Computational Physics with Maxima or R:
Ch. 2, Initial Value Problems

Edwin (Ted) Woollett
August 29, 2015

Contents

1

Introduction
The Euler Method Using Maxima, Truncation Error, Round-of f Error and Instability
The Euler Method Using R

Fourth Order Runge-Kutta Code for Maxima and R

4.1 MaximaCode: rkd
4.1.1 Five Examples of Maxima rkd e e e e
4.1.2 Failure of Maximarkd fora Stiff O.D.E.

4.2 RCode: myrkd . . o
4.2.1 Three Examples of Rmyrkd e e e e
4.2.2 Failureof Rmyrkd fora Stiff O.D.E. e

The Standard and Contributed Maxima Methods
L 00
5.2 rKEAS . e e e e

Standard R Methods using deSolve’s ode

6.1 OneFirstOrder O.D.E.: Solvinfy/dx = —zywithy(0) =1
6.2 Two First Order O.D.E.’s: Using the Parameters Argument. 0 i i i it e e e e e e
6.3 Three First Order O.D.Es: The Lorenz Model e e
6.4 Solving the Stiff Case of the van der Pol Equation

Using External Forcing Data for O.D.E.’s
7.1 ForcingDataUsingMaxima 0 e e e e e
7.2 ForcingDataUsSINgR e e e

Integrating O.D.E.’s with Discontinuous Derivatives
8.1 Example 1: Oral Drug Dose Model e e e e e
8.2 Example 2 e

Integrating O.D.E.’s with Discontinuous Dependent Varidles Using R

9.1 Events Specified by adata.framein R L e
9.2 Intravenous Drug Injection Model UsSing R e
9.3 Using an Event Function at Specific TIMmeS i i e e e
9.4 Example 1: Using an Event Function when a Root Condisd®aitisfied
9.5 Example 2: Event Function when a Root Conditionis Satisfi.
9.6 Use of a Switching Parameter as a State Variable e

*The code examples usever. 3.0.2andMaxima ver. 5.31usingWindows 7. This is a live document which will be updated when needed.
Check http://www.csulb.edu/ ~woollett/ for the latest version of these notes. Send comments an@stigus for improvements to
woollett@charter.net

COPYING AND DISTRIBUTION POLICY

This document is the second chapter of a series of notes title d
Computational Physics with Maxima or R, and is made availabl e

via the author’s webpage http://www.csulb.edu/"woollett /

to encourage the use of the R and Maxima languages for computa tional

physics projects of modest size.
NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Code files which accompany this chapter are
1. myode.mac

2. k2util.mac

3. myrkf45.mac

4. myode.R

Feedback from readers is the best way for this series of iotbecome more helpful to users Rfand Maxima. All
comments and suggestions for improvements will be appgestend carefully considered

1 INTRODUCTION 3

1 Introduction

We have discussed tlggmbolic solution of ordinary differential equations (o0.d.e.’s)@hapter 3 ofMaxima by Example (on the
author’s web page). We concentrate here omtlreerical solution of initial value problems governed by a set of a’sl.e

We begin with the ancient and simple Euler method, and ptesene home-made code using both Maxima BntiVe then turn to
the classic fourth order fixed step Runge-Kutta method ragr@Eisenting home-made functions in both Maxima Bnd

We then review the standard methods available in MaximaRarlmajor attraction of théR platform for computational physics is
the large and powerful suite of 0.d.e. solvers availabla@RpackagealeSolve and we spend most of this section introducing some
aspects of thede wrapper.

An important reference for users of tdeSolvepackage of solvers for thR platform is the recent texdolving Differential Equa-
tions in R, by Karline Soetaert, Jeff Cash, and Francesca Mazzian@griVerlag, 2012. We will often refer to this referencehwit
the author initialsSSCM Section 3.5Method Selection should be consulted if the default sohate (called without specifying a
method) is returning suspicious results.

The default method used logle is calledisoda , based on thEORTRAN0deLSODA which is able to detect when and where an
ordinary differential equation (or system of equations)dyaes “stiff”, and automatically implement methods whiem @eal with
this behavior, as needed. This is a very robust method, lutet@ssarily the most efficient solver for one particulabbem.

The defaulisoda method used by the wrappede always starts with the non-stiékplicit multi-step Adams method, and when
stiffness is detected, switches toiamplicit multistep solver (“bdf”: backward differentiation forna)l

Maxima, at present, does not offer a stiff ode solver.

Many advanced numerical algorithms that solve differémtgpations are available as (open- source) computer cedégn in
programming languages liIkEORTRAMNr C, and available in repositories likBAMShttp://gams.nist.gov) or NETLIB
(www.netlib.org).

An example of what can be done to make this code available éok va modern interactive numerical environments is theknadfr
Karline Soetaert and Linda R. Petzold (and others) for thengmurcdr numerical platform.

Present ode solvers in tiigpackagaleSolveuse adaptive step size control, some solvers control ther ofdhe formula adaptively,
or switch between different types of methods, dependindperidcal properties of the ode’s to be solved.

TheR packagaleSolveincludes methods to solve stiff and non-stiff problemst ttesal with full, banded, or arbitrarily sparse Jaco-
bians, etc. The implementation includes stiff and nonsttgration routines based on ttdEPACK FORTRANdes (Hindmarsh
1983). It also includes fixed and adaptive timestep expRcibhge-Kutta solvers, the Euler method, and the implicit dRusKutta
methodRADAUHairer and Wanner 2010).

In the final sections, we discuss the solution of 0.d.e.’swthe first derivative of the dependent variable is discarttirs, and also
when the dependent variable itself is discontinuous.

Reduction to First Order O.D.E.'s
A second order ordinary differential equation which hasftmen
2= f(t,2,7) (1.1)

in which the prime indicates a derivative with respect to the independentistei, and two single primes represents the second derivative wit
respect ta, can be converted into a pair of first order 0.d.e.’s govertie time evolution of the pair of dependent variabtgst), y2(t)].

Letyl = 2. Theny] = 2z’ = yo. And thenz” = y5 = (¢, 91, y2). We then deal with the pair of first oders o.d.e.’s

dy1 o
Sy, (1.2)
d
T =ty w) (L.3)
A third order ordinary differential equation with the fors¥’ = f(¢,2,2’,2") can be likewise reduced to a triplet of first order o.d.e.ls fo

[y1(2), y2(2), y3 (1)].

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY4

2 The Euler Method Using Maxima, Truncation Error, Round-off Error and Insta-
bility

We quote (with some light editing) an introduction to thed€tuhethod and a discussion of truncation and round-off grror

from two computational physics web pages of Richard FitaglatPhysics Dept., University of Texas), at

http://farside.ph.utexas.edu/teaching/329/lectures/ node32.html and at
http://farside.ph.utexas.edu/teaching/329/lectures/ node33.html

Euler's method

Consider the general first-order 0.d#€.= f(z,y), where’ denotesi/dzx, subject to the general initial-value
boundary conditiory(xo) = yo.

Clearly, if we can find a method for numerically solving thi®iplem, then we should have little difficulty
generalizing it to deal with a system nfsimultaneous first-order o.d.e.’s.

It is important to appreciate that the numerical solutioma wifferential equation is only an approximation
to the actual solution. The actual solutiom,x) is (presumably) a continuous function of a continuous
variable,z. However, when we solve this equation numerically, the bt we can do is to evaluate ap-
proximations to the functiog(x) at a series of discrete grid-points, thg (say), wherex = 0,1,2,--- and

xg < x1 < xo---. FoOr the moment, we shall restrict our discussion to equspiyced grid-points, where
T, = xg +nh.

Here, the quantity. is referred to as the step-length. Lgtbe our approximation tg(x) at the grid-pointc,,.
A numerical integration scheme is essentially a method kve@mmehow employs the information contained
in the original 0.d.e. to construct a series of rules intatirgg the various,,.

The simplest possible integration scheme was inventedéygelebrated 18th century Swiss mathematician
Leonhard Euler, and is, therefore, called Euler's methodidentally, it is interesting to note that virtually
all of the standard methods used in numerical analysis weented before the advent of electronic comput-
ers. In olden days, people actually performed numericalutations by hand - and a very long and tedious
process it must have been! Suppose that we have evaluat@pr@oxianation,y,,, to the solutiony(z) at the
grid-pointz,,. The approximate gradient gfx) at this point is, therefore, given by, = f(xn, y»).

Let us approximate the curvygz) as a straight-line between the neighbouring grid-paintandx,, .. It
follows thaty,,+1 = y, +), h, or

Yn+1 = Yn + f(wm yn) h. (2.1)

The above formula is the essence of Euler’s method. It esalsléo calculate all of thg,, given the initial
value, o, at the first grid-pointy.

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY5

Numerical errors

There are two major sources of error associated with a ngaigritegration scheme for o.d.e.’s: namely,
truncation error andround-off error.

Truncation error arises in Euler's method because the cuyye) is not generally a straight-line between
the neighbouring grid-points,, andx,,, 1, as assumed above. The error associated with this appriicima
can easily be assessed by Taylor expangifg aboutr = z;,:
h? h?

y(xn + h) = y(xn) + hy,(xn) + 7 y”(xn) = y(xn) + hf(xnayn) + 7 y”(xn) + e (22)
In other words, every time we take a step using Euler's mettiddis sufficiently small), because we omit
small terms of orde©(h?) or smaller (ie., weruncate the expansion), we incur a (local) truncation error of
O(h?), whereh is the step-length.

Suppose that we use Euler's method to integrate our o.dex. anw-interval of order unity. This requires
O(h~1) steps. If each step incurs an error@fh?), and the errors are simply cumulative (a fairly conserva-
tive assumption), then the net truncation erroDis:). In other words, the error associated with integrating
an o.d.e. over a finite interval using Euler's method is diygeroportional to the step-length.

If we let y.(x) be the approximate numerical Euler solution (starting at 0), and lety,(x) be the exact
analytic solution, then the “absolute errdy. (1) — y,(1)| = O(h).

Thus, if we want to keep the absolute ertgr(x) — y,(z)| in the integration below aboutd—% then we
would need to take about one million steps per unit intenval. i

Incidentally, Euler's method is termed a first-order intggm method because the truncation error associated
with integrating over a finite interval scales liké. More generally, an integration method is conventionally
callednth order if itslocal truncation error per step @(h"*1).

Note that truncation error would be incurred even if commugerformed floating-point arithmetic opera-
tions to infinite accuracy. Unfortunately, computers do pertform such operations to infinite accuracy. In
fact, a computer is only capable of storing a floating-pouninber to a fixed number of decimal places.

For every type of computer, there is a characteristic numbewhich is defined as the smallest number
which when added to a number of order unity gives rise to a nawher: i.e., a number which when taken
away from the original number yields a non-zero result. Efleating-point operation incursraund-off er-

ror of O(n) which arises from the finite accuracy to which floating-p@inibers are stored by the computer.

Suppose that we use Euler's method to integrate our o.d.ex avz-interval of order unity. This entails
O(h~1) integration steps, and, therefor@(h—!) floating-point operations. If each floating-point operatio
incurs an error o©)(n), and the errors are simply cumulative, then the net roufiérabr isO(n/h).

The total errorg, associated with integrating our o.d.e. overzamterval of order unity is (approximately)
the sum of the truncation and round-off errors. Thus, foleEsimethodg ~ % + h.

Clearly, at large step-lengths the error is dominated biycition error, whereas round-off error dominates
at small step-lengths. The net error (for the Euler methdi@)res its minimum valuegy ~ 7'/2, when

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY6

h = hg ~ n'/2. There is clearly no point in making the step-length,any smaller thark, since this
increases the number of floating-point operations but doekead to an increase in the overall accuracy.

It is also clear that the ultimate accuracy of Euler's mettmdany other integration method) is determined
by the accuracyy, to which floating-point numbers are stored on the compueeiopming the calculation.

The value ofy depends on how many bytes the computer hardware uses tdlstineg-point numbers. For
IBM-PC clones, the appropriate value for double precisioatfhg point numbers is = 2.22 x 10716, It
follows that the minimum practical step-length for Eularigthod on such a computeriig ~ 10~8, yielding

a minimum net integration error ef ~ 10~2. This level of accuracy is perfectly adequate for most gifien
calculations. Note, however, that the correspondjngalue for single precision floating-point numbers is
onlyn = 1.19 x 10~7, yielding a minimum practical step-length and a minimumeresr for Euler’s method

of hg ~ 3 x 107 andey ~ 3 x 107%, respectively. This level of accuracy is generally not agee for
scientific calculations, which explains why such calcolasi are invariably performed using double, rather
than single, precision floating-point numbers on IBM-PQele (and most other types of computer).

An Example of Global and Local Truncation Errors

We illustrate the concept of global and local truncatiomestby using the Euler method with a large step size to find an
approximate numerical solution of the first order o.dlg/dx = 8.5 — 20z + 1222 — 223 with the initial condition
y(0) = 1. We can set the integral of the right-hand side of the o.avéth fespect tar from = = 0 to « = z¢) equal to

y¢ — 1 to find the analytic solution,, (x), which we callytrue(x) in our session:

(%i1) ratprint:false$

(%i2) dely : integrate(8.5 - 20 *X + 12*X°2 - 2 *xX"3,x,0,xf);
(%02) -(xf4-8 *xf'3+20 *xf"2-17 *xf)/2

(%i3) dely : expand(dely);

(%03) -xf'4/2+4 *xf"'3-10 *xf2+17 *xf/2

(%id) yx : 1 + dely, xf = x;

(%04) -X"4/2+4 *X"3-10 *X"2+17 *x/2+1

(%i5) ytrue(x) = "yx;

(%05) ytrue(x):=-x"4/2+4 *X"3-10 *X"2+17 *x/2+1
(%i6) ytrue(0);

(%06) 1

In line %i5 the “double quote” operatdr (two single quotes) was used to defeat the normal quote mwtaithe delayed
assignment operator . The routine use of the settinlisplay2d:false inside theXmaxima interface allows for easy
copying of Maxima screen output for use in a later line or fiorcdefinition (as we do in defininguler_errors here
- in a separate Notebook2 text document). The following fioncappears in the code fileyode.mac

euler_errors(n,h) :=

block([x,ye,xn,ytrue,g_err:0, gp_err:0,l_err,numer], numer:true,
local(yt,dydx),
/* since x is not bound yet, these func defs work */
define(yt(x),-x"4/2 + 4 *X'3 - 10 *xX'2 + 17 *x/2 + 1),
define(dydx(x), 8.5 - 20 *X + 12*X°2 - 2 *X'3),
x:0,
ye : yt(x),
printf(true,”& ~3tx "15tytrue "24tyeuler “35tgl-err 48 tl-err "%"),

printf(true,”& “5f 10t "9f "9f "%" x,ye,ye),
for i thru n do (

xn @ X + h,

ye : ye + dydx(x) =h,

ytrue : yt(xn),

g_err : (ytrue - ye) * 100/ytrue,

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY7

|_err : g_err - gp_err,

printf(true,” & “5f 710t “9f "9f "34t “6f 47t "6f "%",xn,yt rue,ye,g_err,l_err),
gp_err : g_err,

X : xn))$

with the output table recording the valuexgfytrue , yeuler ,gl-err (the global percent relative error) aker (the
local percent relative error - which is simply the differertmetween the previous step global percent relative erbtlen
current step global percent relative error).

(%i7) euler_errors(3,0.5)$%
X ytrue yeuler gl-err l-err
0.0 1.0 1.0
0.5 3.21875 5.25 -63.11 -63.11
1.0 3.0 5.875 -95.83 -32.73
15 2.21875 5.125 -131.0 -35.15

Because we have used such a large valug, gfe are seeing truncation error here, and not round-offr.e¥ie see that
the percent relative error in the first stefBis1 percent. The percent relative error of the Euler solutiagarahe second
step is95.8 percent, so the local relative truncation error in makirgygbcond step i&2.7 percent.

In order to make a plot showing both the exact solution andeihler solution, we use a homemade Euler integration
function we discuss in the next secti@ulerl , (with code in the filenyode.mac) which has the syntax
eulerl(dydx,y,yinit,[x,xinit,xfinal,dx])

(%i8) load(myode);

(%08) "c:/k2/myode.mac"

(%i9) pts : eulerl(8.5 - 20 *X + 12*x2 - 2 *x"3,y,1,[x,0,4,0.5])$
(%i10) fli(pts);

(%010) [[0.0,1.0],[4.0,7.0],9]

(%ill) pts;

(%o011) [[0.0,1.0],[0.5,5.25],[1.0,5.875],[1.5,5.125] [2.0,4.5],[2.5,4.75],
[3.0,5.875],[3.5,7.125],[4.0,7.0]]
(%il2) plot2d([-x"4/2+4 *X"3-10 *X"2+17 *x/2+1,[discrete,pts],[discrete,pts]],

[x,0,4], [style,[lines,3],[lines,3],

......

which produces the plot

exact
Euler

0 0.5 1 15 2 25 3 35 4
X

Figure 1: Euler Truncation Error with = 0.5

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY8

Maxima Code: eulerl: General Euler Function for One O.D.E.

The code foeulerl is in the filemyode.mac . This code assumess the independent variable, an@) is the dependent
variable. euler1(dxdt,x,xi,[t,ti,tf,dt]) returns a list of solution pair&, x). (Note thateuler is a reserved
word in Maxima.)

[+ eulerl(dxdt,x,xi,[t,titf,dt]) for one dependent variab le x(t),
xi, ti, tf, dt should evaluate to numbers.
dxdt is an expression which can contain, potentially,
both t and x as symbols. */

eulerl(dvar,var,init,domain) :=
block([dt,t0,n,vs,dvar0,euler_soln,r,k1,numer],nume r:true,

init : float(init),

domain : float(domain),

local(dvdt),

define(dvdt(domain[1],var),float(dvar)),

dt : domain[4],

t0 : domain[2],

n: fix((domain[3] - t0)/dt),

vs: init,

dvarO : dvdt(tO, vs),

if (not(numberp(dvar0))) then

error("Expecting a number when the initial state is
replaced in dvdt, but instead found:",dvar0),
euler_soln : [[tO,vs]],

for i thru n do (
r: errcatch (k1 : dvdt(t0,vs)),
if length(r) = 0 then return()
else vs : vs + k1l xdt,
t0: t0 + dt,
euler_soln : cons([tO,vs], euler_soln)),

reverse(euler_soln))$

The symbol used for the independent variable does not dffedtst of numbers returned - the invocation
pts : eulerd(-t +y,y,1,[t,0,1,0.1])$

produces the same output as the invocation

pts : eulerl(-x +*yy,1,[x,0,1,0.1]))$ orpts : eulerl(-t *x,X,1,[t,0,1,0.1])$

The functionfll , one of a collection of small file utility functions avail&bin the chapter two code filuti.mac
returns the first and last elements of a list, and also the ruwfielements in the list, and has the definition

fll(x) = [first(x),last(x),length(x)]$

Example 1

Here we useulerl with the same example used in the last sectityydr = 8.5 — 20 x + 1222 — 223 with the initial
conditiony(0) = 1.

We show convergence to the exact (analytic) solution as weedse the integration step site= h .

(%il) load(myode);

(%01) "c:/k2/myode.mac"

(%i2) dydx : 8.5 - 20 *X + 12*X2 - 2 *X"3%

(%i3) yt : -x"4/2+4 *X"3-10 *X2+17 *x/2+1$

(%i4) case(h):= eulerl(dydx,y,1,[x,0,4,h])$

(%i5) ptsl : case(0.5);

(%05) [[0.0,1.0],[0.5,5.25],[1.0,5.875],[1.5,5.125], [2.0,4.5],[2.5,4.75],
[3.0,5.875],[3.5,7.125],[4.0,7.0]]

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY9

(%i6) pts2 : case(0.2)$

(%i7) fli(pts2);

(%07) [[0.0,1.0],[4.0,4.6],21]

(%i8) pts3 : case(0.1)$

(%i9) fll(pts3);

(%09) [[0.0,1.0],[4.0,3.8],41]

(%i10) plot2d([yt,[discrete,ptsl],[discrete,pts2],[d iscrete,pts3]],
[x,0,4], [style,[lines,3]],[legend,"exact","h=0.5"," h=0.2","h=0.1"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot

Figure 2: Convergence to Exact Solution

Next we usesulerl to make a plot of the Euler method net error fat= 1) as a function of integration step size
for the same example o0.d.e. we have been using as a test d¢asé@unttionyfdiff , which callseulerl , is in the file
myode.mac .

yfdiff(dydx,ytrue,xfinal,hL) :=
block([tval,yerrL:[],h,esoln,yerr,numer],numer:true ,
tval : float(subst(x = xfinalytrue)), / * true value */
print(" tval = "tval),
for h in hL do (
esoln : eulerl(dydx,y,1,[x,0,xfinal,h]),
yerr : second(last(esoln)) - tval,
print(" ", h, yerr),
yerrL : cons([h, yerr], yerrlL)),
reverse(yerrL))$

Here we use the functiopfdiff =~ to make a plot of the net Euler error as a function of integraitep size, when
integrating over the intervgk,0,1] . The listhL contains the step sizes to be used.

(%il) load(myode);
(%01) "c:/k2/myode.mac"
(%i2) dydx : 8.5 - 20 *X + 12*X2 - 2 *X"3%
(%i3) yt : -x"4/2+4 *X"3-10 *X2+17 *x/2+1$
(%i4) hL : [0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002,0.0 01]$
(%i5) yerr_pts : yfdiff(dydx,yt,1,hL)$

tval = 3.0

0.5 2.875

0.2 1.06

0.1 0.515

0.05 0.25375

0.02 0.1006

0.01 0.05015

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY10

0.005 0.0250375
0.002 0.010006
0.001 0.0050015
(%i6) fli(yerr_pts);
(%06) [[0.5,2.875],[0.001,0.0050015],9]
(%i7) plot2d([discrete, yerr_pts],[xlabel,"h"],[ylabe 1,"yfdiff(1)"],
[style,[lines,3]],[gnuplot_preamble,"set grid"])$

which produces the plot

25

15

yfdiff(L)

yd

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 3: Net Euler Error at; = 1 vs. h

Let the global error at = 1 be E(h), whereh is the step size. We will assume the fofith) = a + b h and find the best
values ofa andb using the standard least squares fit Maxima method. (Se@atstiscussion of fitting data in Chapter
3 of Maxima by Example.) We will then make a plot of both theadand the straight line fit. We needed to turn the list

of data into a Maxima matrix in order to use the Maxima metlsgdares_estimates

(%i8) data : abs(yerr_pts);

(%08) [[0.5,2.875],[0.2,1.06],[0.1,0.515],[0.05,0.25 375],[0.02,0.1006],
[0.01,0.05015],[0.005,0.0250375],[0.002,0.010006],[0.001,0.0050015]]

(%i9) dataM : apply('matrix,data);

(%09) matrix([0.5,2.875],[0.2,1.06],[0.1,0.515],[0.0 5,0.25375],[0.02,0.1006],

[0.01,0.05015],[0.005,0.0250375],[0.002,0.010008],
[0.001,0.0050015])
(%i10) load(Isquares);

(%010) "C:/PROGRA™1/MAXIMA™3.2/share/maxima/5.31.2/s hare/lsquares/Isquares.mac"

(%i1l) result : Isquares_estimates(dataM,[h,E],E = a+b *h,[a,b],
initial=[0,1],iprint=[-1,0]);

(%011) [[a = -2685980626178778230522532194715176213611 334132351051506109903

/12723925665912817064977268566250398274724681946437 1817995084452,
b = 6739084303336038655816563166211558297140319079262 867181871266900
/11769631240969355785103973423781618404120330800454 39316454531181]]
(%i12) result : float(result);
(%012) [[a = -0.0211097,b = 5.7258245]]
(%i13) myfit : at+b *h, result;
(%013) 5.7258245 +h-0.0211097
(%i14) plot2d([myfit,[discrete,data]],[h,0,0.1],
[style,[lines,3],[points,3,1,1]],[legend,false],[xI abel,"h",
[ylabel,"E"],[gnuplot_preamble,"set grid"])$

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY11

which produces the plot

Figure 4: Global Euler Error at = 1 vs. h

For small values ok the global errors are larger than we would expect if the dlebar E(h) ~ O(h).

Example 2

A second example is the 0.d.€y/dz = —x y with the initial conditiony(0) = 1, integrated over the interv@t,0,3] , with the
analytic solutiony = e 2

(%il5) dydx : -x *y;
(%015) -x *y
(%il6) yt : exp(-x"2/2);
(%016) %e™-(x"2/2)
(%i17) hL : [0.5,0.2,0.1];
(%017) [0.5,0.2,0.1]
(%il8) yerr_pts : yfdiff(dydx,yt,1,hL);
tval = 0.606531
0.5 0.143469
0.2 0.0463308
0.1 0.0216258
(%018) [[0.5,0.143469],[0.2,0.0463308],[0.1,0.021625 8]l
(%i19) case(h):= eulerl(dydx,y,1,[x,0,3,h])$
(%i20) ptsl : case(0.5)$
(%i21) fli(ptsl);
(%021) [[0.0,1.0],[3.0,0.0],7]
(%i22) pts2 : case(0.2)$
(%i23) fli(pts2);
(%023) [[0.0,1.0],[3.0,0.00458968],16]
(%i24) plot2d([yt,[discrete,ptsl],[discrete,pts2] 1,[x,0,3], [style,[lines,3]],
[legend,"exact","h=0.5","h=0.2"],[ylabel,"y"],
[gnuplot_preamble,"set grid"])$

which produces the plot

0.8

0.6

0.4

N\

/

Figure 5: Euler Convergence #ly/dx = —z y with y(0) = 1

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY 12

Example 3

As a third example, we usddiff to determine the dependence of global effdh) on the step sizé for the case ofly/dx = —y
with y(0) = 1, with the analytic solutiony(z) = e~ *.

(%il) load(myode);
(%01) "c:/k2/myode.mac"
(%i2) hL : [0.1,0.05,0.02,0.01,0.005];
(%02) [0.1,0.05,0.02,0.01,0.005]
(%i3) yfdiff(-y,exp(-x),3,hL);
tval = 0.0497871
0.1 -0.00739591
0.05 -0.00371727
0.02 -0.00149105
0.01 -7.46174297E-4
0.005 -3.73246258E-4
(%03) [[0.1,-0.00739591],[0.05,-0.00371727],[0.02,-0 .00149105],
[0.01,-7.46174297E-4],[0.005,-3.73246258E-4]]
(%i4) data : %;
(%04) [[0.1,-0.00739591],[0.05,-0.00371727],[0.02,-0 .00149105],
[0.01,-7.46174297E-4],[0.005,-3.73246258E-4]]
(%i5) data : abs(data);
(%05) [[0.1,0.00739591],[0.05,0.00371727],[0.02,0.00 149105],
[0.01,7.46174297E-4],[0.005,3.73246258E-4]]
(%i6) dataM : apply('matrix,data);
(%06) matrix([0.1,0.00739591],[0.05,0.00371727],[0.0 2,0.00149105],
[0.01,7.46174297E-4],[0.005,3.73246258E-4])

We will assume the forn(h) = a+ b h and find the best values afandb using the standard least squares fit Maxima method. (See
also our discussion of fitting data in Chapter 3 of Maxima byiple.) We will then make a plot of both the data and the ditaig
line fit. We needed to turn the list of data into a Maxima maitmivrder to use the Maxima methdgtjuares_estimates

(%i7) load(Isquares);
(%07) "C:/PROGRA™1/MAXIMA"3.2/share/maxima/5.31.2/sh are/lsquares/Ilsquares.mac"

(%i8) result : Isquares_estimates(dataM,[h,E],.E = a+b *h,[a,b],
initial=[0,1],iprint=[-1,0]);
(%08) [[a = 30099591741374070410305741760016372393307
/3111916490873068233183797966147733045331270368,
b = 28754287790257175585747436662495393659067425
/388989561359133529147974745768466630666408796]]
(%i9) result : float(result);
(%09) [[a = 9.67236487E-6,b = 0.0739205]]
(%il0) myfit : a+b *h, result;
(%010) 0.0739205 *h+9.67236487E-6
(%i20) plot2d([myfit,[discrete,data]],[h,0,0.1],
[style,[lines,3],[points,3,1,1]],[legend,false], [xI abel,"h"],
[ylabel,"E"],[gnuplot_preamble,"set grid"])$

which produces the plot

0.008

0.007

0.006

0.005
w 0.004

0.003 /

0.002

0.001 /

|

0 0.02 0.04 0.06 0.08 0.1

Figure 6: Global Errors vs. h faty /dz = —y with y(0) = 1

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY 13

Maxima Code: myeuler for Arbitrary Number of First Order O.D .E.'s

In the filemyode.mac is the code fomyeuler which has the syntax
myeuler(dxdt,x,xinit,[t,tinit,tfinal,dt]) or
myeuler([dxdt,dydt],[x,y],[xinit,yinit],[t,tinit,tf inal,dt])
and similar for more than two first order o.d.e.’s.

myeuler(ode, var, init, domain) =
block([uvw,duvw,esoln,n,k1,t0,dt,
r,numer:true,display2d:false],
init : float(init),
domain : float(domain),
if (not(listp(ode))) then (

ode : [ode],
var : [var],
init = [init]),

local(efunc),

define(funmake(efunc,cons(domain[1],var)),float(ode N,
translate(efunc),

dt : domain[4],

t0 : domain[2],

n: fix((domain[3] - t0)/dt),

uvw: init,

duvw : apply(efunc,cons(t0,uvw)),
if (not(numberp(last(duvw)))) then
error("Expecting a number when the initial state
is replaced in the equations, but instead
found:",last(duvw)),

esoln: [cons(tO, init)],
for i thru n do (
r: errcatch (k1: apply(efunc,cons(t0,uvw))),
if length(r)=0 then return()
else uvw: uvw + k1 =dt,
t0: t0 + dt,
esoln : cons(cons(t0,uvw), esoln)),
reverse(esoln))$

The Maxima codenyeuler is adapted from the code design of the Maxima functldp , which can be foundin
...share/dynamics/dynamics.mac in Maxima v. 5.28.0, copyrigi2007 Jaime E. Villate
<villate@fe.up.pt>

We testmyeuler on the simple harmonic oscillator with unit peridd/dt = v, dv, /dt = —4 72 x, with the initial conditions
z(0) = 1,v,(0) = 0, and integrate over the time intenfgD, 1] for three different values of the time stdp = h . The analytic
solution isz = cos(27t).

We remind the reader that the list utility functiciis andtake are in the chapter 2 filk2util.mac (as well as irmyode.mac)
and have the definitions

fll(x) = [first(x),last(x),length(x)]$

take(%al,%nn) := (map(lambda([x],part(x,%nn)), %al))$

(%il) load(myode);

(%01) "c:/k2/myode.mac"

(%i2) case(dt) := myeuler([vx,-4 *%pi~2 *x],[x,vx],[1,0],[t,0,1,dt])$
(%i3) ptsl : case(0.01)$

(%i4) fli(pts1);

(%04) [[0.0,1.0,0.0],[1.0,1.2177068,0.0631137],101]

(%i5) eptsl : [discrete,take(ptsl,l)take(ptsl,2)]$

(%i6) pts2 : case(0.005)$

(%i7) fli(pts2);

(%07) [[0.0,1.0,0.0],[1.0,1.1036747,0.0143259],201]

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY 14

(%i8) epts2 : [discrete,take(pts2,1)take(pts2,2)]$
(%i9) pts3 : case(0.002)$
(%i10) fli(pts3);

(%010) [[0.0,1.0,0.0],[1.0,1.0402647,0.00216153],501]

(%i11) epts3 : [discrete,take(pts3,1),take(pts3,2)]$

(%il2) plot2d([cos(2 * %opi* t),eptsl,epts2,epts3],[t,0,1],[xlabel,"T"],[ylabel, "X",
[style,[lines,3]],[legend,"exact","h=0.01","h=0.005 " "h=0.002"],

[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot

15

1 e
7
\ //
05
o5 \ /

-1.5

T

Figure 7: Exact and Euler SHO Solutions

Interactive Exploration of myeuler Code

When looking at new code with unfamiliar features, or whesigieing new code, it helps to step through the problem iotamly
first, before trying to write a general function. For examglaypical interactive approach to understanding the cddeyeuler
might be:

(%il) var : [yl,y2];

(%01) [yly2]

(%i2) tvL : cons(t,var);

(%02) [tyl,y2]

(%i3) ode : [y2,-4 *%pit2 *yl];
(%03) [y2,-4 *%pi"2 *yl]

(%i4) define(funmake(efunc,tvL),float(ode))$
(%i5) init : [1,0];

(%05) [1,0]

(%i6) uvw : init;

(%06) [1,0]

(%i7) t0 : O;

(%07) 0

(%i8) esoln : [cons(t0, uvw)];

(%08) [[0,1,0]]

(%i10) tuvw : cons(t0,uvw);

(%010) [0,1,0]

(%ill) k1 : apply(efunc,tuvw);

(%011) [0,-39.47841760435743]

(%i12) dt : 0.01;

(%012) 0.01

(%i13) uvw : uvw + k1 «dt;

(%013) [1,-0.39478417604357]

(%il4) t0 : t0 + dft;

(%014) 0.01

(%i15) esoln : cons(cons(t0,uvw),esoln);
(%015) [[0.01,1,-0.39478417604357],[0,1,0]]

2 THEEULERMETHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OF ERROR AND INSTABILITY 15

We see that we are using the Maxima functégply ; if f is notyet defined, we can see what Maxima does ajhly(f,[1,2,3])
(thatis, applying to a Maxima list).

(%i16) apply(f,[1,2,3]);
(%016) f(1,2,3)

Now let’'s bindf to some function definition.

(%i18) f(a,b,c) := a *b/c$
(%i19) apply(f,[1,2,3]);

(%019) 2/3

(%i20) apply(f,[1,2,3]);

(%020) 2/3

Note that the single quotedoes not defeat the use of the function definitiof dfere.

The linedefine(funmake(efunc,tvL),float(ode))$ is one way to define a function:
define(funmake(myf,[x,y,z]),expr) , Whereexpr dependson,y,z . Theexpr does not have to actually contain all
of the symbols,y,z . In our code fomyeuler , and in the case of the simple harmonic oscillator done ghibeeactual content
of the definition ofefunc was

define(funmake(efunc,[t,y1,y2]),[y2,-39.47841760435 743+y1])$, in whichexpr was a list of two expres-
sions, neither of which contain the symhol

Numerical Instability Example

We quote a short example explaining the issue of numerictllity, presented by Richard Fitzpatrick (Physics, uénsity of
Texas) on his computational physics web page:
http://farside.ph.utexas.edu/teaching/329/lectures/ node34.html

Numerical instabilities
Consider the following example. Suppose that our 0.d . is —a y, wherea > 0, subject to the boundary condition

y(0) = 1.
Of course, we can solve this problem analytically to gjiye) = exp(—a z).

Note that the solution is a monotonically decreasing fuomctif z. We can also solve this problem numerically using Eu-
ler's method. Appropriate grid-points arg = n h, wheren =0, 1,2, - - -. Euler's method yieldg,,+1 = (1—ah) y,.

Note one curious fact. Ik > 2/a then|y,+1] > |y.|. In other words, if the step-length is made too large then the
numerical solution becomes an oscillatory functionzodf monotonically increasing amplitude: i.e., the numdrica
solution diverges from the actual solution. This type ofs#iophic failure of a numerical integration scheme isechll

a numerical instability. All simple integration schemest®@e unstable if the step-length is made sufficiently large.

As an example, we use Euler's method with the o.dig/.dx = —20y, which has the analytic solution(z) = e~2°%. We expect
numerical instability (using the Euler algorithm) if theptsizeh > 0.1.

(%il) load(myode);

(%01) "c:/k2/myode.mac"

(%i2) case(dx) := eulerl(-20 *y,y,1,[x,0,1,dx])$

(%i3) ptsl : case(0.12)$

(%i4) fll(ptsl);

(%o04) [[0.0,1.0],[0.96,14.757891],9]

(%i5) pts2 : case(0.098)$

(%i6) fll(pts2);

(%06) [[0.0,1.0],[0.98,0.664833],11]

(%i7) pts3 : case(0.05)$

(%i8) fll(pts3);

(%08) [[0.0,1.0],[1.0,0.0],21]

(%i9) plot2d([exp(-20 * X),[discrete,ptsl],[discrete,pts2],

[discrete,pts3]], [x,0,0.4], [style,[lines,3]],

[legend,"exact","h=0.12","h=0.098","h=0.05"],
[gnuplot_preamble,"set key bottom left;set grid"])$

3 THE EULER METHOD USING R 16

which produces the plot

/\
\

/

-0.5

N \ /

[¢]
x
)
Q
~_

25| h=012
h=0.098 \Y,
, |_h=005
0 0.05 01 0.15 0.2 0.25 03 0.35 0.4

Figure 8: Euler Integration Instability Example

3 The Euler Method Using R
R Code: eulerl

Rather than “translate” the Maxima code flerl into R, we use an entirely different approach which correspontiebeith
the natural design of the language and the natural methods of carrying out tasks in

eulerl(init,grid,func) R code is in the filanyode.R, and has the definition

eulerl(init,grid,func) calls func to advance the Euler
solution. func(iv,w) corresponds to independent
variable = iv, dependent variable = w

eulerl = function(init, grid ,func) {
n = length(grid)
div = grid[2] - grid[1]
w.num = vector(length = n)
w.num[l] = init
for (j in 1:(n-1)) {
w.num [j+1] = w.num [j] +
div *func(grid[j], w.num[j]) }
w.num}

The value of the first argumeirtit is the initial (numerical) value of the dependent variabilae value of the second argument

grid is a vector which contains the discrete numerical valuelB®irtdependent variable (separation being constant) atwehitput

values of the dependent variable are desired. The valueeahttd argumentunc is the name (chosen by the user) of a defined

function of the formfunc(indep-var, dep-var) which implements the right hand side of the o.ddg./dt = f(¢,y), or
dy/dx = f(x,y), ordu/dv = f(v,u), etc.

Also in myode.R is the vector utility functiorfll which prints to the screen the value of the first and last efésnef a vector, as
well as the length.

list utility: print out first, last and length of a vector
fll = function(xL) {

xlen = length(xL)

cat(" ",xL[1]," "xL[xlen]," ",xlen,"\n") }

3 THE EULER METHOD USING R

After loading inmyode.R , we define th&Rk functionderivs
If y(0) = 1, then the analytic solution ig(t) = e . We then useulerl

17

which corresponds to the right-hand-side of the o.dyg'dt = —y.

to integrate over the time interv)0,3]

> getwd()
[1] "ci/k2"
source("myode.R")
derivs = function(ty) {-y}
tL = seq(0,3,0.1)
fll(tL)
0 3
head(tL)
[1] 0.0 0.1 0.2 0.3 04 05
> yL = eulerl(init=1,grid=tL,func=derivs)
> fli(yL)

1 0.04239116
> head(yL)
[1] 1.00000 0.90000 0.81000 0.72900 0.65610 0.59049
plot(tL, yL, pch=19, xlab = "t", ylab = "y")

\%

vV V V

31

\%

31

\%

> lines(tL, yL)
> grid(lty="solid", col="darkgray")
> curve(exp(-t),0,3, n=200, add=TRUE, col="blue", Iwd=3, xname="t")
which produces the plot
3 ﬁ\
g 7 L\\
\MD

Figure 9: Euler Solution (dots) Wy /dt = —y for dt = 0.1

Note that we could have callesllerl with the syntaxiyL = eulerl(1,

order of the arguments.

tL,derivs) since we are maintaining the default

> yL = eulerl(1,tL,derivs)
> fli(yL)

1 0.04239116
> head(yL)
[1] 1.00000 0.90000 0.81000 0.72900 0.65610 0.59049

31

As a second example of usimgillerl , we integrate the o.d.e. which d
dy/dt = ry(1 —y/K) with y(0) = 2 and withr = 1 and two values ofs.

epends on two parametansl ', the “logistic equation”

>
>
>

derivs = function(t,y){r

tL = seq(0,20,0.2)

fll(tL)

0 20 101

r=1 K =10

yL10 = eulerl(2,tL,derivs)

fli(yL10)

2 10

K =20

yL20 = eulerl(2,tL,derivs)

fll(yL20)

2 20 101

plot(tL, yL20, type="I", lwd=3, col="blue",
xlab = "t', ylab = "y")

y (L-y/K)}

101

3 THE EULER METHOD USING R

> lines(tL, yL10,lwd=3,col="red")
> grid(lty="solid", col="darkgray")
> legend("bottom", col=c("blue","red"),
legend = c("K = 20","K = 10"),lwd=3,cex=1.5)

which produces the plot

20
1

15
|

o
— K=20
4 — K=10

Figure 10: Euler Solutions faty/dt = y (1 — y/K) for y(0) = 2,dt = 0.2

As a third example of usingulerl we integrate the o.d.@y/dt = —t y with y(0) = 1. The analytic solutionig(t) = e~

> derivs = function(t,y) {-t *y}
> tL = seq(0,3,0.1)
> fli(tL)
0o 3 31
> yL = eulerl(1,tL,derivs)
> fli(yL)

1 0.007791097 31
plot(tL, yL, type="I", lwd=3, col="blue",

xlab = "t', ylab = "y")
curve(exp(-t"2/2),0,3,n=200,add=TRUE,col="red",lwd =3,xname="t")
grid(lty="solid", col="darkgray")
legend("topright”, col=c("blue","red"),

legend = c("Euler","Exact"),lwd=3,cex=1.5)

+ VVV +V

which produces

= _\ —— Euler
o | \ —— Exact
g | \&

0.0
1

0.0 0.5 1.0 15 2.0 25 3.0

Figure 11: Euler Solution fotly /dt = —t y for y(0) = 1,dt = 0.1

3 THE EULER METHOD USING R 19

R Code: myeuler for Arbitrary Number of First Order O.D.E.’s

The code fomyeuler is also in the filanyode.R and can be used for an arbitrary number of first order o.dieckiding just one
o.d.e.

For one dimension, the syntax is the same agfiberl and the design dinc(t,y) can be the same as used watllerl (see
below).

For two or more o.d.e.'snyeuler returns a list of vectors, and each solution vector must braeted as a list elemendut[[1]]
for example, using double brackets (see below).

Here is the code fomyeuler .

myeuler = function(init, grid ,func) {
num.var = length(init)
solnList = list()
n.grid = length(grid)
for (k in 1:num.var) {
solnList[[K]] = vector(length = n.grid)
solnList[[K]][1] = init[k] }
div = grid[2] - grid[1]
yL = vector(length = num.var)
for (j in 1:(n.grid-1)) {
for (k in l:num.var) yL[k] = solnList[[K]][j]
dyL = func(grid[j], yL) # returns a vector of derivatives
for (k in 1:num.var) solnList[[K]][j+1] = solnList[[K]][j]+
div *dyL[K]}

if (num.var==1) solnList[[1]] else solnList}

Two Examples of Using R myeuler

Example 1

Here is an example for the solution of the single o.dw.dt = —ty for y(0) = 1, after loading irmyeuler.R

> tL = seq(0,3,0.1)

fll(tL)

0o 3 31

deriv = function(ty) { -t *y }

yL = myeuler(1,tL,deriv)

fll(yL)

1 0.007791097 31

> head(yL)

[1] 1.0000000 1.0000000 0.9900000 0.9702000 0.9410940 0.9 034502
> tail(yL)

[1] 0.037617673 0.028213255 0.020877809 0.015240800 0.01 0973376 0.007791097

\%

VvV V V

Example 2

Here is an example of use for the simple harmonic oscillaftr unit period, which requires two first order o.d.e.’s. hetcode for
func , calledsho, we lety[1] represenk andy[2] represenvx.

Thus the codsho must take the form (notgho returns the vectoc(dx,dvx) ; the names of the local function variablgs and
dvx are of course arbitrary and can be changed):

sho = function(t,y) {
with(as.list(y), {

dx = y[2]
dvx = -4 *pi"2 =*y[1]
c(dx,dvx)H}

It is important that the order of the vector returned be theesas the order of the numbers provided for the vector argtimien .
If init = c(1,0) correspondingtx(0) = 1 ,vx(0) = 0 ,thensho should return the derivativegdxdt, dvxdt)

3 THE EULER METHOD USING R

The definition ofsho can be shortened to

20

sho = function(t,y) {
with(as.list(y), c(y[2], -4 *pi'2 *y[1]))}

and can be further shortened to

sho = function(t,y) with(as.list(y), c(y[2], -4 *pit2 *y[1]))

Each of these three versions of the functiio can be used witmyeuler .

> getwd()
[1] "cik2"
> source("myeuler.R")

> sho = function(t,y) {
+ with(as.list(y), {
+ dx = y[2]
+ dvx = -4 *pi"2 *y[1]
+ c(dx,dvx)})}
> tL = seq(0,1,0.001)
> flI(tL)
0 1 1001

\%

out = myeuler(c(1,0),tL,sho)
> xL = out[[1]]
> fll(xL)
1 1.019935 1001
> vxL = out[[2]]

> fll(vxL)
0 0.0005298591 1001
> max(vxL)
[1] 6.376897
> plot(tL,vxL,type="I",Iwd=3,col="red" xlab = "t",ylab = ""ylim=c(-7,7))
> lines(tL,xL,lwd=3,col="blue")
> grid(Ity="solid",col="darkgray")
> legend("topleft", col=c("blue","red"), lwd=3, legend= c("x","vx"),cex=1.2)

which produces

el ¢

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12: SHOdz/dt = v,, dv, /dt = —4 7z, 2(0) = 1,v,(0) =0

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 21

4 Fourth Order Runge-Kutta Code for Maxima and R

We quote from Richard Fitzpatrick’s (Physics, UniversifyTexas) Computational Physics web page
http://farside.ph.utexas.edu/teaching/329/lectures/ node35.html with some editing and elisions. His
definition of k1, ko, k3, k4 differs from ours by a factor of.

Runge-Kutta methods

There are two main reasons why Euler’s method is not geyara#id in scientific computing. Firstly, the truncation
error per step associated with this method is far larger thase associated with other, more advanced, methods (for a
given value ofh). Secondly, Euler's method is too prone to numerical infiteags.

The methods most commonly employed by scientists to integral.e.'s were first developed by the German math-
ematicians C.D.T. Runge and M.W. Kutta in the latter halfloé hineteenth century. The basic reasoning behind
so-called Runge-Kutta methods is outlined in the following

The main reason that Euler's method has such a large tromoatior per step is that in evolving the solution fram
to z,+1 the method only evaluates derivatives at the beginningefrterval: i.e., atc,,. The method is, therefore,
very asymmetric with respect to the beginning and the enteifrtterval.

We can construct a more symmetric integration method by inged Euler-like trial step to the midpoint of the interval,
and then using the values of bothandy at the midpoint to make the real step across the interval.eTmbre exact,
kv =hf(@n,yn), k2=hf(zn+h/2,yn +k1/2), yn+1:yn+k2+0(h3)-

As indicated in the error term, this symmetrization canceisthe first-order error, making the method second-order.
In fact, the above method is generally known as a second-&ulege-Kutta method. Euler’s method can be thought
of as a first-order Runge-Kutta method.

Of course, there is no need to stop at a second-order metlyagsiig two trial steps per interval, it is possible to cancel
out both the first and second-order error terms, and, thepsimgtruct a third-order Runge-Kutta method. Likewise,
three trial steps per interval yield a fourth-order methadj so on.

The general expression for the total errgrassociated with integrating our o.d.e. overazamterval of order unity
using amth-order Runge-Kutta method is approximatebky i + h".

Here, the first term corresponds to round-off error, wheteasecond term represents truncation error. The minimum
practical step-lengtthg, and the minimum erroky, take the valueg, ~ n'/("*t1 ¢, ~ n*/(»+1) respectively. It can

be seen thak, increases ane, decreases as gets larger. However, the relative change in these quastitecomes
progressively less dramatic asncreases.

In the majority of cases, the limiting factor when numeiigahtegrating an o.d.e. is not round-off error, but rather
the computational effort involved in calculating the fuoot f (z, y). Note that, in general, anth-order Runge-Kutta
method requires evaluations of this function per step. It can easily be agipted that as: is increased a point is
quickly reached beyond which any benefits associated wéhntreased accuracy of a higher order method are more
than offset by the computational “cost” involved in the nesay additional evaluation ¢f(z, y) per step. Although
there is no hard and fast general rule, in most problems ertemd in computational physics this point corresponds
ton = 4. In other words, in most situations of interest a fourthesrBunge Kutta integration method represents an
appropriate compromise between the competing requirenoéatiow truncation error per step and a low computational
cost per step.

We now revert tmur conventionon the definition of the:, ko, ks, k4, which differs from Fitzpatrick’s by a factor df.

To solve the single first order 0.d.éy/dxz = f(z,y) using a stef, the standard fourth-order Runge-Kutta method takes time fo
(usingour convention):

h
Un+1 :yn+g(k1 +2ko + 2k + ka) 4.1)

Tpt1 =Xn+h (4.2)

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 22

where
ki = f(@n,yn) (4.3)
ko= f(xn +h/2,yn +hki/2) (4.4)
ks = f(zn +h/2,yn + hka/2) (4.5)
ks = f(xn + hyyn + hks3) (4.6)

4.1 Maxima Code: rk4

The standard available Maxima method for fourth order fixtep Runge-Kutta integration i&() , which is currently written in
Lisp, and can be viewed in
...Sshare\dynamics\complex_dynamics.lisp

Here we presentlaxima (rather than Lisp) code for the standard fourth order (fixeg)sRunge-Kutta integration code, adapted
from Maxima (ver. 5.28jk code, written by Maxima developer Jaime E. Villatgjllate @fe.up.pt>

Our version is calledk4 and can be found in the code fileyode.mac . In this code the independent variable is callecdnd the
step length is calleddt . The current solutiomvw is a Maxima list. This code returns a list of the form

[[tO,x1(t0),x2(t0)...],[t1,x1(t1),x2(t1),...],...]

This code can integrate an arbitrary number of first ordeledsd This code does not do syntax checks.

[+ the rk4 syntax is the same as Maxima’'s rk() syntax.

if the dxdt expression is a function of (t,x), then:
for one o.d.e: rk4(dxdt,x,xinit,[t,tinit,tfinal,dt])

If the dx1dt expression and the dx2dt expression are functio ns of (t,x1,x2),
then for two o.d.e.’s:

rk4([dx1dt,dx2dt],[x1,x2],[xLinit,x2init],[t,tinit, tfinal,dt])
and so on.
*/

rk4(ode, var, init, domain) :=
block([uvw,rksoln,n,k1,k2,k3,k4,t0,t1,dt,
r,numer:true,display2d:false],
init : float(init),
domain : float(domain),
if (not(listp(ode))) then (

ode : [ode],
var : [var],
init = [init]),

local(rkfunc),

define(funmake(rkfunc,cons(domain[1],var)),float(od e)),
translate(rkfunc),

dt : domain[4],

t0 : domain[2],

n: fix((domain[3] - t0)/dt),

uvw: init,

if (not(numberp(last(apply(rkfunc,cons(t0,uvw)))))) t hen
error("Expecting a number when the initial state is
replaced in the equations, but instead found:",
last(apply(rkfunc,cons(t0,uvw)))),

rksoln: [cons(tO, init)],
for i thru n do (
r: errcatch (
t1: domain[2]+i *dt,
k1: apply(rkfunc,cons(t0,uvw)),
k2: apply(rkfunc,cons((t0+t1)/2, uvw+k1 * dt/2)),

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 23

k3: apply(rkfunc,cons((t0+t1)/2,uvw+k2 * dt/2)),
k4: apply(rkfunc,cons(t1,uvw+k3 * dt))),
if length(r)=0 then return()
else uvw: uvw + dt *(k1+2 *k2+2 *k3+k4)/6,
t0: t1,
rksoln : cons(cons(t0,uvw), rksoln)),
reverse(rksoln))$

4.1.1 Five Examples of Maxima rk4

Example 1

We userk4 here with the same large step size- 0.5, and the same first order 0.d@;/dz = 8.5 — 20z + 12 2% — 2 23, with the
initial conditiony(0) = 1, as we used in Sec. (2) where we used the Euler method. InaHaresection we also derived the exact
solution for comparison with the approximate numericaliioh, getting—z*/2 + 423 — 1022 + 172/2 + 1.

(%il) load(myode);

(%01) "c:/k2/myode.mac"

(%i2) pts : rk4(8.5 - 20 *X + 12*X2 - 2 *Xx3,y,1,[x,0,4,0.5])$
(%i3) fli(pts);

(%03) [[0.0,1.0],[4.0,3.0],9]

(%i4) pts;

(%04) [[0.0,1.0],[0.5,3.21875],[1.0,3.0],[1.5,2.2187 5],[2.0,2.0],
[2.5,2.71875],[3.0,4.0],[3.5,4.71875],[4.0,3.0]]

(%05) plot2d([-x"4/2+4 *X"3-10 *X"2+17 *x/2+1,[discrete,pts],[discrete,pts]],

[x,0,4], [style,[lines,3],[lines,3],

[gnuplot_preamble, "set key bottom right;set grid"])$

which produces

4.5 ﬁ\

\

Ry /

AYARER
o

exact
rk4 ——

Figure 13: rk4 Truncation Error with = 0.5

Despite the large step size, the fourth order Runge-Kutthaodesticks quite close to the analytic solution, and thei@alf
Yrka (4) = Yezxact (4)

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 24
Example 2
A second example is the first order 0.ddg/dx = —z y, with the initial conditiony(0) = 1, integrated over the intervgt,0,3]
with the analytic solutiony = e
(%i6) dydx : -x *y;
(%06) -x *y
(%i7) ytrue : exp(-x"2/2);
(%07) %e"-(x"2/2)
(%i8) hL : [0.5,0.2,0.1];
(%08) [0.5,0.2,0.1]
(%i9) yerr_pts : yfdiff_rk4(dydx,ytrue,1,hL);
tval = 0.606531
0.5 -3.63124582E-5
0.2 7.00094823E-7
0.1 6.66862736E-8
(%09) [[0.5,-3.63124582E-5],[0.2,7.00094823E-7],[0.1 ,6.66862736E-8]]
(%i10) case(h):= rk4(dydx,y,1,[x,0,3,h])$
(%i11) ptsl : case(0.5)$
(%i12) fli(ptsl);
(%012) [[0.0,1.0],[3.0,0.0130755],7]
(%i13) pts2 : case(0.2)$
(%i14) fll(pts2);
(%014) [[0.0,1.0],[3.0,0.0111361],16]
(%il5) plot2d([ytrue,[discrete,ptsl],[discrete,pts2] 1,[x,0,3],
[style,[lines,1]],[legend,"exact","h=0.5","n=0.2"],
[ylabel,"y"],[gnuplot_preamble,"set grid"])$
which produces the plot
1 éxact
h=0.5 ——
0.9 h=02 —
0.8
0.7
0.6
> 05
0.4
0.3
0.2
0.1
0 H—
0 0.5 1 1.5 2 25 3
Figure 14: rk4 Convergence tty/dxz = —z y with y(0) = 1
Example 3
We testrk4 on the simple harmonic oscillator with unit periodz/dt = v,, dv,/dt = —4 7%z, with the initial conditions

z(0) =1, wv,(0) = 0, and integrate over the time intenjaf0,1]
analytic solution isc = cos(27t).

We remind the reader that the list utility functiciis andtake are in the chapter 2 filk2util.mac
and have the definitions

for three different values of the time stelp = h . The

(as well as irmyode.mac)

fll(x) = [first(x),last(x),length(x)]$

take(%al,%nn) := (map(lambda([x],part(x,%nn)), %al))$

(%il) load(myode);
(%01) "c:/k2/myode.mac"

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R

25

(%i2) case(dt) := rkd([vx,-4 *%pi~2 *x],[x,vx],[1,0],[t,0,1,dt])$

(%i3) ptsl : case(0.1)$

(%i4) rptsl : [discrete,take(ptsl,1),take(ptsl,2)]$

(%i5) fli(pts1);

(%05) [[0.0,1.0,0.0],[1.0,0.99592,0.0440659],11]

(%i6) pts2 : case(0.05)$

(%i7) rpts2 : [discrete,take(pts2,1),take(pts2,2)]$

(%i8) fll(pts2);

(%08) [[0.0,1.0,0.0],[1.0,0.999868,0.00309201],21]

(%i9) plot2d([cos(2 * %opi* t),rptsl,rpts2],[t,0,1],[xlabel,"T"],[ylabel,"X"],
[style,[lines,3]],[legend,"exact","h=0.1","h=0.05"]
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot

0.5

N/

T

Figure 15: Exact and rk4 SHO Solutions

Example 4: Rigid Body Motion

The three Euler equations of motion for the angular veloo#tgtor components, , wy, ws of an unforced rigid body with principal

moments of inertid;, I», I3 are

dwl IQ —Ig
W = I W2 W3
dway I3 — 1,
W = 1, w3 w1
dws I — I
W = I3 W1 W2

We seek a solution for which, = 0.5, I, =2, I3 =3, and the initial conditions are; (0) = 1,

(4.7)
(4.8)

(4.9)

wg(O) =0.9.

(%il) load(myode);
(%01) "c:/k2/myode.mac"
(%i2) (i1 : 0.5, i2 : 2, i3 : 3)$

[wl,w2,w3],[1,0,0.9],[t,0,20,0.01])$
(%i4) fli(rsoln);
(%04) [[0.0,1.0,0.0,0.9],[20.0,0.606204,0.628747,0.8 07385],2001]
(%i5) tL : take(rsoln,1)$
(%i6) flI(tL);
(%06) [0.0,20.0,2001]
(%i7) (wlL : take(rsoln,2), w2L : take(rsoln,3), w3L : take(rsoln,4))$
(%i8) ptsl : [discrete,tL,wilL]$
(%i9) pts2 : [discrete,tL,w2L]$
(%i10) pts3 : [discrete,tL,w3L]$
(%ill) plot2d([ptsi,pts2,pts3], [y,-1.1,1.5],[style,[lines,3]],
[xlabel,"t"],[ylabel,"Angular Velocity Components"],
[legend, "wl","w2","w3"])$

(%i3) rsoln : rk4([(i2-i3) *w2x w3/il, (i3-i1) *w3wl/i2, (i1-i2) *wlx w2/i3],

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 26

which produces the plot

15

wl ——
w2 ——
w3 ——
1
2 AN
c
Q
c
8 0 5 L
g o
o
o
>
S
o
g 0
8
=]
(=2
c
<
-05
_l L
0 5 10 15 20

Figure 16: Unforced Rigid Body Angular Velocity Vector Coanents

Example 5. The Lorenz Equations

An example of a model with three o0.d.e.’s is the Lorenz model

dx
E—ax—i—yz (4.10)
dy
— =b(y— 4.11
73 = 0w—2) (4.11)
dz
%——xy—i—cy—z (4.12)
which we solve with our Maxima code&4 assuming the initial conditions arg0) = 1, y(0) = 1, 2(0) = 1, and the
parameters have the values- —8/3, b= —10, andc = 28. We use a homemade functicenge(list) , which is included in

myode.mac and ink2util.mac and which has the definition

range(aal) := print(" min = "JImin(aal)," max = ", Imax(aal))$

(%il) load(myode);

(%01) "c:/k2/myode.mac"

(%i2) (a : -8/3, b : -10, ¢ : 28)$

(%i3) ode : [a *x + y*z, b *x(y-z), -x *y + c*y -z]$
(%i4) var : [x,y,z]$

(%i5) init : [1,1,1]$

(%i6) domain : [t,0,1,0.01]$

(%i7) rksoln : rk4(ode,var,init,domain)$
(%i8) tL : take(rksoln,1)$

(%i9) fll(tL);

(%09) [0.0,1.0,101]

(%i10) xL : take(rksoln,2)$

(%ill) range(xL);

min = 0.961737 max = 47.833954
(%011) 47.833954

(%i12) yL : take(rksoln,3)$

(%i13) range(yL)$

min = -9.7615215 max = 19.555041
(%i14) zL : take(rksoln,4)$

(%i15) range(zL)$

min = -10.394135 max = 27.183473
(%i16) xpts : [discrete, tL, xL]$

(%i17) ypts : [discrete, tL, yL]$

(%i18) zpts : [discrete, tL, zL]$

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R

(%i19) plot2d([xpts,ypts,zpts],[x,0,1],
[style,[lines,3]], [xlabel,"t"],[ylabel,™],
[legend,"x","y","z"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot

50

N< X

40

.
. /

d N T
A A

° e

-10

-20

0 0.2 0.4 0.6 0.8 1
t

Figure 17: Maxima myrk4 with Lorenz Equations

We also ploty(x):

(%i20) plot2d([discrete,xL,yL],[style,[lines,3]],[xI abel,"x",
[ylabel,"y"],[gnuplot_preamble,"set grid"]))$

which produces the plot

20

——
// 7
15 /
10
> 5 /

0

-5
_10 \/
0 5 10 15 20 25 30 35 40 45 50

Figure 18:y(z) for Lorenz Equations

As practice, we write the nested ligsoln as a four column data file usingite_data

(%i21) write_data(rksoln,"c:/k2/mydata.txt");
(%021) done

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 28

If you look at the filemydata.txt ~ with a text editor, the top of the file is

0.0 1.0 1.0 1.0

0.01 0.984891 1.0125672 1.2599178
0.02 0.973114 1.0488237 1.5239971
0.03 0.965159 1.1072089 1.7983099
0.04 0.961737 1.186868 2.0885401
0.05 0.963806 1.2875571 2.4001545

which displays the four columns of space separated datadwbpresents the output €4 for this problem.

To read such a space separated text data file into your Max@éssaos, you useead_nested_list , Which returns a nested list
identical to the output ofk4 .

(%i22) mysoln : read_nested_list("c:/k2/mydata.txt")$
(%i23) fli(mysoln);

(%023) [[0.0,1.0,1.0,1.0],[1.0,29.362404,-9.3786158, -8.35706],101]
(%i24) fli(rksoln);
(%024) [[0.0,1.0,1.0,1.0],[1.0,29.362404,-9.3786158, -8.35706],101]

4.1.2 Failure of Maxima rk4 for a Stiff O.D.E.
The van der Pol equation
2 —p(1=2)2 +2=0 (4.13)

describes a non-conservative oscillator with non-lineanping and was originally designed as a model for electrzués using
vacuum tubes. The solutior{t), for largey, changes slowly with over a region, and then changes very rapidly in the next regio
with the solution approaching a distorted square wave fgela.

We lety; = z andys = 2. Theny] = 2/ = yo, andyy, = 2" = u(1 — y?)y2 — y1. We solve this pair of 0.d.e.'s first for the
“non-stiff” case, using: = 1, with no problems.

(%il) load(myode);
(%01) "c:/k2/myode.mac"

(%i2) nonstiff : rka(ly2, y2 *(1-y1°2) - y1],[yl,y2],[2,0],[t,0,30,0.01])$
(%i3) fli(nonstiff);
(%03) [[0.0,2.0,0.0],[30.0,-2.0079102,0.0519626],300 1]

(%i4) tL : take(nonstiff,1)$

(%i5) fll(tL);

(%05) [0.0,30.0,3001]

(%i6) zL : take(nonstiff,2)$

(%i7) fli(zL);

(%07) [2.0,-2.0079102,3001]

(%i8) plot2d([discrete,tL,zL],[style,[lines,3]],[yla bel,"z"],[xlabel,"t"])$

which produces the plot

25

ANANN
AIRTRTAY

-25

N

o

o

o

AN

0 5 10 15 20 25 30
t

Figure 19: Non-stiff van der Pol Case

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 29

However, trying to usek4 with = 1000, leads to a floating point overflow error return.

(%i9) stiff : rk4([y2, 1000 *y2*(1-y1°2) - yi].[y1l,y2],[2,0],[t,0,30,0.01])$
EXPT: floating point overflow.

For this type of problem, thdeSolveR package of solvers is needed.

By the way, if you try the same stiff case with the current Maaimethodk , you will seemany screens of an identical error
message:

(%i10) stiff : rk([y2, 1000 *y2+*(1-y1"2) - y1],[y1,y2],[2,0],[t,0,30,0.01]))$
EXPT: floating point overflow.

EXPT: floating point overflow.

EXPT: floating point overflow.

EXPT: floating point overflow.

EXPT: floating point overflow.

etc., etc.

The adjustable step contributed Maxima methifd5 can be used to solve moderately stiff initial value probleafihough it is
not designed for that purpose. We will discuss more abousyhéax ofrkf45 in a later section. The main difference (compared
with rk) is that instead of specifying the step size, you omit thp stee entirely. We trykf45 here to see that it gives at least a
graceful exit.

(%ill) load(rkf45);

(%011) "C:/PROGRA"1/MAXIMA™3.2/share/maxima/5.31.2/s hare/contrib/rkf45/rkf45.mac"
(%i12) stiff : rkf45([y2, 1000 *y2*(1-y172) - yi],[yl,y2],[2,0],[t,0,30])$
Warning: rkf45: Integration stopped at x = 8.7296685 (stiff problem?)

Iterations limit has been reached. Check if differential
equations/initial conditions are given correctly, reduce
accuracy, and/or increase maximum number of steps.

4.2 R Code: myrk4

If you have already loaded in tipackagealeSolve that package contains a method calledl . In order to prevent confusion with
that method (which requires a differdnnc template: see our later discussion), we cait codemyrk4 .

TheR code formyrk4 is in myode.R .

myrkd: each element of solnList is a vector
which contains the grid values
of one of the dependent variables.

myrk4 = function(init, grid ,func) {
num.var = length(init)
solnList = list()
n.grid = length(grid)
for (k in 1:num.var) {
solnList[[K]] = vector(length = n.grid)
solnList[[K]][1] = init[k] }
h = grid[2] - grid[1] # step size
yL = vector(length = num.var) # solution at beginning of each step
for (j in 1:(n.grid-1)) {
for (k in l:num.var) yL[K] = solnList[[K]][]

k1 = func(grid[j], yL) # vector of derivatives

k2 = func(grid[j] + h/2, yL + h *k1/2) # vector of derivatives

k3 = func(grid[j] + h/2, yL + h *k2/2) # vector of derivatives
k4 = func(gridfj] + h, yL + h *k3) # vector of derivatives

for (k in l:num.var) solnList[[K]][j[+1] = solnList[[K]]j]+

h* (k1[K] + 2 *k2[k] + 2 *k3[K] + k4[K])/6 }
if (num.var==1) solnList[[1]] else solnList}

The syntax of the required external functifumc to compute the needed derivatives is the same as in the caise Rffunction
myeuler above.

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 30
4.2.1 Three Examples of R myrk4

Example 1

Here we usenyrk4 andmyeuler to compare the solution of the single o.d.¢y/dt = —ty for y(0) = 1, after loading in
myode.R.

> source("myode.R")
> tL = seq(0,3,0.1)

> flI(tL)
0o 3 31
> deriv = function(t,y) { -t *y }
> yL = myrk4(1,tL,deriv)
> fli(yL)

1 0.01111038 31
yL.euler = myeuler(1,tL,deriv)

\%

> fli(yL.euler)

1 0.007791097 31

plot(tL,yL,type="1",lwd=3,col="red" xlab="t",ylab= "y")
abline(h=0,v=0)

grid()

lines(tL,yL.euler,lwd=3,col="green")
legend("topright", col=c("red","green"),lwd=3,
legend=c("myrk4","euler"))

+ V V V VYV

which produces the plot

1.0

N — myrk4
— euler
0
®
©
e
>
<
o
N
8
=
° T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Figure 20: myrk4 and myeuler fdér = 0.1

Example 2

We next testyrk4 on the simple harmonic oscillator with unit periati: /dt = v,,, dv,/dt = —4 7% z, with the initial conditions

2(0) =1, wv,(0) =0, and compare with the performancemojeuler . The analytic solution is: = cos(2 7 t).

\%

tL = seq(0,1,0.001)

fll(tL)

0 1 1001

sho = function(t,y) with(as.list(y), c(y[2], -4 *pi"2 *y[1]))
out = myrk4(c(1,0),tL,sho)
xL = out[[1]]

fll(xL)

1 1 1001

vxL = out[[2]]

fll(vxL)

0 5.127315e-10 1001

V V.V V \%

VvV Vv

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 31

> max(vxL)
[1] 6.283185
> out.euler = myeuler(c(1,0),tL,sho)
> xL.euler = out.euler[[1]]
> fli(xL.euler)
1 1.019935 1001
> vxL.euler = out.euler[[2]]
fll(vxL.euler)
0 0.0005298591 1001
plot(tL,xL,type="1",lwd=2,col="red" xlab="t",ylab= "X")
lines(tL,xL.euler,lwd=2,col="green")
legend("top"”, col=c("red","green"),lwd=3,
legend=c("myrk4","myeuler"))

\%

+ V V V

which produces the plot

1.0

— myrk4
— myeuler
wn
o
x g —
n
O‘ —
[
<
g
! T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 21: SHO: myrk4 and myeuler for= 0.001

Example 3: The Lorenz Model with R

An example of a model with three o0.d.e.’s is the Lorenz model

dx

E—ax—i—yz (4.14)

dy

i b(y—=z) (4.15)
82 o rytey-—z (4.16)

dt

which we solve with ouR codemyrk4 assuming the initial conditions ar0) = 1, y(0) =1, 2(0) = 1, and the parameters
have the values = —8/3, b= —10, andc = 28.

> source("myode.R")

> lorenz = function(t,y) {

+ with(as.list(y), {

+ dx = axy[l] + y[2] *y[3]

+ dy = bx(y[2] - y[3])

+ dz = -y[1] =*y[2] + ¢ *y[2] - y[3]
+ c(dx,dy,dz)}h)}

> tL = seq(0,1,0.01)

>a =-83;b=-10; c = 28

> yini = ¢(1,1,1)

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R

32

> out = myrk4(yini,tL,lorenz)

> xL = out[[1]]

> range(xL)

[1] 0.9617372 47.8339541

> yL = out[[2]]

> range(yL)

[1] -9.761521 19.555041

> zL = out[[3]]

> range(zL)

[1] -10.39413 27.18347

plot(tL,xL,type="1",lwd=3,col="blue",ylim=c(-12,50), xlab="t",ylab="")
> lines(tL,yL,lwd=3,col="red")

> lines(tL,zL,lwd=3,col="green")

> grid(lty="solid", col="darkgray")
>
+

\%

legend("topright",col= c("blue","red","green"),lwd= 3,
legend = c("x","y","z"))

which produces the plot

50
1

N\ =

| \\
)
7\

40
|

30
|

20
|

/

ol

- ‘él \ \\

e *;‘t
0‘0 0‘2 0‘4 0‘,6 0‘8 1‘0

Figure 22: Lorenz Model with our R code myrk4

We also make of plot ofi(x):

> grid(Ity="solid",col="darkgray")

which produces

20
1

15
|

\
.

e

Figure 23: Lorenz Modely(x)

4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R

4.2.2 Failure of R myrk4 for a Stiff O.D.E.

We again integrate the van der Pol equation (see Sec. (1.Eigst a non-stiff case witpy = 1.

> vanderPol = function(t,y){
+ with(" as.list(y), c(y[2], mu *y[2] *(1-y[1]'2) - y[1])}
> tL = seq(0,30,0.01)

> flI(tL)

0 30 3001

yini = ¢(2,0)

mu =1

nonstiff = myrk4(yini,tL,vanderPol)

zL = nonstiff[[1]]

fll(zL)

2 -2.00791 3001
plot(tL,zL,type="1",lwd=3,col="blue",xlab="t",ylab

V V.V VYV

\%

")

which produces

-2
|
g—

Figure 24: Non-Stiff van der Pol cage= 1

Next we try a stiff case, witly = 1000, and the same sequence of times and the same initial camglitio

> mu = 1000
> stiff = myrk4(yini,tL,vanderPol)
> zL = stiff{[1]]
> any(is.nan(zL))
[1] TRUE
> all(is.nan(zL))
[1] FALSE
> fli(zL)
2 NaN 3001
> head(zL)
[1] 2.000000e+00 1.993400e+00 6.460842e+01 8.833844e+42 NaN
[6] NaN
> tail(zL)
[1] NaN NaN NaN NaN NaN NaN

All but the first four values ozL. areNaN(not a number), which indicatedfailure of myrk4 in dealing with this stiff case.

We have usedny(is.nan(vec)) , Which returnsTRUEIf at least one element afec is NaN

> xL = ¢(1,2,3,4,NaN,5,NaN)
> yL = ¢(1,2,3,4,5)

> any(is.nan(xL))

[1] TRUE

> any(is.nan(yL))

[1] FALSE

5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS 34

5 The Standard and Contributed Maxima Methods
51 rk

The standard fixed step fourth order Runge-Kutta methokl jsvhich has the same syntax as our Maxima cdde:

if the dxdt expression is a function of (t,x), then:
for one o.d.e: rk(dxdt,x,xinit,[t,tinit,tfinal,dt])

If the dx1dt expression and the dx2dt expression are functio ns of (t,x1,x2),
then for two o.d.e.’s:

rk([dx1dt,dx2dt],[x1,x2],[x1init,x2init],[t,tinit,t final,dt])
and so on.

Nothing has to be loaded into your work session tokse Sincerk is a fixed step method, with the step size chosen by the user,
the value of the step size should be reduced at least oncdtsanitial value, in order to assess the effects on the dlsblation. A
rough rule of thumb is to start with a step size that is of thdeoof one hundredth of the integration interval.

In order to easily extract the list of timéls , and the list of the first dependent varialteL , etc., from the list returned ik , we
recommend the use of our home-made list utility functae , which can be made available by loadingkRutil.mac ~ from our
Chapter 2 files.

5.2 rkf45

This is a contributed method, located.irshare\contrib\rkf45\ , where you can findkf45.mac (which contains the
needed codejkf45.pdf |, rkf45.dem , as well as a test file.

The version ofkf45 in Maxima ver. 5.31 has a number of bugs which will be fixed tedaersions. The chapter 2 fibwyrk4.mac
contains the bug fixes.

The author of this method has a web page:
https://sites.google.com/site/pjpapasot/maxima/libr aries/rkf45

Fehlberg discovered a 5-th order method that only requissakiations while the same combination of evaluations lilt éifferent
factors yields a 4-th order scheme. Therefore this appralaivs an error estimation (by comparing the two cases dt stap) at
a much reduced computational cost (with 6 evaluations ody)making such an error estimate for each step, the stegaizbe
adjusted to keep the estimated errors small.

Depending upon the computational effort required to complié function evaluations, this method can produce a sigmnifide-
crease in computational effort.

We include part of the top section d&f45.mac here as a guide to getting started with this method (with seenglight editing).
We have replaced the symifahc with the symbolar in the following.

Author: Panagiotis J. Papasotiriou

Brief description:

rkf45 is a Maxima function for solving initial value problem s with automatic
step size and error control.

This is an implementation of the Runge-Kutta-Fehlberg 4th- 5th-order scheme.
Syntax:

rkf45(ode,var,init,interval,options)

rkf45([odel,ode2,...],[varl,var2,...],[initl,init2, ...],interval,options)

The first form solves a first-order differential equation, (o.d.e.), with
respect to the initial condition init, where var is the depen dent variable

and init is the value of the dependent variable at the initial point.

5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS

35

Similarly, the second form solves a system of first-order di fferential
equations, odel,ode2,..., with respect to the initial cond itions

initd,init2,..., where varl, var2,... are the dependent va riables and
initl,init2,... are the values of the dependent variables a t the initial point.
Differential equation(s) should be given as expressions de pending only on the
independent and dependent variables, and should define the derivative of the
dependent variable with respect to the independent variabl e. For instance, the
differential equation y'(X)+(x+1) *y=0 should be given as -(x+1) *y.

The argument "interval" should be a list of three elements. T he first element
identifies the independent variable, while the second and t hird elements are
the initial and final values for the independent variable, a s in [x,0,6].

The initial value does not need to be less than final value, so an interval

such as [x,6,0] is also valid.

rkf45 accepts the following optional arguments:

* full_solution: A Boolean. If set to true, a full list of the so lution
all intermediate points will be returned. If set to false,
only the solution at the last integration point is
returned. Default: true.
* absolute_tolerance: The desired absolute tolerance of the result. Default:
le-6.
* max_iterations: Maximum number of iterations. Default: 10 000.
* h_start: Initial integration step. Default: one 100th of th e
integration interval, (interval[3]-interval[2])/100.
* report: A Boolean. If set to true, rkf45 prints a report at
exit, giving details about the calculations done.
Default: false.
The integration step size is selected automatically in such a way that the
estimated local error is less than user-specified absolute tolerance.
The result is returned as a list with n+1 columns, where n is th e number of
first-order differential equations. The first column cont ains the values of
the independent variable selected by the algorithm. The sec ond column
contains the values of the first dependent variable at the co rresponding
value of the independent variable. Similarly, the third col umn contains the
values of the second dependent variable at the correspondin g value of the
independent variable, and so on.
rkf45 can be used to solve moderately stiff initial value pro blems, although
it is not designed for that purpose.
Examples:
(1) A first-order differential equation, y'=x * (y-1)+3, with y(0)=-2:
rkf45(x *(y-1)+3,y,-2,[x,0,4]) returns the solution at selected po ints
from x=0 to x=4.
(2) A second-order differential equation, y”=x+y *y', with y(-1)=2, y'(-1)=0:
rkf45([y2,x+y1 *y2],[yl,y2],[2,0],[x,-1,4]) returns the solution at sele

points from x=-1 to x=4.

at

cted

5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS

Example 1

36

Here is an example from the demo fil§é45.dem which finds the solution of the single o.d@/dx = —3zy?+1/(1+2®) over

the rangdx,0,5]
by the author ofkf45 (Panagiotis J. Papasotiriou
would usdoad(myrkf45) or load("myrkf45.mac")).

and with the initial conditiory(0) = 0. The optional argumemeport = true

) in his file rkf45.pdf

is included. See comments
. (To use the bugfree code version, you

(%i1) fpprintprec:7$
(%i2) load(rkf45);

(%02) "C:/PROGRA™1/MAXIMA"3.2/share/maxima/5.31.2/sh
(%i3) rksoln : rkf45(-3

rkf45:
Integration points selected: 42
Total number of iterations: 45
Bad steps corrected: 4
Minimum estimated error: 3.0488505E-10
Maximum estimated error: 9.5960328E-7
Minimum integration step taken: 0.05
Maximum integration step taken: 0.31668

Info:

(%i4) plot2d([discrete,rksoln],[xlabel,"x"],[ylabel,
[style,[lines,3]],[gnuplot_preamble,"set grid"])$

are/contrib/rkf45/rkf45.mac"
*x*y"2+1/(x"3+1),y,0,[x,0,5],report=true)$

"y,

which produces the plot

0.6

0.5 /
0.4

Jf

Figure 25: rkf45 Solution

We now repeat with a request for more accuracy, by using ttierggd absolute_tolerance

flag.

(%i5) rksoln2 : rkf45(-3 *X*y2+1/(x"3+1),y,0,[x,0,5],

absolute_tolerance = 1e-12, report=true)$

Info: rkf45:
Integration points selected: 1168
Total number of iterations: 1173
Bad steps corrected: 6
Minimum estimated error: 4.8670316E-15
Maximum estimated error: 9.4750206E-13
Minimum integration step taken: 0.0017906
Maximum integration step taken: 0.016874

(%i6) plot2d([[discrete,rksoln],[discrete,rksoln2]],
[xlabel,"x"],[ylabel,"y"],
[style,[lines,1]],[gnuplot_preamble,"set grid"],
[legend,"1e-6","1e-12"))$

5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS 37

which produces the plot

0.6

1le-6
le-12 ——

Figure 26: rkf45 Solutions

Example 2

Here is another example from the demo file, which solves desimgl.e. for three values of a parameter caedSee comments by the author of
rkf45 (Panagiotis J. Papasotiriou) in his file rkf45.pdf

The very useful Maxima functiomakelist s used here with the particular syntaakelist(expr, p, pList) , in which the param-

eterp takes on values in the ligist , and for each such, expr is evaluated.

We first usemakelist to form a list €qnL) of symbolic expressions fely /dt for three values of a parameter We then make a lissQInL)

of numerical solutions for these three cases afsingrkf45 with y(0) = 0, integrating over the time interv{t,0,100] , and accepting all

the defaults. We then use the same syntasnakelist to form the main first argument g@flot2d

makelist([discrete,sv],sv,solnL) , inwhichsv is a dummy argument which takes on successively the valugsgiistsolnL .
(%i8) eqnL : makelist(s-1.51 *y+3.03 *y 2/(1+y"2),s,[0.206,0.204,0.202));

(%08) [3.03 *y"2/(y"2+1)-1.51 *y+0.206,3.03 *y"2/(y"2+1)-1.51 *y+0.204,
3.03 *y"2/(y"2+1)-1.51 *y+0.202]

(%i9) solnL : makelist(rkf45(ode,y,0,[t,0,100]),0de,eq nL)$

(%i10) plot2d(makelist([discrete,sv],sv,solnL),[styl e,[lines,2]],[xlabel,"t"],
[ylabel,"y"],[legend,"s=0.206","s=0.204","s=0.202"] ,
[gnuplot_preamble,"set key left'])$

which produces the plot

1.6

$=0.206 ——
$=0.204 ——
14| s90202
12
I
>~ 08
06 |
04 |
02|
o ‘
0 20 40 60 80 100

Figure 27: rkf45 Solutions for Different Values of s

5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS 38

Example 3

Here is an example of integrating the Lorenz model (see aio8ec. (4.2.1)). We need to load the contributedrié5f.mac
and we also load our list utility file2util.mac , which provides definitions dfl , take , andrange .

(%i1) fpprintprec:7$
(%i2) load(rkf45);
(%02) "C:/PROGRA™1/MAXIMA"3.2/share/maxima/5.31.2/sh are/contrib/rkf45/rkf45.mac"
(%i3) load(k2util);
(%03) "c:/k2/k2util. mac"
(%i4) (a : -8/3, b : -10, ¢ : 28)$
(%i5) ode : [a *x + y*z, b *x(y-z), -x *y + c*y -z]$
(%i6) var : [xy,z]$
(%i7) init : [1,1,1]%
(%i8) interval : [t,0,1]$
(%i9) rksoln : rkf45(ode,var,init,interval)$
(%i10) tL : take(rksoln,1)$
(%i13) fll(tL);
(%013) [0,1.0,282]
(%i14) xL : take(rksoln,2)$
(%i15) range(xL)$
min = 0.96172 max = 47.84057
(%i16) yL : take(rksoln,3)$
(%i17) range(yL)$
min = -9.761498 max = 19.56929
(%i18) zL : take(rksoln,4)$
(%i19) range(zL)$
min = -10.39593 max = 27.18298
(%i20) xpts : [discrete, tL, xL]$
(%i21) ypts : [discrete, tL, yL]$
(%i22) zpts : [discrete, tL, zL]$
(%i23) plot2d([xpts,ypts,zpts],
[style,[lines,3]], [xlabel,"t"],[ylabel,™],
[legend,"x","y","z"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot

50

X
y —
z

40

.

. /

N7, N
/&)

10

-10

-20

0 0.2 0.4 0.6 0.8 1

Figure 28: The Lorenz Model Using rkf45

This solution agrees with that we found earlier (Sec. (4)luding our Maxima codek4 , as well as the solution using either
R:myrk4 (Sec.(4.2.1))oR:ode (see nextsection).

6 STANDARD R METHODS USING DESOLVE’S ODE 39

6 Standard R Methods using deSolve’s ode

TheRpackagealeSolvecontains a large number of numerical methods for the integraf systems of ordinary differential equations
in the context of initial value problems.

The textSolving Differential Equations in R, by Karline Soetaert, Jeff Cash, and Francesca Mazziap&grVerlag, 2012, presents
many examples of the use of the solvers availablgeiBolve In addition to conventional initial value problems, thetars present
methods for the solution of differential algebraic equasgiodelay differential equations, partial differentiabiatjons, and boundary
value problems.

New users of this package can just usedbe function, which has the syntax

ode (y, times, func, parms, ...)

in whichy is the initial value (or vector of initial valuegy10, y20,...) of the dependent variablegsnes is a vector of times

at which output is requested (typically produced using thefionseq), func is aRfunction which returns the rate of change (first
derivatives) of the dependent variables, and must havetgar form, andparms contains the value(s) of parameters to be used
in the integration.

If there are no parameters which are needed to completelyediéfe derivatives returned liync , or if you wish to just use gobal
assignments to set the values of the parameters, then yaitseparms=NULL as the input tade.

Once you have loadeateSolveusinglibrary(deSolve) , you can get the manual page fate using? ode. Here is an edited
version of the top of that page (note that this descriptiothefsyntax and methods assumes that the independent edsdinhe):

ode {deSolve} R Documentation
General Solver for Ordinary Differential Equations
Description

Solves a system of ordinary differential equations;
a wrapper around the implemented ODE solvers

Usage

ode(y, times, func, parms,
method = c("Isoda", "Isode", "Isodes", "Isodar",
"vode", "daspk”, "euler", "rk4", "ode23", "ode45",
"radau”, "bdf", "bdf_d", "adams", "impAdams",
"impAdams_d", "iteration"), ...)

Arguments
y: the initial (state) values for the ODE system, a vector. If y

has a name attribute, the names will be used to label the outpu t matrix.
times: time sequence for which output is wanted; the first va lue

of times must be the initial time.

func: either an R-function that computes the values of the de rivatives
in the ODE system (the model definition) at time t, or a charac ter
string giving the name of a compiled function in a dynamicall y

loaded shared library.

If func is an R-function, it must be defined as:
func = function(t, y, parms,...).
t is the current time point in the integration.
y is the current estimate of the variables in the ODE system.
If the initial values y has a names attribute, the names
will be available inside func.
parms is a vector or list of parameters;
... (optional) are any other arguments passed to the functio n.

6 STANDARD R METHODS USING DESOLVE’S ODE

40

The return value of func should be a list, whose first element
is a vector containing the derivatives of y with respect to

time, and whose next elements are global values that are requ
at each point in times. The derivatives must be specified in
the same order as the state variables y.

If func is a string, then dliname must give the name of the shar
library (without extension) which must be loaded before ode
called. See package vignette "compiledCode" for more detai

parms: parameters passed to func.

method: (optional: the default method is Isoda)
the integrator to use, either a function that performs integ
or a list of class rkMethod, or a string: "Isoda", "lsode",
"Isodes","Isodar","vode", "daspk", "euler", "rk4", "ode
"ode45", "radau", "bdf', "bdf _d", "adams", "impAdams" or
"impAdams_d" ,"iteration".
Options "bdf", "bdf_d", "adams", "impAdams" or "impAdams_
the backward differentiation formula, the BDF with diagona
representation of the Jacobian, the (explicit) Adams and th
implicit Adams method, and the implicit Adams method with
diagonal representation of the Jacobian respectively
(see details). The default integrator used is Isoda.

(The method “iteration" is special in that here the function
func should return the new value of the state variables rathe
than the rate of change. This can be used for individual
based models, for difference equations, or in those cases
where the integration is performed within func). See last ex

additional arguments passed to the integrator or to the m
Details
This is simply a wrapper around the various ode solvers.
The default integrator used is Isoda.

Value: A matrix of class deSolve with up to as many rows as elem
in times and as many columns as elements in y plus the number
of "global" values returned in the second element of the
return from func, plus an additional column (the first)
for the time value. There will be one row for each element in
times unless the integrator returns with an unrecoverable e
If y has a names attribute, it will be used to label the columns
of the output value.

Author: Karline Soetaert <karline.soetaert@nioz.nl>

ired

ration,

23",

d" are

ample.

ethods.

ents

rror.

The defaulisoda method used by the wrappede always starts with the non-stiékplicit multi-step Adams method, and when
stiffness is detected, switches toiamplicit multistep solver (“bdf”: backward differentiation forna)l

6.1 One First Order O.D.E.: Solvingdy/dx = —x y with y(0) = 1

We will use the simple o.d.ely/dz = —xy with y(0) = 1 to explore the behavior afide. We know that, by defaulpde calls

the independent variable a time t, so we have to adapt ounappitoode’s behavior. We will see that we have much freedom in

defining the names of the derivative function, and the narhés three formal arguments. We can override column lalgedin the
output matrix whiclode returns by usingolnames . We can also force our intended labels and title on the firwlgrioduced.

We start with defining the needed derivatifeaac containing the three required arguments, acceptirgs the independent

variable for now. Note that, crucially, the derivative ftioa returns a list.

6 STANDARD R METHODS USING DESOLVE’S ODE 41

> library(deSolve)
> deriv = function(t, y, parms) list(-t *y)
> tL = seq(0,3,0.01)
> yini = 1
> out = ode(y=yini, times=tL, func=deriv, parms=NULL)
> head(out)

time 1

[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)

which produces the basic default plot of the output (matrix)

1.0

0.8

0.4

0.2
|

0.0
|

0.0 0.5 1.0 15 2.0 25 3.0

time

Figure 29: basic ode solutiony /dt = —ty for y(0) =1

In the output of thdnead command, we see the first column has the label “times” (whieltan change usingplnames), and the
second column has the label “1”. In the simple default plotpiced byplot(out) we get the “1” again as the plot title.

We can extract the vectgi. of values ofy(t) from the matrixout returned byode usingyL = out[,2] , which extracts the
second column of the matrout .

Our next approach is to change the definitiomefiv toderiv = function(x,y,parms) ... , with x playing the role of
the independent variable, and defining a sequengevafues usingkL = seq(...) . We also giveyini the “name attribute” by
supplying the namg in the formyini = c(y = 1)

> deriv = function(x, y, parms) list(-x *y)
> yini = c(y = 1)
> xL = seq(0,3,0.01)
> out = ode(yini, xL, func=deriv, parms=NULL)
> head(out)
time

[1,] 0.00 1.0000000
[2,] 0.01 0.99995s00
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)

6 STANDARD R METHODS USING DESOLVE’S ODE 42

which produces the plot

y
o |
—
©
2
©
2
<
3 -
N
8
e
e T T T T T T T
0.0 05 1.0 15 2.0 25 3.0

time

Figure 30: trying ode solutioniy /dxz = —z y for y(0) = 1

We can add some optional arguments to get rid of the “timegllain the x-axis, and also dress up the plot with color anchdixte
thickness and a grid:

> plot(out,lwd=3,col="blue" xlab="x",ylab="y")
> grid(lty="solid",col="darkgray")

which produces

y
o [
— \
o \
o
o
* \
o
N \\
o
N \\
e I I I I I I I
0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 31: better ode solutiody /dx = —zy for y(0) = 1

Perhaps an easier way to override the “times” label is tacossames .

> colnames(out)

[1] "time" "y"

> colnames(out) = c("x","y")
> colnames(out)

[%y

6 STANDARD R METHODS USING DESOLVE’S ODE

43

[1,] 0.00
[2,] 0.01
[3,] 0.02
[4,] 0.03
[5,] 0.04
[6,] 0.05

> head(out)

X
1.0000000
0.9999500
0.9998000
0.9995501
0.9992003
0.9987508

> plot(out)

which gets a basic plot with the correct labels:

Figure 32: colnames cure for ode solutiely/dz = —x y for y(0) = 1

We can now modify the notation aferiv to useode to solve the 0.d.edz/dx = —x z with z(0) = 1.

[1,] 0.00
[2,] 0.01
[3,] 0.02
[4,] 0.03
[5,] 0.04
[6,] 0.05

[1] "time"
> colnames(out) = c("x","z")
> head(out)

D

X
1.0000000
0.9999500
0.9998000
0.9995501
0.9992003
0.9987508

> plot(out)

z

> deriv = function(x, z, parms) list(-x *Z)
> zini = c(z = 1)

> xL = seq(0,3,0.01)

> out = ode(zini, xL, func=deriv, parms=NULL)

> colnames(out)

which produces the default plot with the correct title ani dabel:

Figure 33: basic ode solutiodz/dz = —x z for z(0) =1

6 STANDARD R METHODS USING DESOLVE’S ODE 44

We can use a different name for the third argumertterfv here, sayp, and still get the proper solution.

> deriv = function(x, z, p) list(-x *Z)
> out = ode(zini, xL, func=deriv, parms=NULL)
> colnames(out)
[1] "time" “z"
> colnames(out) = c("x","z")
> head(out)
X z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

As long as we leave the argsade in the standard order, we don't need to @isec=deriv , but justderiv , for example.

> out = ode(zini, xL, deriv, NULL)
> colnames(out) = c("x","z")
> head(out)
X z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

We can use any other name for fluec derivatives function.

dzdx = function(x, z, p) list(-x *Z)
out = ode(zini, xL, dzdx, NULL)
colnames(out) = c("x","z")
head(out)
X z
[1,] 0.00 1.0000000
[2.] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

V V.V V

6.2 Two First Order O.D.E.’s: Using the Parameters Argument

We discuss an instructive example adapted from page 73 ¢loa/ing) in the pdf document “Using R for Scientific Compdi’, by
Karline Soetaert and Filip Meysman, Centre for Estuarirg: Marine Ecology, Netherlands Institute of Ecology, Thelidelands,
February 2011.

This pdf document can be found in zip formatdip://cran.r-project.org/other-docs.html

Assume the pair of first order o.d.eld /dt = r (x — A) — k A B anddB/dt = r (y — B) + k A B, determine the time evolution of
concentrations\(t) andB(t), subject to the values of the fixed parameters &, y, and given initial values oft andB.

A possible form for the needed derivatives function is

derivs = function(t, y, p) {
with (as.list(c(y, p)), {
dA = r*(x-A) - kK *AxB
dB = rx(y-B) + k *AxB
list(c(dA, dB))) }

Note that the symbaol appears both as the formal second argumedétivs , and also as a parameter in calculating the derivatives.
This looks dangerous, but will work fine as long as we pass #hevof the parametsr via the third argumerpy. A more cautious
approach would be to ugkerivs = function(t,state,parameters) {...}

6 STANDARD R METHODS USING DESOLVE’S ODE 45

The R-statemenwith(as.list (c(y,p)), ... , together with supplyingini with the “names attribute”, will allow the
state variables and parameters to be addressed by theisn&gain, note carefully that a list must be returned by thevdtves
function, with the elements of the enclosed vector in theesarder as given igini

> library(deSolve)
> derivs = function(t, y, p) {
+ with (as.list(c(y, p)), {
+ dA = r*(x-A) - kK *A*B
+ dB = rx(y-B) + k *A*B
+ list(c(dA, dB)) }) }
> params = c¢(x = 1, y = 0.1, k = 0.05, r = 0.05)
>vyini= cA=1 B =1)
> yini
A B
11
> tL = seq(0,300,1)
> out = ode(yini, tL, func = derivs, parms = params)
> head(out)
time A B
[1,] 0 1.0000000 1.0000000
[2,] 1 0.9523189 1.0037869
[3.] 2 0.9090687 1.0052854
[4,] 3 0.8699226 1.0047151
[5.] 4 0.8345728 1.0022854
[6.] 5 0.8027203 0.9982009

Times and concentration vectors can be defined using mattatian, sinceode returns a matrix. Of course, we already have the vector afdim
tL which we started with, but this is also given byt[,"time"] , which returns the first column of the matdut , which has the label
“time”. The same vector is of course returned using[,1]

A vector containing the concentrations of species A can fieettbyAL = out[,"A"] , and likewiseBL = out[,"B"] . However, we
could also us@&L = out[,2] andBL = out[,3]

We use theR functionrange , which returns a vector, to control the vertical extent & ot via theplot argumentylim .

> range(out[,"A"])

[1] 0.5739162 1.0000000

> range(out[,"B"])

[1] 0.3702302 1.0052854

> yrange = range (c(out[,"A"], out[,"B"])); yrange

[1] 0.3702302 1.0052854

> plot(out, which = "A", xlab = "time", ylab = "concentration

+ lwd = 3, type = "I, ylim = yrange, main = "concentation model ")
> lines(out[,"time"], out[,"B"], lwd = 3, Ity = 2)
> legend("topright", legend = c("A", "B"),lwd = 3, Ity = c(1, 2))

which produces the plot

concentration model

1.0

0.8
1

concentration
0.7

0.6
1

0.5

0.4
/

S, e e e - - - -

time

Figure 34: Concentrations of and B vs. Time

6 STANDARD R METHODS USING DESOLVE’S ODE 46

which can be contrasted with the default and simplest plot:

> plot(out,lwd=2)

which produces

1.0
|
1.0

0.9
|

0.9
0.7 0.8
|

0.8

0.7
0.6

0.5

0.4

0 100 200 300 0 100 200 300
time time
Figure 35: basic plot(out): ConcentrationsAfndB vs. Time
and in which the two side-by-side plots have different wailtscales.

Of course, as we have seen before, we can define the paramnstdrs the above problem as global parameters, and theodeall
with the fourth arg aparms = NULL, and get the same solutions and the same plots.

However, you will find thatR returns an error, claiming that the derivatives functiomerning three derivatives instead of the
needed two derivatives (corresponding to the number a&inialues). This occurs because the symp@ now being used in two
ways: as a globally set parameter with the vatlue 0.1 , and also as the formal second argumerderivs

As we have seen, it is no problem to have a parameter calliedide thederivs function as well as being the second formal
argument oflerivs aslong asyou pass the value of the parameter y via the third argument of der i vs , as we did above.

So with globally defined parametgr we must be more careful and redefaerivs

> derivs = function(t, state, parameters) {
+ with (as.list(state), {
+ dA = r*(x-A) - kK *A*B
+ dB = rx(y-B) + k *A*B
+ list(c(dA, dB)) }) }
>x =1,y =0.1; k = 0.05 r = 0.05
> out = ode(yini, tL, func = derivs, parms = NULL)
> head(out)
time A B
[1,] 0 1.0000000 1.0000000
[2,] 1 0.9523189 1.0037869
[3.] 2 0.9090687 1.0052854
[4,] 3 0.8699226 1.0047151
[5.] 4 0.8345728 1.0022854
[6.] 5 0.8027203 0.9982009

6.3 Three First Order O.D.E.’s: The Lorenz Model

An example of a model with three o0.d.e.s is the Lorenz modek Sec. (4.2.1) for a treatment which used®aoodemyrk4).

dx
E—ax—i—yz (6.1)

6 STANDARD R METHODS USING DESOLVE’S ODE 47

—=b(y—2) (6.2)

d
d—i:—xy—l—cy—z (6.3)
which we solve here witliR:ode assuming the initial conditions arg0) = 1, y(0) =1, =2(0) = 1, and the parameters have

the values: = —8/3, b= —10, andc = 28. We look only at the initial stage of the evolution.

library(deSolve)
yini = c(x=1, y=1, z=1)
a=-83;,b=-10; c = 28
lorenz = function(t,state,parameters) {
with(as.list(state), {
dx = a*x + y*z
dy = bx(y - 2)
dz = -x *y + c*y -z
list(c(dx, dy, dz))N}
tL = seq(0,1,0.01)
out = ode(y = yini, times = tL, func = lorenz, parms = NULL)
head(out)
time X y z
[1,] 0.00 1.0000000 1.000000 1.000000
[2,] 0.01 0.9848912 1.012567 1.259918
[3,] 0.02 0.9731148 1.048823 1.523999
[4,] 0.03 0.9651593 1.107207 1.798314
[5,] 0.04 0.9617377 1.186866 2.088545
[6,] 0.05 0.9638068 1.287555 2.400161

VVV+++++VVVYV

Before making a plot, we review the steps needed to save thémsogenerated bpde to a text data file, and the methods needed
to read that data file int® again. Since the output afde is already a matrix, we don’t need to uae.matrix to convert a
data.frame into a matrix. We can then userite with the transpose of the matrifout) , providing a file name in the form
of a string, and providing the number of columns the data hoccupy. We can usile.show to display the resulting text file
contents in a separate window. We can thenresel.table to turn the contents of the text data file intalaa.frame which

we callmydata here.

> is.matrix(out)

[1] TRUE

> write(t(out),file="mydata.txt",ncolumns=4)
> file.show("mydata.txt")

The use ofile.show displays the contents of the data file in a separate windadMtamtop part of that file is

0111

0.01 0.9848912 1.012567 1.259918
0.02 0.9731148 1.048823 1.523999
0.03 0.9651593 1.107207 1.798314
0.04 0.9617377 1.186866 2.088545
0.05 0.9638068 1.287555 2.400161
0.06 0.9726091 1.409569 2.738552

We can then read the data file contents inttata.frame usingread.table

> mydata = read.table(file="mydata.txt",header=FALSE)
> head(mydata)
Vi V2 V3 V4

0.00 1.0000000 1.000000 1.000000

0.01 0.9848912 1.012567 1.259918

0.02 0.9731148 1.048823 1.523999

0.03 0.9651593 1.107207 1.798314

0.04 0.9617377 1.186866 2.088545

0.05 0.9638068 1.287555 2.400161
colnames(mydata) = c("t","x","y","z")

head(mydata)

t

VVOoOabhwNE

X y z
0.00 1.0000000 1.000000 1.000000
0.01 0.9848912 1.012567 1.259918
0.02 0.9731148 1.048823 1.523999
0.03 0.9651593 1.107207 1.798314
0.04 0.9617377 1.186866 2.088545
0.05 0.9638068 1.287555 2.400161

OO0 wWNRE

6 STANDARD R METHODS USING DESOLVE’S ODE 48

> str(mydata)

‘data.frame’: 101 obs. of 4 variables:
$ t num 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
$ x: num 1 0.985 0.973 0.965 0.962 ...
$y: num 1 101 1.05 1.11 1.19 ..

$ z num 1 126 1.52 1.8 2.09 ...

> is.data.frame(mydata)

[1] TRUE

> head(mydata$"t")

[1] 0.00 0.01 0.02 0.03 0.04 0.05

> head(mydata[[1]])

[1] 0.00 0.01 0.02 0.03 0.04 0.05

Note that thedata.frame produced byead.table s nota matrix, and we must use more direct methods to extraciolumns
of mydata in order to make plots.

We now return to the matrimut (of class “deSolve”), produced lpde to make the default plot.

> plot(out,lwd=3,col="blue")

which produces the plot

1
15
S I I T I |

30
I

05

0 10

-10

T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10

time time

10 20

-10 O

T T T T T T
00 02 04 06 08 10

time

Figure 36: The Lorenz Model Using R:ode

This example illustrates the default behaviorpdét , when the first slots are matrices of claksSolve , (except that we have
thickened the lines, and chosen a blue color) once you hadetbin theR packagedeSolve If you have passed the names of
the variables tmde indirectly via the special form ofini above (“ x = 1", for example), the dependent variables aréediosep-
arately in rows of (a maximum of) two columns, with titles abpusing black color, and using the stiggpe = "I' automatically.

The horizontal and vertical axes are not drawn, nor is a gtikd. The first column adut is taken to represent “times”, and that
automatically is the label of the horizontal axis.

The main benefit of passing the names of the dependent wesiabyini argument ofode is that you can freely refer to these
names in your code for the functidrenz , instead of referring to the dependent variablesyi3, y[2], y[3]

We now use the data-franmeydata , generated by reading in®the solution data from a saved text data file, to make a pldief t
X column versus the column.

> plot(mydata$"t",mydata$"x",Iwd=3,col="blue",ylab=" x" xlab="t",type="1")
> grid(Ity = "solid", col = "darkgray")

6 STANDARD R METHODS USING DESOLVE’S ODE 49

which produces the plot

40
1

20
|

10
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 37:2(t) from data-frame mydata

Instead of using the dollar sign extraction method, we cantlis double bracket extraction method for obtaining a vefcton a
data-frame (as we must when extracting elementsRlist). Thus

> plot(mydata[[1]],mydata[[2]],lwd=3,col="blue",ylab ="x"xlab="t",type="1")
> grid(lty = "solid", col = "darkgray")

produces the same plot.

We now combine the three curves impliedduyt into one plot.

> yrange = range(c(out[,"x"],out[,"y"],out[,"z"])); yra nge
[1] -10.39412 47.83396

> plot(out,which = "x", type = "I, lwd = 3, col="blue",

+ xlab = "time", ylab = "™, ylim = yrange,

+ main = "Lorenz Equatlons“)

> lines(tL, out[,"y"], lwd = 3, col = "red")

> lines(tL, out[,"z"], lwd = 3, col = "green")

> grid(lty = "solid", col = "darkgray")

> legend("topright",lwd=3,col=c("blue","red","green"),

+ legend = c("x","y","z"), cex=1.2)

which produces the plot

Lorenz Equations

50

40

30

20
1

/
N\
/7 \
 \\

N A

0.0 0.2 0.4 0.6 0.8 1.0

10

time

Figure 38: The Lorenz Model Using R:ode

6 STANDARD R METHODS USING DESOLVE’S ODE

We also ploty(x).

50

+

> grid(Ity = "solid", col = "darkgray")

> plot(out[,"x"],out],"y"],type="1",lwd=3,col="blue" Xlab="x",

which produces

20

AN

Figure 39: The Lorenz Mode}(x)

6.4 Solving the Stiff Case of the van der Pol Equation

We return to the van der Pol equation (see Sec. (4.1.2)). &vewgith the non-stiff casenu = 1

yini
mu
out

= ¢(2,0)
=1

derivs = function(t,y,p){

with(as.list(y), {
dyl = y[2]
dy2 =

mu+y[2] *(1-y[1]'2) - y[1]
list(c(dyl, dy2))h}
library(deSolve)

= ode(y=yini, times=tL, func=derivs, parms=NULL)

>
+
+
+
+
>
> tL = seq(0,30,0.01)
>
>
>
>
>

colnames(out) = c("t","z","vz")

which produces the plot &f versus time:

0 5 10 15 20 25 30

Figure 40: Non-stiffu = 1 Case van der Pol Equation

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 51

and then a stiff casg = 1000:

> mu = 1000
tL = 0:3000
> flI(tL)
0 3000 3001
> out = ode(y=yinitimes=tL,func=derivs,parms=NULL)
colnames(out) = c("t","z","vz")

\%

\%

which produces the plot of versus time:

™~ ™

I

T T T T T T T
0 500 1000 1500 2000 2500 3000

t

Figure 41: Stiffu = 1000 Case van der Pol Equation

7 Using External Forcing Data for O.D.E.’s

7.1 Forcing Data Using Maxima

Consider integratindy /dt = —ty+ f(t), wheref(¢) is an interpolating function based on a set of data for a tiepeddent driving
force.

To be able to compare the integration with a (possibly) ndeya set with the integration with a noiseless driving tesa will start
with an analytic “signal’cos(2 7 t), and find the solution using that analytic signal first. Wd thien add some noise to that signal
and assume we need to integrate the given differential Egustibject to a discrete set of noisy signal points.

This can be done by creating an interpolating function, h@sethat discrete noisy data, and we will then compare théisols.

Finally, we will write the noisy discrete data to a text date,fand practice reading that data file into Maxima (as a dd&tg, which
can then be used to create an interpolating function ane $bé/given driven o.d.e.

We will use the phrase “analytic solution” to refer to theltgmn of the o0.d.e. generated by using the analytic signal expression.
We assume you have loadk2util.mac into your Maxima session and thus have access to the fusdtion, jitter ~ , xyData ,
and others we will use.

(%i1) signal(t) := cos(2 * %pi* t)$
(%i2) dydt : -t *y + signal(t)$

(%i3) soln_a : rk(dydt,y,1,[t,0,1,0.01])$
(%i4) fll(soln_a);

(%04) [[0.0,1.0],[1.0,0.62964204202687],101]
(%i5) fpprintprec:7$

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 52

(%i6) taL : take(soln_a,1)$
(%i7) fli(taL);

(%07) [0.0,1.0,101]

(%i8) yaL : take(soln_a,2)$
(%i9) fli(yaL);

(%09) [1.0,0.62964,101]

We then make a plot of the “analytic solution” of our o0.d.e.

(%i10) plot2d([discrete,tal,yaL],[t,0,1],[xlabel,"t" 1,
[ylabel,"ya"],[style,[lines,3]],
[gnuplot_preamble,"set grid"])$

which produces the plot

0.9

08

0.7

0.6

05

Figure 42: Solution of the ODE Using the Analytic Signal

We next generate a discrete list of signal valskscorresponding to the timék , using the given analytic signal. We then add some semierand
noise to create the list of noisy signal valigsL. at those same discrete times.

(%i11) tL : makelist(t,t,0,1,0.02)$

(%i12) fli(tL);

(%012) [0,1.0,51]

(%i13) sL : float(map('signal, tL))$

(%i14) fli(sL);

(%014) [1.0,1.0,51]

(%i15) s1 : make_random_state(2014)$

(%i16) set random_state(s1)$

(%i17) snL : jitter(sL, 0.2)$

(%i18) fli(snL);

(%018) [0.90291,1.053531,51]

(%i19) plot2d([[discrete,tL,sL],[discrete,tL,snL]],
[style,[lines],[points,1,5,1]],[legend,"signal”,"no isy signal'],
[x,0,1],[xlabel,"t"],[ylabel,"signal",
[gnuplot_preamble,"set key bottom left"])$

which shows the noisy data points together with the origiaablytic signal”.

15

signal

signal
noisy signal

0 0.2 0.4 0.6 0.8 1

-1.5

Figure 43: Noisy Data Points with Analytic Signal

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S

Now we can use this discrete set of noisy data points to ceelitear interpolating functioslin(t)

53

(%i20) load("interpol.mac");

(%020) "C:/PROGRA"1/MAXIMA™3.2/share/maxima/5.31.2/s hare/numeric/interpol.mac"
(%i21) tsnL : xyData(tL,snL)$

(%i22) fli(tsnL);

(%022) [[0,0.90291],[1.0,1.053531],51]

(%i23) define(slin(x), linearinterpol(tsnL))$

(%i24) slin(0.5);

(%024) -0.88955

We plot the noisy data points together with the newly crediteghr interpolating functiorslin(t)

(%i25) plot2d([[discrete,tL,snL], slin(t)],[t,0,1],
[style,[points,2,5,1],[lines,2]],[legend,"noisy sign al","slin"],
[xlabel,"t"],[ylabel,™],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot

noisy signal ~ «
siin

0 0.2 04 0.6 08 1

Figure 44: Noisy Data Points with Linear Interpolation

We now generate a solution of the given o.d.e. usiig(t) as the external driving term.

(%i26) dydt : -t *y + slin(t)$
(%i27) soln_lin : rk(dydt,y,1,[t,0,1,0.01])$
(%i28) fli(soln_lin);

(%028) [[0.0,1.0],[1.0,0.65303],101]
(%i29) tiL : take(soln_lin,1)$

(%:i30) fll(t1L);

(%030) [0.0,1.0,101]

(%i31) ylL : take(soln_lin,2)$

(%i32) fli(y1lL);

(%032) [1.0,0.65303,101]

We then plot the analytic solutioy(t) and the solution generated using the linear interpolatimgtionslin(t)

(%i33) plot2d([[discrete,tal,yal],[discrete,t1L,y1L] 1,[x,0,1],
[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y slin"],
[gnuplot_preamble,"set key bottom left"])$

which produces

0.9

08

0.7

0.6

y analytic
yslin
05

0 0.2 04 0.6 08 1

Figure 45: Solution Generated Using Linear Interpolatimgdiion Compared

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S

We next create a cubic spline interpolating functésp(t) from the noisy signal points.

54

(%i34) define(csp(x), cspline(tsnL))$

(%i35) csp(0.5);

(%035) -0.88955

(%i36) plot2d([[discrete,tL,snL], csp(t)],[t,0,1],
[style,[points,1,5,1],[lines]],[legend,"noisy signal " rcsp',
[xlabel,"t"],[ylabel,"signal"],
[gnuplot_preamble,"set key bottom left"])$

which shows the plot

signal
o

noisy signal ~ +

0 0.2 0.4 0.6 08 1

Figure 46: Noisy Data Points with Cubic Spline Interpolatio

We now generate a solution of o.d.e. using the cubic spliteggolation functiorcsp(t) as driving term.

(%i37) dydt : -t *y + csp(t)$

(%i38) soln_csp : rk(dydt,y,1,[t,0,1,0.01])$
(%i39) fli(soln_csp);

(%039) [[0.0,1.0],[1.0,0.65395],101]
(%i40) t2L : take(soln_csp,1)$

(%i41) fli(t2L);

(%041) [0.0,1.0,101]

(%i42) y2L : take(soln_csp,2)$

(%i43) fll(y2L);

(%043) [1.0,0.65395,101]

We now make a plot of the analytic solution and the solutiomegated with with the cubic spline interpolating functicsp(t)

(%i44) plot2d([[discrete,tal,yal],[discrete,t2L,y2L] 1,[x,0,1],
[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y csp'],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot

0.9

0.8

0.6

y analytic
ycsp

0 0.2 0.4 0.6 08 1

05

Figure 47: Solution Generated Using Cubic Spline Inteiada-unction Compared

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 55

We next create a “moving average” interpolating functgmna(t) , usingMA_smooth from k2util.mac

(%i45) snLs : MA_smooth(snL,3)$
(%i46) fli(snLs);

(%046) [1.034703,1.004872,49]
(%i47) fll(tL);

(%047) [0,1.0,51]

The list of “smoothed” points returned BMA _smooth is shorter (by two elements) than the input BstL andtL , so we chop off the first
and last elements df. to createtLr . We then usexyData from k2util.mac to create the kind of input list which we need to create an
interpolating functiorsmay(t) .

(%i48) tLr : rest(rest(tL),-1)$

(%i49) fli(tLr);

(%049) [0.02,0.98,49]

(%i50) tsnLs : xyData(tLr, snLs)$

(%i51) fli(tsnLs);

(%051) [[0.02,1.034703],[0.98,1.004872],49]

(%i52) define(sma(x), linearinterpol(tsnLs))$

(%i53) sma(0.5);

(%053) -0.89857

(%i54) plot2d([[discrete,tL,snL], sma(t)],[t,0,1],
[style,[points,1,5,1],[lines]],[legend,"noisy signal ""'sma"],
[xlabel,"t"],[ylabel,"signal"],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot of the noisy data points with thediriaterpolatiorsma(t) of the smoothed data points.

Figure 48: Noisy Data Points with the Linear Interpolatidrire Smoothed Points

We can now generate a solution of the o.d.e. usinm(t) as the driving term.

(%i55) dydt : -t *y + sma(t)$

(%i56) soln_sma : rk(dydty,1,[t,0,1,0.01])$

(%i57) fli(soln_sma);

(%057) [[0.0,1.0],[1.0,0.65134],101]

(%i58) t3L : take(soln_sma,1)$

(%i59) y3L : take(soln_sma,2)$

(%i60) plot2d([[discrete,tal,yal],[discrete,t3L,y3L] 1,[x,0,1],
[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y sma"],
[gnuplot_preamble,"set key bottom left"])$

which produces the comparison plot

Figure 49: Solution Generated Using Linear InterpolatibMoving Average

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 56

We now write the noisy datisnlL to a text data file with space separation (the default) usirige_data

(%i61) fli(tsnL);

(%061) [[0,0.90291],[1.0,1.053531],51]
(%i62) write_data(tsnL,"c:/k2/mydata.txt");
(%062) done

If the file happens to be open, the write is done after the fithosed, and overwrites the previous contents.

You can load the data in the data file just created back intoilaxn the form of a nested list (which is what we need to create
interpolating function) by usingead nested_list . The latter function again assumes that the data on eacloflithe file is
space separated. If the data is comma separated, you waeads nested_list(file-path, comma)

(%i63) tydata : read_nested_list("c:/k2/mydata.txt")$
(%i64) fli(tydata);
(%064) [[0,0.90291],[1.0,1.053531],51]

7.2 Forcing Data Using R

Consider integratindy /dt = —ty+ f(t), wheref(¢) is an interpolating function based on a set of data for a tiepeddent driving
force.

To be able to compare the integration with a (possibly) ndetya set with the integration with a noiseless driving tema will start
with an “analytic signal’cos(2 7 t), and find the solution using that analytic signal first. Wd thién add some noise to that signal
and assume we need to integrate the given differential Egustibject to a discrete set of noisy signal points.

This can be done by creating an interpolating function, d@sethat discrete noisy data, and we will then compare theisaols.

Finally, we will write the noisy discrete data to a text date,fand practice reading that data file into R, which can theended to
create an interpolating function and solve the given drivehe.

We will use the phrase “analytic solution” to refer to thewgmn of the 0.d.e. generated bge using the analytic signal expression.
We use the utility functiorfll included inmyode.R, defined by:

vector utility: print out first, last and length of a vecto r

fll = function(xL) {
xlen = length(xL)
cat(" "xL[1]," "xL[xlen]," ", xlen,"\n") }

Here we define the “analytic” signal, uede to solve the given o.d.e. and then make a plot of the “anadgtiction” of our o.d.e.

library(deSolve)
signal = function(t) cos(2 *pi *t)
deriv = function(t,y,p) list(-t *y + signal(t))
taL = seq(0,1,0.01)
yini = 1
out.a = ode(y=yini,times=talL,func=deriv,parms=NULL)
colnames(out.a) = c("t","y")
is.matrix(out.a)
[1] TRUE
> head(out.a)
t y

[1,] 0.00 1.000000
[2,] 0.01 1.009942
[3,] 0.02 1.019743
[4,] 0.03 1.029363
[5,] 0.04 1.038758
[6,] 0.05 1.047890
> fli(out.a[,"t"])

0 1 101
> fli(out.a[,"y"])

1 0.6296414 101
> plot(out.a,lwd=3,col="blue",main = "ode soln with analy tic signal)
> grid(lty="solid",col="darkgray")

VVVVVVVYV

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 57

which produces the plot

ode soln with analytic signal

1/ \
\
\

\\
| \ P
N—
0‘.6 0‘.8 1ﬂ0

1.0

0.9

0.8

0.7

0.6

T T T
0.0 0.2 0.4

Figure 50: Solution of ODE Using Analytic Signal

We next generate a vector of signal valskscorresponding to a set of discrete tintes using the given analytic signal. We then add
some semi-random noise (usiR built-in functionjitter) to create a vector of noisy signal valugs. at those same discrete
times.

> tL = seq(0,1,0.02)

> flI(tL)

0 1 51
> sL = sapply(tL, signal)
> fli(sL)

1 1 51

> set.seed(2014)
> snL = jitter(sL, amount=0.2)

> fli(snL)
0.9143223 1.197421 51
> curve(signal,0,1,n=200,lwd=3,col="blue" xlab="t",y lab="signal")

> points(tL,snL,pch=19)

which produces a plot of the signal plus noisy points:

1.0

signal

-0.5
|

-1.0
|

Figure 51: Signal Plus Noisy Signal Points

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 58

Now we use theR functionapproxfun with this discrete set of noisy data points to create a limgarpolating functiorslin(t) . We then
show both the noisy data points plus the linear interpatatio

> slin = approxfun(tL,snL)

> slin(0.5)

[1] -0.8101318

> curve(slin,0,1,n=200,lwd=2,col="red" xlab="t",ylab ="signal")
> points(tL,snL,pch=19)

which produces the plot:

signal
0.5 1.0

0.0

-05

-1.0

Figure 52: Noisy Signal Points Plus Linear Interpolation

We can now generate a solution of the given o.d.e. uslimyt) as the external driving term.
> deriv = function(t,y,p) list(-t *y + slin(t))

> outlin = ode(y=yini, times=talL, func=deriv, parms=NULL)

> colnames(out.lin) = c("t","y")

> head(out.lin)

t y

[1,] 0.00 1.000000

[2,] 0.01 1.008956

[3,] 0.02 1.017538

[4] 0.03 1.026278

[5,] 0.04 1.035705

[6,] 0.05 1.045012
plot(out.a,lwd=2,col="blue")

> lines(out.lin,lwd=2,col="red")
> grid(lty="solid",col="darkgray")
>
+

\%

legend("topright",col=c("blue","red"),
legend=c("analytic","noisy - linear interp "),lwd=2)

which produces the comparison plot

11

y
/‘\ —— analytic
- / \ —— noisy ~ linear interp|

0.7

/
\

Figure 53: Solution with Linear Interpolation of Noisy D&f@mpared

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 59

We next create a smoothed cubic spline interpolating fonatsp(t) from the noisy signal points, using tffunction smooth.spline

The functionsmooth.spline expects adata.frame type of argument, so we combine the times and the noisy sigalaks into a
data.frame . The output ofsmooth.spline is a complicated object (us&r on the output to see how to access the information
returned). The functiosmooth.spline does not itself produce an interpolation function, but wi méed to usepproxfun onits output

to get that interpolating functioesp(t) . If you need to extract the output times and smoothed vajisesuseout$x andout$y respectively.
Also, out$yin extracts the vector of input noisy values.

> tsn.pts = data.frame(t=tL, sn = snL)

> head(tsn.pts)
t sn

0.00 0.9143223

0.02 0.8596782

0.04 1.0189480

0.06 0.8536510

0.08 0.8962448

0.10 0.6429496

tsn.pts.sp = smooth.spline(tsn.pts)

> head(tsn.pts.sp$x)

[1] 0.00 0.02 0.04 0.06 0.08 0.10

> head(tsn.pts.sp$y)

[1] 1.0076263 0.9637875 0.9178666 0.8667904 0.8083882 0.7 409158

> head(tsn.pts.sp$yin)

[1] 0.9143223 0.8596782 1.0189480 0.8536510 0.8962448 0.6 429496

> csp = approxfun(tsn.pts.sp)

> ¢sp(0.5)

[1] -0.929025

> curve(csp,0,1,n=200,lwd=2,col="red" ,xlab="t",ylab= "signal”)

> points(tL,snL,pch=19)

VOoulswNeRk

which shows the plot

1.0

0.5

signal

0.0

-05
1

-1.0
1

Figure 54: Noisy Signal Points Plus smooth.spline Intexfioh

We can now generate a solution of the given o.d.e. usp(t) as the external driving term.

deriv = function(t,y,p) list(-t *y + csp(t))
out.csp = ode(y=yini, times=talL, func=deriv, parms=NULL)
colnames(out.csp) = c("t","y")
head(out.csp)

t y
[1,] 0.00 1.000000
[2,] 0.01 1.009916
[3,] 0.02 1.019511
[4,] 0.03 1.028778
[5,] 0.04 1.037710
[6,] 0.05 1.046291
plot(out.a,lwd=2,col="blue")
lines(out.csp,lwd=2,col="red")
grid(lty="solid",col="darkgray")
legend("topright",col=c("blue","red"),

legend=c("analytic","noisy - smooth.spline "),lwd=2)

V V V V

\%

>
>
>
+

7 USING EXTERNAL FORCING DATA FOR O.D.E.’S 60

which produces the plot

y

1.0

0.9

0.8

~ \
S
o | \« g
o N
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 55: Solution with smooth.spline Interpolation ofisjoData Compared

We could have skipped some of the above steps, and simply used
csp = approxfun(smooth.spline(data.frame(tL,snL))) to generate the interpolation function based on
smooth.spline

> csp = approxfun(smooth.spline(data.frame(tL,snL)))
> ¢sp(0.5)
[1] -0.929025

To use theR function write to create (or overwrite) a text data file containing the nagnal points, we need to create a
data.frame , convertto matrix form, and then write the transpose of thattrix, providing a file name, and the number of columns.

> tsn.df = data.frame(tL,snL)
head(tsn.df)
tL snL
0.00 0.9143223
0.02 0.8596782
0.04 1.0189480
0.06 0.8536510
0.08 0.8962448
0.10 0.6429496
tsn.M = as.matrix(tsn.df)
write(t(tsn.M), file="mydata.txt", ncolumns = 2)
file.show("mydata.txt")

\%

VVVOOahhwNE

causes the noisy data to be writtemntgfile.txt . TheRfunctionfile.show opens a separate “R Information” window, and
you will see that there are no text column headings writtetinéofile, and that the default write is to use “space separatie the
data separators.

We can then read back in this noisy signal data usingrthenctionread.table , which also assumes the default space separated
data, and returns@ata.frame

> tsn.dat = read.table(file="mydata.txt",header=FALSE)

> str(tsn.dat)

‘data.frame’: 51 obs. of 2 variables:

$ V1: num 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 ...

$ V2: num 0.914 0.86 1.019 0.854 0.896 ...

> head(tsn.dat$V1)

[1] 0.00 0.02 0.04 0.06 0.08 0.10

> head(tsn.dat$Vv2)

[1] 0.9143223 0.8596782 1.0189480 0.8536510 0.8962448 0.6 429496

8 INTEGRATING O.D.E’S WITH DISCONTINUOUS DERIVATIVES 61

Thisdata.frame version of the noisy signal data can then be immediatelyeiinto a (linear) interpolating functiars(t) and
used as above, or turned into a smoothed-spline interpglainctionns.csp(t) , and used as above.

> ns = approxfun(tsn.dat)

> ns(0.5)

[1] -0.8101318

> ns.csp = approxfun(smooth.spline(tsn.dat))
> ns.csp(0.5)

[1] -0.929025

8 Integrating O.D.E.'s with Discontinuous Derivatives

8.1 Example 1: Oral Drug Dose Model

Example 1 Using Maxima

Let ¢ be the time in daysy: (¢) be the drug concentration in the intestine, aadt) be the drug concentration in the bloodstream. We quote the
description of a two-compartment model describing oragdntake, from Sec. 3.4.1.1 of Solving Differential Equatdn R, by Karline Soetaert,
Jeff Cash, and Francesca Mazzia, Springer-Verlag, 2012.

Consider a person taking a pill every day at the same timecjwis taken here to be at midnight]. As the pill passes thergast
intestinal tract, the drug enters the blood by absorptioauth the gut wall. The delivery of the drug to the gastrestinal tract
proceeds for 1 hour after which it ceases until the next itigesind so on. Once in the blood, the drug distributes in igsues,
where it is chemically inactivated and subsequently ercré&tom the body.

An (overly) simple two-compartment modeldg: /dt = —ay1 + u(t), anddy2/dt = ay1 — bya.

Herea is the [blood] absorption raté,is the removal rate from the blood, and the terfn) represents the daily delivery of the drug
to the intestinal tract, which we assume to occur over a gesfdl hour. The discontinuity in this model lies in the doswfghe
drug to the intestine, which takes a constant value for one and is then zero for the rest of the day.

We assume: = 6, b = 0.6, andu(t) = 2 during the drug ingestion hour at the start of each day. Simses a periodic process, we can use the
Maxima modulo functiormod. We try two different time steps wittk . We need to make the time steps small enough for the solvetth the
drug ingestion process.

(%il) u(t) := (if mod(24 *t,24) <= 1 then 2 else 0)$

(%i2) u(1/26);

(%02) 2

(%i3) u(1/20);

(%03) 0

(%i4) soln_a : rk(Ju(t) - 6 *yl, 6 *yl -0.6 *y2],[yl,y2],[0,0],
[t,0,10,0.05])$

(%i5) taL : take(soln_a,1)$

(%i6) fli(taL);

(%06) [0.0,10.0,201]

(%i7) ylaL : take(soln_a,2)$

(%i8) fli(ylaL);

(%08) [0.0,0.016942082631278,201]

(%i9) fpprintprec:7$

(%i10) y2aL : take(soln_a,3)$

(%i11) fli(y2aL);

(%011) [0.0,0.13582,201]

(%il2) soln_b : rk([u(t) - 6 *yl, 6 *yl -0.6 *y2],[yl,y2],[0,0],
[t,0,10,0.01])$

(%i17) tbL : take(soln_b,1)$

(%i18) fli(tbL);

(%018) [0.0,10.0,1001]

(%i13) ylbL : take(soln_b,2)$

(%i14) fli(ylbL);

(%014) [0.0,0.0035768,1001]

(%i15) y2bL : take(soln_b,3)$

(%i16) fli(y2bL);

(%016) [0.0,0.11798,1001]

(%i20) plot2d([[discrete,tal,ylal],[discrete,tbL,ylb L]l

[xlabel,"days"],[ylabel,"y1"],
[legend,"dt=0.05","dt=0.01"])$

8 INTEGRATING O.D.E’S WITH DISCONTINUOUS DERIVATIVES 62

which produces a plot of the intestine concentratieiit) for two different time steps, with the smaller time step preidg drug doses which
accurately reflect the given conditions that the drug dogeasided over the course of one hour at the start of each day.

0.09
d
d
0.08
0.07
0.06

0.05

yl

0.04

0.03

0.02

0.01 |

days

Figure 56: Intestine Drug Concentratign Over Ten Days

We then make a plot of the concentration of the drug in theddteamy. (¢) for the same two time steps.

(%i25) plot2d([[discrete,tal,y2al],[discrete,tbL,y2b L1,
[xlabel,"days"],[ylabel,"y2"],
[legend,"dt=0.05","dt=0.01"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot

0.2

» AV
ATATRTATATAE

0.14 / |
[i f i
PN NN N N NN
[I
012 /\f VY A A
, |
8 0.1 l/ | (
0.08 /
0.06
/ N
0.04 /
0.02
dt=0.05 ——
dt=0.01 ——
. :
0 2 4 6 10

days

Figure 57: Blood Drug Concentratigp Over Ten Days

At the start of the solution, and for each first hour of the dag, drug is ingested, which causes a steep rise in the imasn-
centration. As the drug enters the blood, its concentratidhe intestine decreases exponentially, while initidigreasing in the
blood, where it is degraded. Since the inflow to the blood sli®ponentially, at a certain point in time, loss will excégout, and
the concentration in the blood will start to decrease uhélnext drug dose.

The initial concentration in the blood is very small, but iaset proceeds, the daily-averaged concentration increasesach some
kind of dynamic equilibrium...

8 INTEGRATING O.D.E’S WITH DISCONTINUOUS DERIVATIVES 63

Example 1 Using R

See the description of this problem in the previous sectiood(a,b) in Maximaisa %% bn R (“a modulus b”).

a=6b=06
yini = c(intestine=0, blood=0)
derivs = function(t,y,p) {
if ((24 +*t) %% 24 <= 1)
uptake = 2
else
uptake = 0
dyl = -a *y[l] + uptake
dy2 = axy[l] - b *y[2]
list(c(dyl, dy2))}
tL = seq(0, 10, 1/24)
library(deSolve)
out = ode(y = yini, times = tL, func = derivs, parms=NULL)
plot(out, lwd = 2, xlab = "day")

VVVV+++++++V VYV

which produces the plot

intestine blood

0.15
|

0.06
|

0.04
|

0.05
|

000 0.2
| |
c—
y

0.00
|

day day

Figure 58: Intestine and Blood Drug Concentration Over Tag<D

8.2 Example 2

Example 2 Using Maxima
We solvedy/dt = a(t)ty, wherea(t) = 1 fort < 3 anda(t) = 0.2 for ¢t > 3. Assumey(0) = 0.1, and find the solution in the
ranged < ¢ < 5.

As a check on the Runge-Kutta solution, we can find the amaddiution in the separate time intervals and match the &naly
solutions at = 3, findingy; (t) = 0.1 ¢! /2 for 0 < t < 3 andy,(t) = 3.6598 €11 for ¢ > 3.

(%i1) a(t) = (if t < 3 then 1 else 0.2)$

(%i2) a(1);

(%02) 1

(%i3) a(4);

(%03) 0.2

(%i4) soln : rk(a(t) *t*y,y,0.1,[t,0,5,0.01]))$
(%i5) fll(soln);

(%05) [[0.0,0.1],[5.0,44.40743307705374],501]
(%i6) fpprintprec:7$

(%i7) plot2d([discrete,soln])$

(%i8) t1L : makelist(t,t,0,3,0.1)$

(%i9) yiL : map(lambda([t],0.1 *exp(0.5 *t°2)),t1L)$
(%i10) fll(y1L);

(%010) [0.1,9.001713,31]

8 INTEGRATING O.D.E’S WITH DISCONTINUOUS DERIVATIVES

64

(%i11) t2L : makelist(t,t,3,5,0.1)$

(%i12) fli(t2L);

(%012) [3,5.0,21]

(%il3) y2L : map(lambda([t],3.6598 *exp(0.1 *t°2)),t2L)$

(%i14) fli(y2L);

(%014) [9.001655,44.58549,21]

(%il6) plot2d([[discrete,t1L,y1L],[discrete,t2L,y2L]
[discrete, soln]],[xlabel,"t"],[ylabel,"y"],
[style,[lines,1,1],[lines,1,1],[lines,1,2]],
[legend,"analytic","analytic","rk"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot

45

analytic
analytic
rk

40

35

30

25

20

15

Figure 59: Analytic and rk Solution Compared

We see that the Runge-Kutta solution agrees with the analgtution.

Example 2 Solution Using R

Here we only show the numerical integration result usidg .

> yini = 0.1

> deriv = function(t,y,p){

+ if (t<3) a=1 else a=0.2

+ listt a *txy)}

> tL = seq(0,5,0.01)

> out = ode(y = yini, times = tL, func = deriv, parms=NULL)

> plot(out,lwd=2,col="blue",main="Example 2" ,xlab="t" ylab="y")

which produces the plot

Example 2

20 30 40
1 1

10
1

Figure 60: Example 2: ode Solution Using R

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 65

9 Integrating O.D.E.'s with Discontinuous Dependent Varidles Using R

The optionalevents argument is used witbde or Isoda , etc., to allow suddent changes to the dependent variablasset of first order
ordinary differential equations.

OncedeSolvehas been loaded, usirspurce(deSolve) , you can find information on thevents argument which can be used witide
or some of the specific solvers, by typilg events . (The functionode useslsoda by default.)

9.1 Events Specified by a data.frame in R

The first example discussed (in tlerents manual page) is a model of two variables, each of which hasdmrivative, and each of which only
changes in value because of a set of timed events which aceluEs by a data frame, call@l/entdat in this example.

The four columns of this supplied data frame must be in thermfdar, time, value, method), and must define 1.) the nambeofariable to be
affected, 2.) the time the variable is to be affected, 3.)'akie” to be used, and 4.) one of three methods.

The three available methods di@dd” , "multiply"” (which can be abbreviatéinult”), and"replace” (which can be abbreviated
"rep").

The list of output timed4L which are supplied for the argumetines to ode should include the event times in the second column of the dat
frame, otherwise the event will be missed.

> derivs = function(t,v,p){list(c(0,0))}
>vyini = c(vl =1, v2 = 2)
> tL = seq(0, 10, 0.1)
> eventdat = data.frame(var = c("v1", "v2", "v2", "v1"),
+ time = ¢(1, 1, 5, 9) ,
+ value = c¢(1, 2, 3, 4),
+ method = c("add", "mult", "rep", "add"))
> eventdat
var time value method
1 vi 1 1 add
2 v2 1 2 mult
3 v2 5 3 rep
4 vi 9 4 add
> out = ode(func = derivs, y = yini, times = tL, parms = NULL,
+ events = list(data = eventdat))
> plot(out)

which produces the plot

vl v2
o
© r <
o
w |
o
<
o L
™
o
w |
N
Nji
o
— Pl

T T T 1
2 4 6 8 10

o
N
S
(o2}
[e¢]
5
° T

time time

Figure 61: Events Example Using R

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 66

9.2 Intravenous Drug Injection Model Using R

An example of using a data frame to supply a sequence of eigeptsvided by SCM in their Section 3.4.1.2. They show howntegrate a first
order differential equation in which the value of the deparidrariable (here the drug concentration in the blood) dslenly increased by 40 units
every day above its value just prior to the injection.

The drug is injected directly into the blood stream and thegrades as in the above example of oral ingestion of a pilh thie behavior
dy/dt = —by.

>b =06
> yini = c(blood = 0)
> deriv = function(t,blood,p){ list(-b *blood) }
> injectevents = data.frame(var = "blood", time = 0:20,
+ value = 40, method = "add")
> head(injectevents)
var time value method
1 blood 0 40 add
2 blood 1 40 add
3 blood 2 40 add
4 blood 3 40 add
5 blood 4 40 add
6 blood 5 40 add
> tL = seq(0,10,1/24)
> library(deSolve)
> out = ode(y = yini, times = tL, func = deriv, parms=NULL,
+ events = list(data = injectevents))
> plot(out,lwd=2,xlab="days")

which produces the plot

blood

40
|

20
|

days

Figure 62: Daily Intravenous Drug Injection: Blood Congaatibn Using R

9.3 Using an Event Function at Specific Times

The second example in tlevents manual page (after some modifications here) considers twerdkent variables; andwv, which obey the
equationsiv, /dt = 0 anddvs /dt = —v2/2 except for special event moments in whighincreases by one unit and is replaced by the product
of the new value of; with a random number in the range 0 to 5.

This example callsunif to obtain a random number between 0 and 1. (The syntaif(n, min = 0, max = 1) returnsn semi-
random numbers in the rangein to max, which have the default values shown.)

We include printouts of the values of the time, the random Ibemgenerated, the new valuewafand the new value af. Thetime argument in
theevents listis chosen to ask for these event actions to take plate-at andt = 7.

Once we seed the random number generator, a unique sequdesgreigandom numbers in generated, which can help us ulagerthe operation
of this mode of usingpde .

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 67

derivs = function(t, v, p) {list(c(0, -0.5 *Vv[2]))}
yini = ¢c(vl = 1, v2 = 2)
tL = seq(0, 10, 0.1)
set.seed(2014)
5x runif(5)
1] 1.4290282 0.8445435 3.1295609 1.5484316 2.7492267
eventfun = function(t, y, p){
with (as.list(y).{
vi=vl +1
ar = 5 xrunif(1)
v2 = ar *vl
cat("t = "t" ar = "ar,” vl = "v1" v2 = "v2,"\n")
c(vl, v2)}}
set.seed(2014)
out = ode(y = yini, times = tL, func = derivs, parms = NULL,
events = list(func = eventfun, time = c(3,7)))

= 0 ar = 1429028 vl = 2 v2 = 2.858056
= 3 ar = 0.8445435 vl = 2 v2 = 1.689087
= 7 ar = 3129561 vl = 3 v2 = 09.388683

Vo™= + VV++++++VEZVVVVYV

plot(out,lwd=2, col="blue")

which produces the plot

vl v2
o |
(2]
© -
w
N
©
o |
N
<
w
-
~
- \[\
o

Figure 63: Event Function Example

We see from the value printouts that the function is calleckaatt = 0, which pulls the first random numb@&r4290282 , but we see from the
plot that this initial call toeventfun does not affect the values of or v». The second call teventfun occurs at = 3, and the second
random numbef.8445435 is used to determine the new valuewf The third call toeventfun occurs att = 7, and the third random
number3.129561 is used to determine the new valuewsf

9.4 Example 1: Using an Event Function when a Root Conditions Satisfied

In this example (also from thevents manual page) we consider a single dependent varigllefor which y(0) = 2, and except for isolated
times,dy/dt = —y/10, causingy(¢) to be a decreasing function. However, whenever the comditie: 1/2 is satisfied, the value af is immedi-
ately reset to the valug = 1.

An “event function” called (heregventfun defines this reset af. A “root function” called (hereyootf defines the quantity which must
evaluate to zero in order for the action specifiedewentfun to take place. The list supplied for tiogle argevents should include both

the value offunc , and the elememoot = TRUE , which replaces the list of event times, adiime = ¢(3,7) in the previous example.
Finally, a new argumentpotfun , recognised bypde, must be given the chosen name of the “root function”, a@tfun = rootf

deriv = function(t, y, p) list(-0.1 *y)
rootf = function (t, y, p) y - 0.5

eventfun = function(t, y, p) y = 1

yini = 2

tL = seq(0, 100, 0.1)

VVV VYV

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 68

> out = ode(y = yini, times = tL, func = deriv, parms = NULL,

+ events = list(func = eventfun, root = TRUE),
+ rootfun = rootf)
> plot(out,lwd=2,col="blue",main="",xlab="t",ylab="y ")

which produces the plot

15

1.0

0 20 40 60 80 100

Figure 64: Event and Root Function Example

9.5 Example 2: Event Function when a Root Condition is Satiséd

Consider a simple harmonic oscillator with unit angulagérency, soﬁi—%” = —x. Lety[l] represent: and lety[2]
represent
v, = dx/dt. Thendy[1)/dt = y[2] anddy[2]/dt = -y[1] . Letsho be the derivatives function. Defimeotf as

the “root function”, which is satisfied whesi2] = vx = 0 . Defineeventfun to simply return the dependent variables
unaltered when an event is triggered. We assume the indfaitonsx0 = 5, vx0 = 5 , so the analytic solutions are
X = 7.0711 *cos(t - pi/4) andvx = -7.0711 =*sin(t - pi/4) , Where7.0711 = 5/sin(pi/4)

sho = function(t, y, p) list(c(y[2], -y[1]))
rootf = function(t, y, p) v[2]

eventfun = function(t, y, p) y

tL = seq(0, 15, 0.1)

yini = ¢(5, 5)

V V.V V V

We first callode to define a solution without supplying an events list. In ttase there is no “event”, and the integration
stops when the root function condition is satisfied, thathemy[2] = 0

outl = ode(y = yini, times = tL, func = sho, parms = NULL,
rootfun = rootf)

colnames(outl)=c("t","x","vx")

plot(outl,lwd=2,col="blue")

vV V + V

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 69

which produces the plot

4 o
T T T T T T T T
00 02 04 06 08 00 02 04 06 08

t t

Figure 65: SHO and Root Function Example

which shows the integration halting when the velocity reschero, (to within double precision floating point numbers)
which occurs whemn = 7 /4.

> tail(outl)
t X VX

[4,] 0.3000000 6.254294 3.299082e+00
[5,] 0.4000000 6.552406 2.658210e+00
[6,] 0.5000000 6.785048 1.990779e+00
[7,] 0.6000000 6.949897 1.303457e+00
[8,] 0.7000000 7.045306 6.031120e-01
[9,] 0.7853966 7.071073 -3.505903e-16

We next callode with theevents list, and in this case the integration continues until the @ithe times provided it ,
and nothing interesting happens since the event functiomnethe dependent variables unaltered.

out = ode(y = yini, times = tL, func = sho,

parms = NULL, rootfun = rootf,

events = list(func = eventfun, root = TRUE))
colnames(out) = c("t","x","vx")
plot(out,lwd=2,col="blue")

vV V + + V

which produces the plot

Figure 66: SHO with Event and Root Function Example 1

The object returned byde, when invoked with theootfun argument, includes the times when the root condition was
satisfied, which is the vector extracted vadtributes(out)$troot

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 70

> troot = attributes(out)$troot # time of roots
> troot
[1] 0.7853978 3.9269903 7.0685830 10.2101758 13.3517685

which allows us to place small dots on our plot at the time eglin the vectotroot

> points(troot, rep(0, length (troot)), pch=19)

which produces a plot in which only the second plot is altered

X VX
© — © -
< - <
N ~
o - o
N N
1 |
< _] <
1]
© _] © |
I I
T T T T T T T T
0 5 10 15 0 5 10 15

Figure 67: SHO with Event and Root Function Example 2

The last example at the end of teeents manual page shows how to deal with multiple roots, for exandgering an
event when eithex=0 orvx=0. SCM present the example of integration of a bouncing batéir Sec. 3.4.2.

9.6 Use of a Switching Parameter as a State Variable

This section is related to SCM, Sec. 3.4.3, “Temperature@imate Controlled Room.” The model dynamics will be diffat depending on a
“switching function”. If g(¢) is the switch, and we consider a process in which there asetewal different dynamical regimes, then, for example,
if g = TRUEthendy/dt = fi(t) andifg = FALSEthendy/dt = f2(t). If there are more than two regimes, we can assign numertaes
to the switch to indicate the different regimes.

A specific example is a temperature controlled room in whith lieating is switched on when the temperature drops beloded8C, and the
heating is switched off when the temperature is higher titade?) C. We also assume a constant heating or cooling rate twthphases.

A “parameter” is always assumed to remain constant duririgtegration, so the switching function cannot be represgtat a parameter. Instead,
we increase the number of dependent variables by one by pirartbe switching parameter to be a state variable whichzkas derivative, but
can change value when an “event” takes place.

Let the temperature be calléedmp and be represented 1] . Let the switching parameter be callbgating_on and be represented by
y[2] . We assume the initial temperature= 0) is 18 deg.CY[1]=18), and the heating is initially switched og[@] = TRUE).

We assume the temperatytfl] either increases at a rate of 1 deg.C per unit time (heat oenyyd] = TRUE) or decreases at a rate of 0.5
deg.C per unit time (heat off modg[2] = FALSE).

An alternative approach used in SCM is toy§2] = 1 when the heating is on and Igf2] = O when the heating is off. This approach
takes advantage of the fact that the numerical vBlirinterpreted as having the logical valt&LSE, and the numerical valuk is interpreted as

9 INTEGRATING O.D.E’S WITH DISCONTINUOUS DEPENDENT VARIBLES USING R 71

having the logical valud RUE (See? Logic .) Then one can use the logical negation operhttw change the value from effectivelyALSE
to effectively TRUE as shown here.

> as.logical(0)
[1] FALSE

> as.logical(1)
[1] TRUE

> 10

[1] TRUE

> 11

[1] FALSE

> as.numeric(!0)
[1] 1

> as.numeric(!1)
[1] O

However, we choose in the following to igf2] be consistently treated as a logical variable, with valtieeeT RUEor FALSE In the definition
of eventfunc below, the last line must cause the function to return botthefdependent variables. In the definitionoaft below, note that
Isode is used rather thaade ; the latter (unless called with the optidmethod" = Isode)usedsoda as the default integrator, and the
regime remains in a heating on mode throughout the timesfigze(the events are not properly caught).

tL = seq(0, 20, 0.1)
out = Isode(y = yini, times = tL, func = derivs,

parms = NULL, rootfun = rootf,

events = list(func = eventfunc, root = TRUE))
plot(out, lwd=2, col="blue")

> yini = c(temp = 18, heating_on = TRUE)
> derivs = function(t, y, p) {

+ dyl = ifelse(y[2] , 1.0, -0.5)

+ dy2 = 0

+ list(c(dyl, dy2))}

> rootf = function(t, y, p) c(y[1]-18, y[1]-20)
> eventfunc = function(t, y, p) {

+ y[1] = y[1]

+ y[2] = ! y[2]

+ v}

>

>

+

+

>

which produces the plot

temp heating_on
=3 o
&7 “TTnnr
o]
0 S
s 4
—
©
Q
o
& -
-
<
3
wn
o -
= N
o
< o
g sl — — —
T T T T I T T T T I
0O 5 10 15 20 0 5 10 15 20
time time

Figure 68: Temperature Controlled Room

The solver has stored the times the heating was turned omnardwff, given by thétroot attribute ofout .

> attributes(out)$troot
1] 2 6 6 6 812 14 18

The fact that=6 is listed three times (instead of once) is a “numerical actif of the solver used, and SCM assert that the soi@dau does a
better job thalsode coping with these root events.

