 24: Parametric plot withx = 2 cos(u), y = u2

5 Polar Plots with polar(...)

A “polar plot” plots the points(x = r(θ) cos(θ), y = r(θ) sin(θ)), where the expressionr(θ) is supplied.

Theqdraw functionpolar has the syntax

polar(roftheta, theta, th1,th2, lc(c), lw(n), lk(string))

wheretheta , th1 , andth2 are in radians, and the last three arguments are optional.

A simple example is provided by the hyperbolic spiralr(θ) = 10/θ. The parametert representsθ and we make a plot
for 1 ≤ θ ≤ 3π.

(%i5) qdraw(polar(10/t,t,1,3 * %pi,lc(brown),lw(5)),nticks(200),
xr(-4,6),yr(-3,9),key(bottom) ,
pts([[10 * cos(1),10 * sin(1)]],ps(2),pc(red),pk("t = 1 rad")),
pts([[5 * cos(2),5 * sin(2)]],ps(2),pc(blue),pk("t = 2 rad")),
line(0,0,5 * cos(2),5 * sin(2)),
more(title = "polar plot",xlabel = "10 * cos(t)/t",ylabel = "10 * sin(t)/t"))$

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 20

which looks like:

Figure 25: Polar Plot withr = 10/θ

6 Implicit plots with imp(...) and imp1(...)

An implicit plot is here a two dimensional plot of an implicitly defined curve.

6.1 Quick implicit plots with imp(...)

The quick plotting functionimp(...) syntax has two forms:
eitherimp(eqnlist, x,x1,x2,y,y1,y2) or imp(eqn, x,x1,x2,y,y1,y2) . If the equation(s) are
actually functions of (u,v) thenx → u andy → v. The numbers (x1,x2) determine the horizontal canvas extent, and the
numbers (y1,y2) determine the vertical canvas extent.

Here is an example using the single equation form:

(%i3) e : sin(2 * x) * cos(y)$
(%i4) qdraw(imp(e=0.4,x,-3,3,y,-3,3),cut(key),

more(title=" sin(2 x) cos(y) = 0.4 ",xlabel = "x", ylabel = "y "))$

which produces the “implicit plot”:

Figure 26: Implicit plot ofsin(2 x) cos(y) = 4/10

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 21

which uses the default line width = 3, the first of the default rotating colors (blue), and, of course, the default
axes and grid. To remove the default key, we have used thecut function. Since the left hand side of this equa-
tion will periodically return to the same numerical value inboth the x and the y directions, there is no “limit”
to the solutions obtained by setting the left hand side equalto some numerical value between zero and one.

This looks like one piece of a contour plot for the given function. We can add more contour lines using theimp
function by using the listof equations form:

(%i5) qdraw(imp([e=0.4,e=0.7,e=0.9],x,-3,3,y,-3,3),c ut(key),
more(title=" sin(2 x) cos(y) = 0.4,0.7,0.9 ",xlabel = "x", y label = "y"))$

The resulting plot with the default rotating color set is

Figure 27: plot ofsin(2 x) cos(y) = 0.4, 0.7, 0.9

We need to arrange that the horizontal canvas width is about1.4 times the vertical canvas height in order that
geometrical shapes look closer to reality. For the present plot we simply change the numerical values of the
imp(...) function (x1,x2) parameters:

(%i6) qdraw(imp([e = 0.4,e = 0.7,e = 0.9] ,x,-4.2,4.2,y,-3, 3), cut(key))$

which produces a slightly different looking plot:

Figure 28: using canvas limits∆x = 1.4∆y

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 22

6.2 implicit plot (r = 1− cos(θ), r, 0, 2, θ, 0, 2 π)

There is nodraw2d implicit plot version specifically adapted to a descriptionin terms of polar coordinates
(r, θ), so we present a numerical method to make a plot which starts with a finite grid ofθ values.

In our file qdraw.mac we have a function calledmake_xygrid :

make_xygrid(Xfunc,Yfunc,Th0,Thf,Num) :=
block([dTh,Xgrid,Ygrid], numer:true,

dTh : float((Thf - Th0)/Num),
Xgrid : makelist(Xfunc(Th0 + n * dTh),n,0,Num),
Ygrid : makelist(Yfunc(Th0 + n * dTh),n,0,Num),
makelist([Xgrid[n],Ygrid[n]],n,1,Num+1))$

Our approach is then to express the x and y coordinates in terms of the angle (in radians) alone, by replacingr
by its expression in terms of the angle. We then construct a set of (x, y) points (an “x-y-grid”) corresponding to
various discrete values of the angle (in radians), usingmake_xygrid . We then useqdraw (pts(...),...)

to make a plot, using the optionpj(m) to join the discrete points. If we choose a fine enough mesh of angle
values (ie., a large enough value ofNum), then we approach an implicit plot of the type sought. We will divide
the angle interval[0, 2 π] into Num = 20subintervals as a first experiment.

(%i7) x(th):= cos(th) * (1-cos(th))$
(%i8) y(th):= sin(th) * (1-cos(th))$
(%i9) fpprintprec : 6$
(%i10) xygrid : make_xygrid(x,y,0,2 * %pi,20);
(%o10) [[0.0, 0.0], [0.046548, 0.0151244], [0.154508, 0.1 12257],
[0.242294, 0.333489], [0.213525, 0.657164], [6.12303e-1 7, 1.0],
[- 0.404508, 1.24495], [- 0.933277, 1.28455], [- 1.46353, 1 .06331],
[- 1.85557, 0.60291], [- 2.0, 2.44921e-16], [- 1.85557, - 0. 60291],
[- 1.46353, - 1.06331], [- 0.933277, - 1.28455], [- 0.404508 , - 1.24495],
[- 1.83691e-16, - 1.0], [0.213525, - 0.657164], [0.242294, - 0.333489],
[0.154508, - 0.112257], [0.046548, - 0.0151244], [0.0, 0.0]]
(%i11) qdraw(pts(xygrid,ps(0.1),pj(1)))$

which produces

Figure 29: implicit plot (r = (1− cos(θ))) for Num = 20

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 23

We can then add a title, x and y labels, and adjust the x and y ranges to get a better looking plot (keeping the 21
point description intact). We have approximately enforcedour rule of thumb∆x ≈ 1.4∆y for visual realism.

(%i12) qdraw(pts(xygrid,ps(0.1),pj(1)),xr(-3,1),yr(- 1.4,1.4),
more(title = "r = (1- cos(th))",xlabel = "x = r cos(th)",

ylabel = "y = r sin(th)"))$

which produces

Figure 30: implicit plot (r = (1− cos(θ))) for Num = 20

We can then increase the angle grid toNum = 60subintervals:

(%i13) xygrid : make_xygrid(x,y,0,2 * %pi,60)$
(%i14) qdraw(pts(xygrid,ps(0.1),pj(1)),xr(-3,1),yr(- 1.4,1.4),

more(title = "r = (1- cos(th))",xlabel = "x = r cos(th)",
ylabel = "y = r sin(th)"))$

which produces a fairly smooth plot

Figure 31: implicit plot (r = (1− cos(θ))) for Num = 60

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 24

We can compare our numerical grid approach above with usingpara for a parametric plot.

(%i15) qdraw(para(x(th),y(th),th,0,2 * %pi,lw(1)),xr(-3,1),yr(-1.4,1.4),
more(title = "r = (1- cos(th))",xlabel = "x = r cos(th)",

ylabel = "y = r sin(th)"))$

which produces

Figure 32: Usingpara for plot of (r = (1− cos(θ)))

We have good agreement between the two methods.

6.3 Implicit plot with two equations

(%i16) qdraw (imp([xˆ2 - yˆ2 = 1, y = exp(x)],x,-1.4 * %pi,1.4 * %pi,y,-%pi,%pi),
more(xlabel = "x", ylabel = "y", title = "xˆ2 - yˆ2 = 1, y = exp(x)"))$

which produces

Figure 33: Usingimp for plot of (x2 − y2 = 1, y = ex)

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 25

6.4 Implicit plot of a circle

Since1.4 * 1.2 = 1.68 ,

(%i17) qdraw (imp (xˆ2 + yˆ2 = 1,x,-1.68,1.68,y,-1.2,1.2), cut(key),
more(title = "xˆ2 + yˆ2 = 1",xlabel = "x",ylabel = "y"))$

which produces

Figure 34: Usingimp for plot of x2 + y2 = 1

6.5 Implicit plot of concentric circles

(%i18) e : (xˆ2+yˆ2-1) * (xˆ2+yˆ2-0.73) * (xˆ2+yˆ2-0.5) * (xˆ2+yˆ2-0.3)$
(%i19) qdraw (imp (e=0,x,-1.68,1.68,y,-1.2,1.2),cut(ke y),

more (xlabel = "x",ylabel = "y",title = "circles"))$

produces

Figure 35: Usingimp for plot of concentric circles

6 IMPLICIT PLOTS WITH IMP(...) AND IMP1(...) 26

6.6 Implicit Plots with Greater Control: imp1(...)

If we are willing to deal with one implicit equation of two variables at a time, we get more control over the plot
elements if we use theqdraw functionimp1(...), which has the syntax

imp1(eqn, x, x1,x2, y, y1,y2, lc(c), lw(n), lk(string))

As usual, if the equationeqn is actually a function of the pair of variablesu andv , then letx→ u, andy → v.
The first seven arguments are required and must be in the first seven slots. The last three arguments are all
optional and can be in any order.

Let’s illustrate the use ofimp1(...) by displaying a translated and rotated ellipse, together with the rotatedx
andy axes. In the following,eqn1 describes the rotated ellipse,eqn2 describes the rotated x axis, andeqn3

describes the rotated y axis. The angle of rotation is about63.4 deg (counter clockwise), which corresponds to
tanφ = 2. Notice that we take care to get the x-axis range about1.4 times the y-axis range, in order to get the
geometry approximately right (although this is highly dependent on the graphics window width and height).

(%i20) eqn1 : 5 * xˆ2 + 4 * x* y + 8 * yˆ2 - 16 * x + 8 * y - 16 = 0$
(%i21) eqn2 : y+1 = 2 * (x-2)$
(%i22) eqn3 : y+1 = -(x-2)/2$
(%i23) qdraw(imp1(eqn1,x,-2,6.4,y,-4,2,lc(red),lw(6) ,lk("ELLIPSE")),

imp1(eqn2,x,-2,6.4,y,-4,2,lc(blue),lw(4),lk("ROT X AX IS")),
imp1(eqn3,x,-2,6.4,y,-4,2,lc(brown),lw(4),lk("ROT Y A XIS")),

pts([[2,-1]],ps(2),pc(magenta),pk("TRANSLATED ORIGIN ")))$

which produces the plot

Figure 36: Rotated and Translated Ellipse

As a second example withimp1 we make a simple plot based on the equationy3 = x2.

(%i24) qdraw(imp1(yˆ3=xˆ2,x,-3,3,y,-1,3, lw(10), lc(da rk-blue), lk("Yˆ3 = Xˆ2")))$

7 CONTOUR PLOTS WITHCONTOUR(...) 27

which produces the plot:

Figure 37: Implicit Plot ofy3 = x2

7 Contour Plots with contour(...)

The functioncontour(...) , as an argument to eitherqdraw or wxqdraw , has the two forms:

contour(expr,x,x1,x2,y,y1,y2, cvals(v1,v2,...), optio ns)
contour(expr,x,x1,x2,y,y1,y2, crange(n,min,max), opti ons)

whereexpr is assumed to be a function of(x ,y) and the first form uses the supplied numerical values for contour
curves while the second form allows one to supply thenumber of contours (n), theminimum value for a contour (min)
and themaximum value for a contour (max). If we use the most basiccvals(...) form (ignoring options):

(%i3) e : sin(2 * x) * cos(y)$
(%i4) qdraw(contour(e, x,-4.2,4.2, y,-3,3, cvals(0.4,0. 7,0.9)))$

we get a “plain jane” contour plot having line width 1, with the key, grid, and (x,y)-axes removed, drawn in the color
“blue”:

Figure 38: simplest default contour example using cvals(..) form

Since the quick plot functionsex andimp both use the rotating default colors which cannot be turned off, we
would have to use theimp1 function with some of its options, to get the same results as the default use of
contour produces.

The available “options”, which can be used in any order (but after the required first eight arguments), arelw(n),
lc(color), andadd(add-options), where the “add-options” are any or all of theset
{grid,xaxis,yaxis,xyaxes} .

For example one could use

7 CONTOUR PLOTS WITHCONTOUR(...) 28

(%i5) qdraw(contour(e, x,-4.2,4.2, y,-3,3, cvals(0.4,0. 7,0.9), lw(2), add(grid)), ipgrid(15))$
contour working...

which also adds theqdraw function ipgrid(n) to get smoother curves than the default. This produces the
plot

Figure 39: adding lw(2), add(grid), ipgrid(15)

Thus the following invocation ofcontour:

(%i6) qdraw(contour(e,x,-4.2,4.2,y,-3,3,cvals(0.4,0. 7,0.9),
lw(2), lc(brown)), ipgrid(15))$

produces:

Figure 40: adding lw(2), lc(brown), ipgrid(15)

The addedqdraw functionipgrid with argument15 over-rides theqdraw default value of thedraw2d param-
eterip_grid_in . Thedraw2d default for this parameter is5, which results in some “jaggies” in implicit
plots. The default value inside theqdraw package is10, which generally produces smoother plots, but the
drawing process takes more time, of course. For our example here, we increased this parameter from10 to 15
to get a smoother plot at the price of increased drawing time.

Here is an example of using the second, “crange(n,min,max)”, form of contour:

(%i7) qdraw(contour(e, x, -4.2,4.2, y,-3,3, crange(4,0.2 ,0.9),
lc(brown)), ipgrid(15))$

contour working...

7 CONTOUR PLOTS WITHCONTOUR(...) 29

which produces the plot:

Figure 41: usingcrange(4, .2, .9)

A final example illustrates thecontour optionadd(xyaxes) to make a contour plot of the expression
sin(x) * sin(y) , using thecrange form.

(%i8) qdraw(contour(sin(x) * sin(y),x,-2,2,y,-2,2,crange(4,0.2,0.9),
lw(3), lc(blue), add(xyaxes)), ipgrid(15),

more(title = "sin(x) sin(y) contours",xlabel = "x",
ylabel = "y"))$

contour working...

which produces

Figure 42: using add(xyaxes) option

8 DENSITY PLOTS 30

8 Density Plots

A type of plot closely related to the contour plot is the density plot which paints small regions of the graphics
window with a variable color chosen to highlight regions where a function of two variables takes on large
values. Four completely separate density plotting functions, qdensity, wxqdensity, qdensity_mat , and
wxqdensity_mat are defined inqdraw.mac . These four density plotting functions are completely inde-
pendent of the default conventions and syntax associated with the functionqdraw.

8.1 qdensity (expr, [x, x1, x2, dx], ...) or wxqdensity (expr, [x, x1, x2, dx], ...)

The syntax ofqdensity or wxqdensity is

qdensity(expr,[x,x1,x2,dx],[y,y1,y2,dy], options)

(which assumes the expressionexpr depends on the symbolsx andy), where the two optional arguments are
palette(p) andpic(type,filename) . Thex interval (x1,x2) is divided into subintervals of sizedx ,
and likewise they interval(y1,y2) is divided into subintervals of sizedy .

If the palette(p) option is not present, a default “shades of blue” density plot is drawn (which corresponds
to palette (1,3,8) . To use the palette option, the argumentp can be either of the three words:blue , gray ,
or color , or else a three positive integer “red, green, blue” specification, such aspalette(8,3,1) (which
produces a density plot in “shades of red”).

To use thepic(type, filename) option, type can be eithereps or eps_color , and the filename is a
string – for example:"c:/work2/case5a" (the double quotes are required).

In the second and third argument (lists), usex andy if expr depends explicitly onx andy , or useu andv if
expr depends explicitly onu andv , etc.

A simple example of an expression isx y, which increases from zero at the origin to1 at (x = 1, y = 1).

(%i3) qdensity(x * y,[x,0,1,0.2],[y,0,1,0.2])$

This produces the density plot:

Figure 43: default palette density plot

8 DENSITY PLOTS 31

If we use the gray palette option

(%i4) qdensity(x * y,[x,0,1,0.2],[y,0,1,0.2],palette(gray))$

we get

Figure 44: palette(gray) option

while if we use palette(color), we get

Figure 45: palette(color) option

To get a finer sampling of the function, you should decrease the values ofdx anddy to 0.05 or less. Using the
default palette choice with the interval choice0.05 ,

(%i5) qdensity(x * y,[x,0,1,0.05],[y,0,1,0.05])$

yields a refined density plot with20 x 20 = 400 painted rectangular panels.

8 DENSITY PLOTS 32

Figure 46: interval set to0.05

A more interesting function to look at isf(x, y) = sin(x) sin(y).

(%i6) qdensity(sin(x) * sin(y),[x,-2,2,0.05],[y,-2,2,0.05])$

which yields

Figure 47:sin(x) sin(y)

8.2 qdensity mat (Amatrix, [x1,x2],[y1,y2] , options) or wxqdensity mat

The syntax ofqdensity mat or wxqdensitymat is

qdensity_mat (Amatrix, [x1,x2], [y1,y2], options)

8 DENSITY PLOTS 33

where the two optional arguments (which can be in any order after the first three args), arepalette(p) and
pic(type,filename) .

If the palette(p) option is not present, a default “shades of blue” density plot is drawn (which corresponds
to palette (1,3,8) . To use the palette option, the argumentp can be either of the three words:blue , gray ,
or color , or else a three positive integer “red, green, blue” specification, such aspalette(8,3,1) (which
produces a density plot in “shades of red”).

To use thepic(type, filename) option, type can be eithereps or eps_color , and the filename is a
string – for example:"c:/work2/case5a" (the double quotes are required).

An interactive example in which we create a matrix containing values ofmod (x,y) , (x modulo y), using
integral values1 ≤ x ≤ 30 and integral values1 ≤ y ≤ 20, and then invokeqdensity_mat follows. Note
that the matrix thus constructed has 20 rows and 30 columns, and 600 matrix elements. Also, we routinely set
display2d:false in our maxima-init.mac file.

(%i7) makelist(makelist(mod(x,y),x,1,5),y,1,4);
(%o7) [[0,0,0,0,0],[1,0,1,0,1],[1,2,0,1,2],[1,2,3,0, 1]]
(%i8) mod_table : makelist(makelist(mod(x,y),x,1,30),y ,1,20)$
(%i9) length(mod_table);
(%o9) 20
(%i10) first(mod_table);
(%o10) [0, 0,0,0,0,0,0,0,0]
(%i11) last(mod_table);
(%o11) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 ,19,0,1,2,3,4,5,6,7,8,9,10]
(%i12) M : apply (’matrix, mod_table)$
(%i13) length(M);
(%o13) 20
(%i14) length(transpose(M));
(%o14) 30
(%i15) row (M,20);
(%o15) matrix([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1 6,17,18,19,0,1,2,3,4,5,6,

7,8,9,10])
(%i16) qdensity_mat(M,[1,30],[1,20])$

which produces the plot

Figure 48: x modulo y

9 SCATTERPLOT EXAMPLE: OLD FAITHFUL WAIT TIMES VS. ERUPTIONDURATIONS 34

9 Scatterplot Example: Old Faithful Wait Times vs. Eruption Dura-
tions

The Old Faithful geyser (Yellowstone National Park) data file faithful.dat (available with the Ch. 13 files) contains 272 data
points describing geyser eruption events, with the first number being the duration (in min.) of the eruption event, and the second
number being the time (min) from the end of the eruption eventto the start of the next eruption event (the “wait time”).

We will make a plot of the “wait times” (vertical) vs the “eruption times” (horizontal). We first useread_nested_list to create
a nested list of event “points.”

(%i3) fL : read_nested_list("c:/work5/faithful.dat")$
(%i4) fll(fL);
(%o4) [[3.6,79],[4.467,74],272]

Theqdraw.mac functionfll returns[first, last, length] of the given list. We can then use thepts arg toqdraw to
make a simple scatterplot of these points.

(%i5) qdraw (pts (fL, ps(1), pc(black), pt(6)))$

which produces

Figure 49: Old Faithful: Wait Times vs. Duration Times

We see from this scatterplot that the wait times increase after an eruption event which has a long duration. If the eruption duration
is of the order of 4.5 min, then the wait time for the next eruption is of the order of 80 min. This makes physical sense, sincea long
duration eruption relieves more stress, and it should take longer for the stress to reach the next eruption stage.

We letfLs be the subset of event “points” which satisfy the condition (eruption duration)< 3 min.

(%i6) fLs : []$
(%i7) for j thru length(fL) do

if fL[j][1] < 3 then fLs : cons(fL[j],fLs)$
(%i8) fLs : reverse (fLs)$
(%i9) fll(fLs);
(%o9) [[1.8,54],[1.817,46],97]

We can redraw the scatterplot with the points having eruption durations less than 3 min being drawn in solid red color (same point
size though) to have an easy visual look:

(%i10) qdraw (pts (fL, ps(1),pc(black),pt(6)), pts (fLs, p s(1),pc(red)))$

which produces the plot

Figure 50: Old Faithful: Short Duration Times in Red

9 SCATTERPLOT EXAMPLE: OLD FAITHFUL WAIT TIMES VS. ERUPTIONDURATIONS 35

We can force a better range of values in both directions, and add a vertical line at the duration time of 3 min:

(%i11) qdraw (xr(1,6),yr(40,100), line(3,40,3,100),
pts (fL, ps(1),pc(black),pt(6)), pts (fLs, ps(1),pc(red)))$

which produces the plot

Figure 51: Old Faithful: Wait Times vs. Duration Times

We now produce a least squares fit of this data (assuming a linear fit) similar to the linear fit we carried out in
Maxima by Example, Chapter 2. See our discussion there for anexplanation of what we are doing here. The
list of points for all duration timesfL will be used to get the best fit straight line.

(%i12) load(lsquares);
(%o12) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/lsquares/lsquares.mac"
(%i13) Mf : apply(’matrix,fL)$
(%i14) row(Mf,1);
(%o14) matrix([3.6,79])
(%i15) length(Mf);
(%o15) 272
(%i16) soln : (lsquares_estimates(Mf, [x,y], y = a * x+b,

[a,b])), numer;
(%o16) [[a = 10.72964139513352,b = 33.47439702275336]]
(%i17) [a,b] : (fpprintprec:5, map(’rhs, soln[1]));
(%o17) [10.73,33.474]
(%i18) qdraw (xr(1,6),yr(40,100), line(3,40,3,100), key (bottom),

pts (fL, ps(1),pc(black),pt(6)), pts (fLs, ps(1),pc(red)),
ex1(a * x + b,x,1,6,lc(magenta),lk("linear fit")))$

which produces the plot

Figure 52: Old Faithful: Wait Times vs. Duration Times plus Linear Fit

10 DATA PLOTS, ERROR BARS, LEAST SQUARES FIT 36

10 Data Plots, Error Bars, Least Squares Fit
Two space-separated data files,fit1.dat and fit2.dat , are available for download or viewing with the Ch. 13 files onthe
author’s webpage. We will use those two files to illustrate making simple data plots using theqdraw functionspts(...) anderror-
bars(...).

You can print out the file content, usingprintfile("c:/work2/fit1.dat")$. We use Maxima’sread nested list function
to create a nested list of data points from the data file.

(%i3) plist : read_nested_list("c:/work2/fit1.dat");
(%o3) [[1,1.8904],[2,3.0708],[3,3.9215],[4,5.1813],[5,5.9443],[6,7.0156],

[7,7.8441],[8,8.8806],[9,9.8132],[10,11.129]]
(%i4) length (plist);
(%o4) 10

The most basic plot of this data uses thepts(...) function defaults:

(%i5) qdraw(pts(plist))$

which produces size 3 blue filled circle point markers:

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8 9 10

Figure 53: Using pts(...) Defaults

We can use theqdraw functionsxr(...) andyr(...) to override the default range selected bydraw2d, and decrease the point size:

(%i6) qdraw(pts(plist, ps(2)), xr(0,12), yr(0,15))$

with the result:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

Figure 54: Adding ps(2), xr(..), yr(..)

Now we change the point color to red and add a key string, and simple error bars corresponding to an assumed uncertainty of they
value of plus or minus1 for all the data points.

10 DATA PLOTS, ERROR BARS, LEAST SQUARES FIT 37

(%i7) qdraw(pts(plist,pc(red),pk("fit1"), ps(2)), xr(0 ,12),yr(0,15),
key(bottom), errorbars(plist, 1))$

which shows thin error bars in the default black color:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 55: Adding pc(red) and Simple Error Bars

The default error bar line width of1 is almost too small to see, so we thicken the error bars and change the error bar color to blue:

(%i8) qdraw(pts(plist, pc(red), pk("fit1"), ps(2)), xr(0 ,12),yr(0,15),
key(bottom), errorbars(plist, 1, lw(3), lc(blue)))$

with the result:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 56: Adding lw(3), lc(blue) to errorbars(...)

If the data set has individual uncertainties in they value, we create a listdyL , say,
of the valuesdy1, dy2, dy3,... and use the syntax

errorbars(pointlist, dyL, lw(n), lc(c))

10 DATA PLOTS, ERROR BARS, LEAST SQUARES FIT 38

Here is an example:

(%i9) dyL : [0.2,0.3,0.5,1.5,0.8,1,1.4,1.8,2,2];
(%o9) [0.2,0.3,0.5,1.5,0.8,1,1.4,1.8,2,2]
(%i10) map (’length,[plist,dyL]);
(%o10) [10,10]
(%i11) qdraw(pts (plist, pc(red), pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars (plist, dyL, lw(3), lc(blue)))$

with the result

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 57: Using a list of dy values with errorbars(..)

We now repeat the least squares fit of this data which we carried out in Chapter 1. See our discussion there for an explanation of what
we are doing here. Recall, from above,plist is a list of[x,y] pairs obtained from the data filefit1.dat .

(%i12) pmatrix : apply(’matrix, plist);
(%o12) matrix([1,1.8904],[2,3.0708],[3,3.9215],[4,5. 1813],[5,5.9443],

[6,7.0156],[7,7.8441],[8,8.8806],[9,9.8132],[10,11. 129])
(%i13) soln : (lsquares_estimates(pmatrix, [x,y], y = a * x+b,

[a,b])), numer;
(%o13) [[a = 0.9951478787878788,b = 0.9957666666666667]]
(%i14) [a,b] : (fpprintprec:5, map(’rhs, soln[1]));
(%o14) [0.99515,0.99577]
(%i15) qdraw(pts(plist, pc(red),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars(plist, dyL, lw(3),lc(blue)),
ex1(a * x + b,x,0,12,lc(brown),lk("linear fit")))$

We used theqdraw functionex1(...) to add the linef(x) = a x+ b to the data plot. The resulting plot with the least squares fitadded
is then:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1
linear fit

Figure 58: Adding the Linear Fit Line

11 GEOMETRIC FIGURES 39

Now we add the data in the filefit2.dat :

(%i16) printfile("c:/work5/fit2.dat");
1 0.9452
2 1.5354
3 1.9608
4 2.5907
5 2.9722
6 3.5078
7 3.9221
8 4.4403
9 4.9066
10 5.5645
(%o16) "c:/work5/fit2.dat"
(%i17) p2list: read_nested_list("c:/work5/fit2.dat");
(%o17) [[1,0.9452],[2,1.5354],[3,1.9608],[4,2.5907], [5,2.9722],[6,3.5078],

[7,3.9221],[8,4.4403],[9,4.9066],[10,5.5645]]
(%i18) length(p2list);
(%o18) 10
(%i19) qdraw(pts(plist,pc(red),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars(plist, dyL, lw(3),lc(blue)),
ex1(a * x + b,x,0,12, lc(brown),lk("linear fit 1")),
pts(p2list, pc(magenta),pk("fit2"),ps(2)),
errorbars(p2list,0.5,lw(3)))$

which produces the plot

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1
linear fit 1

fit2

Figure 59: Adding the Second Set of Data

We could then find the least squares fit to the data set 2 and again use the functionex1(...) to add that fit to our plot, and add any other
features desired.

11 Geometric Figures

11.1 line(...)

Theqdraw functionline has the syntax

line(x1, y1, x2, y2, lc(c), lw(n), lk(string))

which draws a line from(x1,y1) to (x2,y2) . The last three arguments areoptional and can be in any order
after the first four arguments.

For example,line(0,0,1,1, lc(red), lw(6), lk("radius")) will draw a line from(0, 0) to (1, 1)
in red with line width6 and with a key entry with the text “radius”. The defaults are color blue, line width3,
and no key entry.

(%i3) qdraw(line(0,0,1,1))$

11 GEOMETRIC FIGURES 40

produces the default line withdraw2d’s default range:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 60: Default line(..)

Adding some options and extending the canvas range in both directions

(%i4) qdraw(line(0,0,1,1,lc(red),lw(6),lk("radius")) ,
xr(0,2),yr(0,2),key(bottom),
pts([[1,1]] , ps(2), pc(blue), pk("point")))$

produces a red line to a blue point:

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

radius
point

Figure 61: Adding options to line(..)

qdraw.mac contains the definition of the functiondoplot1(nlw) (nlw is the requested line width). The
definition is:

doplot1(nlw) := block([cc,qlist,x,val],
/ * list of 20 single name colors * /
cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod ,green,khaki,

magenta,orange,pink,plum,purple,red,salmon,skyblue, turquoise,
violet,yellow],

qlist : [xr(-3.3,3)],
for i thru length(cc) do (

x : -3.3 + 0.3 * i,
val : line(x,-1,x,1, lc(cc[i]),lw(nlw)),
qlist : append(qlist, [val])),

qlist : append(qlist,[cut(all)]),
apply(’qdraw, qlist))$

(Usingappend instead ofcons is slower, but doesn’t matter here.) Here usedoplot1 to produce a series of
vertical colored lines.
(%i5) doplot1(10)$

11 GEOMETRIC FIGURES 41

which produces (note use ofcut(all) to get a blank canvas):

Figure 62: Using line(...) to Display Some Colors

11.2 rect(...)

Theqdraw functionrect has the syntax

rect(x1, y1, x2, y2, lc(c), lw(n), fill(c))

which will draw a rectangle with opposite corners(x1,y1) and(x2,y2) . The last three arguments areop-
tional; without them the rectangle is drawn in default blue with line thickness 3 and with no fill color. An
example with all three optional args is:rect(0,0,1,1,lc(brown),lw(2),fill(khaki)) .

We start with the basic default rectangle call:

(%i6) qdraw (xr (-1,2), yr (-1,2), rect (0,0,1,1))$

with the result

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

Figure 63: Default rect (0,0,1,1)

We now add some color, thickness and fill:

(%i7) qdraw(xr(-1,2),yr(-1,2),
rect(0,0,1,1, lw(5), lc(brown), fill(khaki)))$

11 GEOMETRIC FIGURES 42

with the output:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

Figure 64: rect(0,0,1,1, lc(brown), lw(5), fill(khaki))

Finally, we userect for a set of nested rectangles.

(%i8) qdraw(xr(-3,3),yr(-3,3), rect(-2.5,-2.5,2.5,2.5 ,lw(4),lc(blue)),
rect(-2,-2,2,2,lw(4),lc(red)),
rect(-1.5,-1.5,1.5,1.5,lw(4),lc(green)),
rect(-1,-1,1,1,lw(4),lc(brown)),
rect(-.5,-.5,.5,.5,lw(4),lc(magenta)),

cut(all))$

which produces:

Figure 65: Nested Rectangles using rect(..)

11.3 poly(...)

Theqdraw functionpoly has the syntax

poly(pointlist, lc(c), lw(n), fill(c))

in whichpointlist has the same form as when used withpts:
[[x1,y1], [x2,y2], ... [xn,yn]] ,

and the argumentslc , lw , andfill are optional and can be in any order after pointlist. The lastpoint in the
list will be automatically connectd to the first.

11 GEOMETRIC FIGURES 43

The default call topoly has color blue, line width 3 and no fill color.

(%i9) qdraw(xr(-2,2),yr(-1,2),cut(all),
poly([[-1,-1],[1,-1], [2,2]]))$

This default use ofpoly produces a “plain jane” triangle:

Figure 66: Default use of poly(...)

qdraw.mac contains the Maxima functiondoplot2() which will draw eighteen stacked right triangles in
various colors:

doplot2() :=
block([cc, qlist,x1,x2,y1,y2,i,val],

cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod ,green,khaki,
magenta,orange,pink,plum,purple,red,salmon,skyblue, turquoise,
violet,yellow],

qlist : [xr(-3.3,3.3), yr(-3.3,3.3)],
/ * top row of triangles * /

y1 : 1,
y2 : 3,
for i:0 thru 5 do (

x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x2,y1],[x1,y2]], fill(cc[i+1])),

qlist : append(qlist, [val])),
/ * middle row of triangles * /

y1 : -1,
y2 : 1,
for i:0 thru 5 do (

x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x1,y2],[x2,y2]], fill(cc[i+7])),
qlist : append(qlist, [val])),

/ * bottom row of triangles * /
y1 : -3,
y2 : -1,
for i:0 thru 5 do (

x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x2,y1],[x1,y2]], fill(cc[i+13])),
qlist : append(qlist, [val])),

qlist : append(qlist,[cut(all)]),
apply(’qdraw, qlist))$

Here we usedoplot2() :

(%i10) doplot2()$
this is doplot2

11 GEOMETRIC FIGURES 44

with the resulting graphics:

Figure 67: Using poly(...) with Color

For “homework”, usepoly andpts to draw the following figure. (Hint: you should also usexr(...) andcut(...)).

Figure 68: Homework Problem

11 GEOMETRIC FIGURES 45

11.4 circle(...) and ellipse(...)

Theqdraw functioncircle has the syntax:

circle(xc,yc, r, lc(c), lw(n), fill(c))

which draws a circle centered at(xc,yc) and having radiusr . The last three arguments are optional and may be entered
in any order after the required first three arguments.
This object will not “look” like a circle unless you take careto make the horizontal extent of the “canvas” about1.4 times
the vertical extent by usingxr(...) andyr(...) (although this is complicated by the size and configuration of the window
used.

Here is the default circle in blue, with line width 3, and no fill color.

(%i11) qdraw(xr(-2,2),yr(-2,2),circle(0,0,1))$

which looks like

Figure 69: Default “circle”

By usingxr(...) andyr(...) we try for a “round” circle and also add what should be a 45 degree line.

(%i12) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
circle(0,0,1,lw(5),lc(brown),fill(khaki)),

line(-1.5,-1.5,1.5,1.5,lw(8), lc(red)))$

with the result:

Figure 70: line over “round” circle

11 GEOMETRIC FIGURES 46

The line paintedover the circle because of the order of the arguments toqdraw. If we reverse the order,
drawing the line before the circle:

(%i13) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
line(-1.5,-1.5,1.5,1.5,lw(8),lc(red)),
circle(0,0,1,lw(8),lc(brown),fill(khaki)))$

then the circle fill color will hide the line:

Figure 71: circle over line

Theqdraw functionellipse has the syntax:

ellipse(xc,yc,xsma,ysma,th0deg,dthdeg, lw(n), lc(c), f ill(c))

which will plot a partial or whole ellipse centered at(xc,yc) , oriented with ellipse axes aligned along thex

andy axes, having horizontal semi-axisxsma, vertical semi-axisysma, beginning atth0deg degrees measured
counter clockwise from the positivex axis, and drawn fordthdeg degrees in the counter clockwise direction.

The last three arguments are optional. The default is the outline of an ellipse for the specified angular range in
color blue, line width 3, and no fill color.

Here is the defaultellipse behavior:

(%i14) qdraw(xr(-4.2,4.2),yr(-3,3),
ellipse(0,0,3,2,90,270))$

which produces

Figure 72: ellipse(0,0,3,2,90,270)

If we add color, fill, and some curvy background, as in

(%i15) qdraw(xr(-5.6,5.6),yr(-4,4),ex1(x,x,-4,4,lc(b lue),lw(5)),
ex1(4 * cos(x),x,-4,4,lc(red),lw(5)),

ellipse(0,0,3,1,90,270,lc(brown),lw(5),fill(khaki)) ,cut(all))$

11 GEOMETRIC FIGURES 47

we get the plot

Figure 73: Filled Ellipse plus . . .

11.5 vector(...)

Theqdraw functionvector has the syntax

vector([x,y],[dx,dy],ha(thdeg),hb(v),hl(v),ht(t),lw (n),lc(c),lk(string))

which draws a vector with components [dx,dy] starting at [x,y].
The first two list arguments are required, all others are optional and can be entered in any order after the first
two required arguments.
The default “head angle” is 30 deg; change to 45 deg usingha(45) for example.
The default “head both” value isf for false; usehb(t) to set it to true, andhb(f) to return to false.
The default “head length” is 0.5; usehl(0.7) to change to 0.7.
The default “head type” is “not-filled”; useht(e) for “empty”, ht(f) for “filled,” and ht(n) to change back
to “not-filled.”
Once one of the “head properties” has been changed in a call tovector, the next call tovector assumes the
change is still in force.
The default line width is 3; uselw(5) to change to 5.
The default line color is blue; use, for example,lc(brown) to change to brown.
The default is no key string; uselk("A1") , for example, to create a text string for the key.

Here is a use ofvector which accepts all defaults:

(%i16) qdraw(xr(-2,2), yr(-2,2), vector([-1,-1], [2,2]))$

11 GEOMETRIC FIGURES 48

with the result:

Figure 74: Default Vector

We can thicken and apply color to this basic vector with

(%i17) qdraw(xr(-2,2),yr(-2,2),
vector([-1,-1],[2,2],lw(5),lc(brown),lk("vec 1")),

key(bottom))$

which produces

Figure 75: Adding Color, etc.

11 GEOMETRIC FIGURES 49

Next we can alter the “head properties,” but let’s also make this vector shorter. We useht(e) to set headtype
to “empty”, hb(t) to set headboth to “true”, andha(45) to set headangle to45 degrees.

(%i18) qdraw(xr(-2,2),yr(-2,2),
vector([0,0],[1,1],lw(5),lc(brown),lk("vec 1"),

ht(e), hb(t), ha(45)), key(bottom))$

which produces:

Figure 76: Changing Head Properties

Once you invoke the head properties options, the new settings are used on your next calls tovector (unless you
deliberately change them). Here is an example of that memoryfeature at work:

(%i19) qdraw(xr(-2.8,2.8),yr(-2,2),vector([0,0],[1,1],lw(5),lc(brown),lk("vec 1"),ht(e),
hb(t),ha(45)), vector([0,0],[-1,-1],lw(5),lc(magenta),lk("vec 2")),key(bottom))$

and we also used the x-range setting to get the geometry closer to reality, with the result:

Figure 77: Head Properties Memory at Work

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 50

11.6 arrowhead(..)

The syntax of theqdraw functionarrowhead is

arrowhead(x, y, theta-degrees, s, lc(c), lw(n))

which will draw an arrow head with the vertex at(x,y) .
The first four arguments are required and must be numbers.
The third argumenttheta is an angle indegrees and is the direction the arrowhead is to point relative to the
positive x axis, ccw from the x axis taken as a positive angle.
The fourth arguments is the length of the sides of the arrowhead.
The argumentslc(c) andlw(n) are optional, and are used to alter the default color (blue) and line width (3).
The opening half angle is hardwired to bephi = 25 deg = 0.44 radians .
The geometry will look better if the x-range is about 1.4 times the y-range.

Here are four arrow heads drawn with the default line widths and color and “size”0.3, which show the use of
the direction argument in degrees.

(%i20) qdraw(xr(-2.8,2.8),yr(-2,2),
arrowhead(1.5,0,180,.3),arrowhead(0,1,270,.3),
arrowhead(-1.5,0,0,.3),arrowhead(0,-1,90,.3))$

which produces the plot:

Figure 78: Default arrowhead(...) Examples

12 Greek Letters, Math Symbols, and Adjustable Font Size with Labels

The qdraw.mac function label can be used to place Greek letters, some mathematical symbols (and normal
text) with adjustable font size, on your plots. This abilityrequires the use of a more elaborate “string” than we
have used above. The default color used withlabel(s,x,y) is black. You can produce a label in your choice of
color by using the syntaxlabel(s,x,y,lc(A-Color)) , as inlabel("mytext",1,1,lc(blue)) , for example.

As a first example, we combineline, ellipse, arrowhead, andlabel to show an angle labeled with the Greek
letterθ, as well as a small left pointing arrow and a normal text description as part of one label.

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 51

(%i3) qdraw(xr(0,4),yr(0,2),line(0,0,4,0,lc(black),l w(2)), line(0,0,2,2,lc(blue),lw(3)),
ellipse(0,0,1,1,0,45), arrowhead(0.707,0.707,135,0.1 5),
label(["{/=36 {/Symbol q \\254 } The Angle}",1,0.4]),
cut(all))$

which produces the plot (you may need to expand the window of the graphics to see all of the text description part of the label):

Figure 79: line(..), ellipse(..), arrowhead(..), label(..)

The syntax used was

label ([String, x, y])

in which

String = "{ /=36 symbols-bracket latin-text }"

and the beginning{/=36 set the font size for both of the following items until a matching brace (}) is found. Thesymbols-bracket
began with/Symbol and forceddraw to use the symbol dictionaries which convertq to θ and convert\\254 to←.

The entry{/Symbol q } by itself, inside the string, would produce just the Greek letterθ. Wrapping the text entry in the structure
{/=36 } accepts the default font type and sets the font size to 36 for the text inside the matching pair of braces.

We can instead uselabel twice to get more control over the font size and position of the textThe Incline Angle, as shown here

(%i4) qdraw(xr(0,2.8),yr(0,2),line(0,0,2.8,0,lw(2)), line(0,0,2,2,lc(blue),lw(8)),
ellipse(0,0,1,1,0,45), arrowhead(0.707,0.707,135,0.1 5),
label(["{ {/Symbol=36 q \\254 } }",1,0.4]),

label (["{ /=15 The Incline Angle}", 1.7, 0.42]))$

which produces the plot

Figure 80: line(..), ellipse(..), arrowhead(..), label(..)

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 52

We can get exactly the same plot using only onelabel by using the two bracket syntax

label ([String1,x1,y1], [String2, x2,y2])

as in the following:

(%i5) qdraw(xr(0,2.8),yr(0,2),line(0,0,2.8,0,lw(2)), line(0,0,2,2,lc(blue),lw(8)),
ellipse(0,0,1,1,0,45), arrowhead(0.707,0.707,135,0.1 5),
label(["{ {/Symbol=36 q \\254 } }",1,0.4],

["{ /=15 The Incline Angle}", 1.7, 0.42]))$

A summary of advanced use of the draw package functions is found at
http://riotorto.users.sourceforge.net/Maxima/gnuplo t/index.html .
If you use the link to
http://riotorto.users.sourceforge.net/gnuplot ,
at the top of the introduction to the draw package in the Contents section of the Maxima html help manual, you are taken to a revised
link and finally to the same contents as above, although inside the Maxima html Help manual.

You can then find several examples of the use of Greek letters if you click on the successive links
Graphics objects, label, enhanced text .

As a second example, we write the equationP = ρ k T using labels as shown in this example, using three differentfont sizes and
also switching from the default font to the Helvetica font.

(%i6) qdraw (xr(-3,3),yr(-3,3), label (["P = {/Symbol r}kT ",-1,1]),
label (["{/Helvetica=18 P = {/Symbol r}kT}",1,1]),

label (["{/Helvetica=24 P = {/Symbol r}kT}",1,-1,lc(blue)]))$

which produces the figure

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

P = ρkT P = ρkT

P = ρkT

Figure 81: Font and Greek Examples

We next make a lower case Latin text characters to Greek conversion table using four instances oflabel, although we could alterna-
tively have used the syntaxlabel([s1,x1,x2], [s2,x2,y2],...) .

(%i7) qdraw(xr(-5,5),yr(-2,2),label_align(c),
label(["{/=48 a b c d e f g h i j k l m}",0,1.5]),

label(["{/Symbol=48 a b c d e f g h i j k l m}",0,0.5]),
label(["{/=48 n o p q r s t u v w x y z}",0,-.5]),

label(["{/Symbol=48 n o p q r s t u v w x y z}",0,-1.5]),
cut(all))$

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 53

which produces (you may need to expand the gnuplot window to see the complete graphic):

a b c d e f g h i j k l m

α β χ δ ε φ γ η ι ϕ κ λ µ

n o p q r s t u v w x y z

ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ

Figure 82: Lower Case Latin to Greek

To see the complete graphic, you will need to increase the inline graphics window temporarily if you are usingwxqdraw with the
wxMaxima interface, as in

(%i3) wxplot_size;
(%o3) [600,400]
(%i4) wxqdraw(xr(-5,5),yr(-2,2),label_align(c),

label(["{/=48 a b c d e f g h i j k l m}",0,1.5]),
label(["{/Symbol=48 a b c d e f g h i j k l m}",0,0.5]),
label(["{/=48 n o p q r s t u v w x y z}",0,-.5]),

label(["{/Symbol=48 n o p q r s t u v w x y z}",0,-1.5]),
cut(all)), wxplot_size = [1024,768]$

We can repeat that label figure using upper case Latin letters:

(%i8) qdraw(xr(-3,3),yr(-2,2),label_align(c),
label(["{/=48 A B C D E F G H I J K L M}",0,1.5]),

label(["{/Symbol=48 A B C D E F G H I J K L M}",0,0.5]),
label(["{/=48 N O P Q R S T U V W X Y Z}",0,-.5]),

label(["{/Symbol=48 N O P Q R S T U V W X Y Z}",0,-1.5]),
cut(all))$

which produces (again, you may have to widen-drag the Gnuplot window to see the whole graphic)

A B C D E F G H I J K L M

Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ

N O P Q R S T U V W X Y Z

Ν Ο Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ

Figure 83: Upper Case Latin to Greek

Useful mathematical character codes, consisting of three numbers preceded by a double backslash, are
\\243 ≤ (less than or equal)
\\245 ∞ (infinity symbol)
\\253 ↔ (double ended arrow)
\\254 ← (left arrow)
\\256 → (right arrow)
\\261 ± (plus or minus)
\\263 ≥ (greater than or equal)

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 54

\\264 × (times)
\\271 6= (not equal)
\\273 ≈ (approx equal)
\\345

∑
(summation sign)

\\362
∫

(integral sign)

We can uselabel to make a graphics table of available mathematical symbols.The use of&{junk} inside the string creates
empty space corresponding to the number of characters inside the braces.

(%i9) s1 : "{/=36 243 {/Symbol \\243} &{abcd} 254 {/Symbol \\ 254} &{abcd} 263
{/Symbol \\263} &{abcd} 273 {/Symbol \\273}}"$
(%i10) s2 : "{/=36 245 {/Symbol \\245} &{abcd} 256 {/Symbol \ \256} &{abcd} 264
{/Symbol \\264} &{abcd} 345 {/Symbol \\345}}"$
(%i11) s3 : "{/=36 253 {/Symbol \\253} &{abcd} 261 {/Symbol \ \261} &{abcd} 271
{/Symbol \\271} &{abcd} 362 {/Symbol \\362}}"$
(%i12) qdraw(xr(-3,3),yr(-2,2),label([s1,-2,1]), labe l([s2,-2,0]), label([s3,-2,-1]),cut(all))$

which produces the figure:

Figure 84: Useful Character Code Symbols

You Can Convert Latin to Greek inside the Gnuplot Window

You can convert Latin letters to Greek as follows. First produce a graphic in the gnuplot window, in which the
angle is labeled with the letterq:

(%i13) qdraw(xr(0,2.8),yr(0,2),line(0,0,2.8,0),
line(0,0,2,2,lc(blue),lw(5)),

ellipse(0,0,1,1,0,45),
arrowhead(0.707,0.707,135,0.15),

label(["q",1,0.4]), cut(all))$

12 GREEK LETTERS, MATH SYMBOLS, AND ADJUSTABLE FONT SIZE WITH LABELS 55

which produces the plot

Figure 85: Start withq as angle label

When the gnuplot window appears, click on the Options icon and then click on Font. In the left Font panel,
chooseGraecall font, from the middle panel chooseregular , and click on size 36 in the right panel and
click ok . The English letterq (lower case) is then converted toθ. You then have the graphic Gnuplot window
with

Figure 86: options,font, Graecall convertsq to θ

In the Gnuplot window, copy the new graphic with the Greek letter θ labeling the angle to the Clipboard and
then open an image viewer. In the freely available Irfanviewprogram, if you use Edit, Paste, the clipboard
image appears inside Irfanview, and you can then save the image as a jpeg (.jpg) file in your choice of folder.

You can convert the jpg graphics file to an eps graphics file using the freely available Cygwin program, with
the command

convert myfile.jpg myfile.eps

13 EVEN MORE WITHMORE(...) 56

13 Even More with more(...)

You can use theqdraw function more(...), containing some legaldraw2d elements, (which we used above
when presenting examples ofex(...) andex1(...), etc.) as we illustrate here by adding an x-axis label and a title.
This is done by usingmore(...) with two legaldraw arguments.

(%i3) qdraw(ex([x,xˆ2,xˆ3],x,-2,2),
more(xlabel = "X AXIS", title="intersections of x, xˆ2, xˆ3 "),

cut(key),vector([-1,5],[-0.4,-2.7],lc(red),hl(0.1)) ,
label(["xˆ2",-0.9,6]),
vector([-1.2,-6],[-0.5,0],lc(turquoise),lw(8)),
label(["xˆ3", -1,-5.5]),

pts([[-1,-1],[0,0],[1,1]],ps(2),pc(magenta)))$

which produces

-8
-6
-4
-2
 0
 2
 4
 6
 8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X AXIS

intersections of x, x2, x3

x2

x3

Figure 87: Using more(...) for title and x-axis Label

14 BASIC ELEMENTS OF THE DRAW PROGRAM 57

14 Basic Elements of the draw Program

From the webpage

http://riotorto.users.sourceforge.net/Maxima/gnuplo t/index.html

we provide a list of the links which lead to more information about the basic elements of thedraw package.

14.1 Introduction

Introduction

This is a Maxima-Gnuplot interface.

There are three functions to be used at Maxima level: draw2d, draw3d and draw.
To read the available documentation about functions, varia bles and graphic options,

type, for example, ? point_type for information about point _type, etc.

More or less, this package works as follows. Scenes are descr ibed in gr2d or
gr3d objects, which are then passed to function draw. If more than one

scene is described, a multiplot will be generated,
as in draw(gr2d(...),gr3d(...)) but if you want only one sce ne,
draw2d(...) and draw3d(...) are equivalent to draw(gr2d(. ..)) and
draw(gr3d(...)), respectively. See examples bellow.

14.2 Graphic objects

Graphic objects

Click on the items below to see examples of graphic objects pl otted
with the VTK libraries.

bars
cylindrical
elevation_grid
ellipse
errors
explicit
geomap
image
implicit
label
mesh
parametric
parametric_surface
points
polar
polygon
rectangle
region
spherical
triangle
tube
vector

14 BASIC ELEMENTS OF THE DRAW PROGRAM 58

14.3 Global options

Global options

Global options are those which are related to the whole plot.
They can be written anywhere in the scene description.

allocation. Used in multiplots. Some examples: (1, 2)
axis_3d. Removes all the axes in 3D scenes. Example: (1, 2, 3)
axis_top, axis_right. Show and hide axes. Some examples: (1 , 2, 3)
background_color. Sets the background color. Example: (1, 2, 3, 4, 5)
cbrange. Sets the range of the color box. Example: (1)
cbtics. Sets the tics of the color box. Example: (1)
colorbox. Shows and hides the color box. Some examples: (1, 2 , 3, 4)
columns. Number of columns in multiplots. Some examples: (1 , 2, 3, 4)
contour. Plots contour lines on explicit surfaces. Some exa mples: (1)
contour_levels. Defines the levels to be plotted. Some exam ples: (1)
delay. Used in animations. Some examples: (1, 2, 3)
dimensions. Sets the dimensions of the plot in format [width , height].

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
file_name. Sets the name of the graphic file. Some examples: (1, 2, 3, 4, 5)
font. Sets the font type. Example: (1, 2, 3, 4)
font_size. Sets the size of the fonts. Example: (1, 2, 3, 4)
grid. Used to draw grid lines on the plane. Some examples: (1, 2, 3, 4, 5, 6, 7, 8)
logcb. Sets the logarithmic scale in the color box. Example: (1)
logx, logy, logz. Indicates which axes must be transformed i n
logarithmic scales. Some examples: (1, 2, 3)
palette. In 3D scenes, selects the palette. Some examples: (1, 2, 3, 4, 5, 6)
proportional_axes. Proportional axes. Example: (1, 2, 3, 4 , 5, 6, 7)
surface_hide. Hides the surface. Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
terminal. By default, the output terminal is the screen. Oth er terminals are:

PNG (1, 2), SVG (1, 2), WXT (1, 2, 3, 4, 5), EPS (1, 2, 3, 4),
EPS_COLOR (1, 2, 3, 4, 5, 6), GIF (1), animated GIF (1, 2, 3, 4),
Multimode plots (1), EPSLATEX_STANDALONE (1)

title. Writes a title on the scene. Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
user_preamble. Let’s the user write his own Gnuplot code. So me examples: (1, 2, 3)
view. Positions the viewer in 3D scenes. Some examples: (1, 2 , 3)
xaxis, xaxis_secondary, yaxis, yaxis_secondary, zaxis. S how and hide the axes.

Some examples: (1, 2, 3, 4, 5)
xaxis_color, yaxis_color, zaxis_color. Set axes colors. S ome examples: (1, 2)
xaxis_type, yaxis_type, zaxis_type. Set axes types. Some e xamples: (1, 2)
xaxis_width, yaxis_width, zaxis_width. Set axes widths. S ome examples: (1, 2)
xlabel, ylabel, zlabel. Sets axes labels. Some examples: (1 , 2, 3, 4, 5, 6, 7)
xrange, yrange, zrange. Sets the ranges of the axes. Example : (1, 2, 3, 4)
xtics, xtics_secondary, ytics, ytics_secondary, ztics. S how and hide axes tics.

Some examples: (1, 2, 3, 4, 5, 6, 7)
xtics_axis. Show and hide axes tics. Some examples: (1, 2)
xtics_rotate, ytics_rotate. Rotates tics. Example: (1)
xy_file. Name of file where coordinates are saved. Example: (1)

15 PROGRAMMING HOMEWORK EXERCISES 59

14.4 Local Options

Local options

Local options are those which affect the appearance of indiv idual graphic objects.
They must be declared before the objects in the scene descrip tion.

border. Shows and hides borders of polygons and ellipses. Ex ample: (1, 2, 3)
capping. Declares if circles must be drawn at the extrems of a tube. Example: (1)
color. Sets the plotting color.

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
enhanced3d. In 3D scenes, defines a colored pattern to proje ct on a surface.

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
error_type. Option for error plots. Some examples: (1)
filled_func. Indicates whether a 2d function must be filled or not.

Default is not (false). Some examples: (1, 2, 3)
fill_color. Sets the color to fill an area.

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
fill_density. Sets the color density. Example: (1, 2)
head_both. Option for vectors. Example: (1)
head_angle. Option for vector heads. Example: (1)
head_length. Option for vector heads. Example: (1, 2, 3)
key. Defines the label of an object to be written in the legend .

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
label_alignment. Sets label alignment. Example: (1, 2)
label_orientation. Sets label orientation. Example: (1)
line_type. Sets the type of lines. Example: (1, 2, 3, 4)
line_width. Sets the width of lines. Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9)
nticks. Declares the number of points to be calculated for pl otting curves.

Some examples: (1, 2, 3, 4, 5, 6)
points_joined. true, false, or impulses. Some examples: (1 , 2, 3, 4, 5)

point_size. Sets the size of points. Some examples: (1, 2, 3)
point_type. Sets the type of points. Some examples: (1, 2, 3, 4, 5)
transform. Allows to perform geometric transformations.

Example: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
transparent. Makes 2D polygons transparent. Example: (1, 2 , 3, 4, 5, 6, 7)
unit_vectors. Plot vector of unit length. Example: (1)
x_voxel, y_voxel, z_voxel. Sets the resolution in 2D region s and implicit

3D objects. Example: (1, 2, 3, 4)
xu_grid, yv_grid. Defines the resolution for plotting surf aces.

Some examples: (1, 2, 3, 4, 5, 6, 7, 8, 9)

15 Programming Homework Exercises

General Comments

The file qdraw.mac is a text file which you can modify with a good text editor such as the freely avail-
ablenotepad++ . This Maxima code is heavily commented as an aid to passing onsome Maxima language
programming examples. You can get some experience with the Maxima programming language elements by
copying the fileqdraw.mac to another name, saymyqdraw.mac , and use that copy to make modifications to
the code which might interest you. By frequently loading in the modified file withload(myqdraw) , you can
let Maxima check for syntax errors, which it does immediately.

The most common syntax errors involve parentheses and commas, with strange error messages such as “BLANK
IS NOT AN INFIX OPERATOR”, or “TOO MANY PARENTHESES”, etc. Placing a comma just before a

15 PROGRAMMING HOMEWORK EXERCISES 60

closing parenthsis is a fatal error which can nevertheless creep in; this may happen if you delete a debug print-
out placed inside and at the end of a do loop.

You may find it useful to insert some special debug printouts,such asprint("in blank, a = ",a) or
display(a) , perhaps in the middle (or the end) of a do loop:

for i thru n do (
job1,
job2,
print("i = ",i," at end of job2, blank = ", blank),
job3),
...program continues...

When you are finished debugging a section, you can either comment out the debug printout or delete it to clean
up the code.

It is crucial to use a good text editor which will “balance” parentheses, brackets, and braces to minimize paren-
theses etc errors.

If you look at the general structure ofqdraw, you will see that all of the real work is done byqdraw1. If you
call qdraw1 instead ofqdraw, you will be presented with a rather long list of elements which are understood
by draw2d. Even if you useqdraw, you will see the same long list wrapped bydraw2d if you have not loaded
thedraw package. Looking at this list is an excellent way to debug this program.

One feature you should look at is how a function which takes anarbitrary number of arguments, depending on
the user (as does the functiondraw2d), is defined. If this seems strange to you, experiment with a toy function
having a variable number of arguments, and use printouts inside the function to see what Maxima is doing.

XMaxima Tips

It is useful to first try out a small code idea directly in XMaxima, even if the code is ten or fifteen lines long. When you
want to edit your previous “try”, useAlt-p to enter your previous code entry, and backspace over eitherthe; or $ which
ends the code. You can then left-cursor and up-cursor to an area where you want to add a new line of code, and with the
cursor placed just after a comma, pressENTERto create a new (blank) line. Since the block of code has not been properly
concluded with either a); or)$, Maxima will not try to “run” the version you are working on when you pressENTER.
Once you have made the changes you want, cursor your way to theend and put back the correct ending and then pressing
ENTERcause Maxima to execute the entry.

The use ofHOME, END, PAGEUP, PAGEDOWN, CNTRL-HOME, andCNTRL-ENDgreatly speeds up working with
XMaxima. For example to copy a code entry up near the top of your current workspace, first enterHOMEto put
the cursor at the beginning of the current line, thenPAGEUPor CNTRL-HOMEto get up to the top fast, then drag
over the code (don’t include the(%i5) part) to the end butnot to the concluding; or $. You can hold down
theSHIFT key and use the right (and left) cursor key to help you select aregion to copy, or use the two key
commandSHIFT-END.

Then pressCNTRL-Cto copy the selected code to the clipboard. Then pressCTRL-ENDto have the cursor move
to the bottom of your workspace where XMaxima is waiting for your next input. PressCNTRL-V to paste your
selection. If the selection extends over multiple lines, use the down cursor key to find the end of the selection
which should be without the proper code ending; or $. You are then in the driver’s seat and can cursor your
way around the code and make any changes without danger of XMaxima pre-emptively sending your work to
the computing engine until you go to that end and provide the proper ending.

15 PROGRAMMING HOMEWORK EXERCISES 61

Suggested Projects

You will have noticed that we used theqdraw functionmore in order to insert axis labels and a title into our
plot. Designqdraw functionsxlabel(string) , ylabel(string) , andtitle(string) . Place them in
the “scan 3” section ofqdraw and try them out. You will need to pay attention to how new elements get passed
to draw2d. In particular, look at the listdrlist , using your text editor search function (innotepad++ ,
Ctrl-f) to see how that list is constructed based on the user input.

A second small project would be to add a “line type” option forthe qdraw function line. You should first
experiment withdraw2d directly, as in

(%i3) draw2d(line_width = 5,
line_type = dots,

explicit(1 + xˆ2,x,-1,1),
line_type = solid, / * default * /
explicit(2 + xˆ2,x,-1,1))$

which produces

Figure 88: solid and dot choices for line type

Your addition toqdraw should follow the present style, so the user would use the syntax
line(x1,y1,x2,y2,lc(c),lw(n),lk(string),lt(type)) , where type is either s or d (for solid or
dots).

A third small project would be to design a functiontriangle for qdraw, including the options which are
presently inpoly.

A fourth small project would be to include the optioncbox(f) in theqdensity function (f for false). The
present default is toinclude the colorbox key next to the density plot, but if the user entered
qdensity(....,cbox(f)) , the colorbox would be removed. You should start by experimenting first di-
rectly withdraw2d .

A more challenging project would be to write aqdraw function which would directly access the creation of
bar charts. These notes are written with the needs of the typical physical science or engineering user in mind,
so no attention has been paid to bar charts here. Naturally, if you frequently construct bar charts, this project
would be interesting for you. Start this project by first working with draw2d directly, to get familiar with what
is already available, and to avoid “re-creating the wheel”.

16 ACKNOWLEDGEMENTS 62

16 Acknowledgements

The author would like to thank Mario Rodriguez Riotorto, thecreator of Maxima’sdraw graphics interface
to Gnuplot, for his encouragement and advice at crucial stages in the development of theqdraw interface to
draw2d. The serious graphics user should spend time with the many powerful features of thedraw package,
and the examples provided on thedraw page

http://riotorto.users.sourceforge.net/Maxima/gnuplo t/index.html

These examples go far beyond the simple graphics in this chapter.

