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1 Introduction

We have discussed thesymbolic solution of ordinary differential equations (o.d.e.’s) inChapter 3 ofMaxima by Example (on the
author’s web page). We concentrate here on thenumerical solution of initial value problems governed by a set of o.d.e.’s.

We begin with the ancient and simple Euler method, and present some home-made code using both Maxima andR. We then turn to
the classic fourth order fixed step Runge-Kutta method, again presenting home-made functions in both Maxima andR.

We then review the standard methods available in Maxima andR. A major attraction of theR platform for computational physics is
the large and powerful suite of o.d.e. solvers available in theRpackagedeSolve, and we spend most of this section introducing some
aspects of theode wrapper.

An important reference for users of thedeSolvepackage of solvers for theR platform is the recent textSolving Differential Equa-
tions in R, by Karline Soetaert, Jeff Cash, and Francesca Mazzia, Springer-Verlag, 2012. We will often refer to this reference with
the author initialsSCM. Section 3.5,Method Selection, should be consulted if the default solverode (called without specifying a
method) is returning suspicious results.

The default method used byode is calledlsoda , based on theFORTRANcodeLSODA, which is able to detect when and where an
ordinary differential equation (or system of equations) becomes “stiff”, and automatically implement methods which can deal with
this behavior, as needed. This is a very robust method, but not necessarily the most efficient solver for one particular problem.

The defaultlsoda method used by the wrapperode always starts with the non-stiffexplicit multi-step Adams method, and when
stiffness is detected, switches to animplicit multistep solver (“bdf”: backward differentiation formula).

Maxima, at present, does not offer a stiff ode solver.

Many advanced numerical algorithms that solve differential equations are available as (open- source) computer codes,written in
programming languages likeFORTRANor C, and available in repositories likeGAMS(http://gams.nist.gov ) or NETLIB
(www.netlib.org ).

An example of what can be done to make this code available for work in modern interactive numerical environments is the work of
Karline Soetaert and Linda R. Petzold (and others) for the open sourceRnumerical platform.

Present ode solvers in theRpackagedeSolveuse adaptive step size control, some solvers control the order of the formula adaptively,
or switch between different types of methods, depending on the local properties of the ode’s to be solved.

TheRpackagedeSolveincludes methods to solve stiff and non-stiff problems, that deal with full, banded, or arbitrarily sparse Jaco-
bians, etc. The implementation includes stiff and nonstiffintegration routines based on theODEPACK FORTRANcodes (Hindmarsh
1983). It also includes fixed and adaptive timestep explicitRunge-Kutta solvers, the Euler method, and the implicit Runge-Kutta
methodRADAU(Hairer and Wanner 2010).

In the final sections, we discuss the solution of o.d.e.’s when the first derivative of the dependent variable is discontinuous, and also
when the dependent variable itself is discontinuous.

Reduction to First Order O.D.E.’s

A second order ordinary differential equation which has theform

z′′ = f(t, z, z′) (1.1)

in which the prime’ indicates a derivative with respect to the independent variablet, and two single primes represents the second derivative with
respect tot, can be converted into a pair of first order o.d.e.’s governing the time evolution of the pair of dependent variables[y1(t), y2(t)].

Let y1 = z. Theny′

1 = z′ = y2. And thenz′′ = y′

2 = f(t, y1, y2). We then deal with the pair of first oders o.d.e.’s

d y1
d t

= y2 (1.2)

d y2
d t

= f(t, y1, y2) (1.3)

A third order ordinary differential equation with the formz′′′ = f(t, z, z′, z′′) can be likewise reduced to a triplet of first order o.d.e.’s for
[y1(t), y2(t), y3(t)].
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2 The Euler Method Using Maxima, Truncation Error, Round-of f Error and Insta-
bility

We quote (with some light editing) an introduction to the Euler method and a discussion of truncation and round-off errors
from two computational physics web pages of Richard Fitzpatrick (Physics Dept., University of Texas), at
http://farside.ph.utexas.edu/teaching/329/lectures/ node32.html and at
http://farside.ph.utexas.edu/teaching/329/lectures/ node33.html .

Euler’s method

Consider the general first-order o.d.e.,y′ = f(x, y), where′ denotesd/dx, subject to the general initial-value
boundary conditiony(x0) = y0.

Clearly, if we can find a method for numerically solving this problem, then we should have little difficulty
generalizing it to deal with a system ofn simultaneous first-order o.d.e.’s.

It is important to appreciate that the numerical solution toa differential equation is only an approximation
to the actual solution. The actual solution,y(x) is (presumably) a continuous function of a continuous
variable,x. However, when we solve this equation numerically, the bestthat we can do is to evaluate ap-
proximations to the functiony(x) at a series of discrete grid-points, thexn (say), wheren = 0, 1, 2, · · · and
x0 < x1 < x2 · · · . For the moment, we shall restrict our discussion to equallyspaced grid-points, where
xn = x0 + nh.

Here, the quantityh is referred to as the step-length. Letyn be our approximation toy(x) at the grid-pointxn.
A numerical integration scheme is essentially a method which somehow employs the information contained
in the original o.d.e. to construct a series of rules interrelating the variousyn.

The simplest possible integration scheme was invented by the celebrated 18th century Swiss mathematician
Leonhard Euler, and is, therefore, called Euler’s method. Incidentally, it is interesting to note that virtually
all of the standard methods used in numerical analysis were invented before the advent of electronic comput-
ers. In olden days, people actually performed numerical calculations by hand - and a very long and tedious
process it must have been! Suppose that we have evaluated an approximation,yn, to the solution,y(x) at the
grid-pointxn. The approximate gradient ofy(x) at this point is, therefore, given byy′n = f(xn, yn).

Let us approximate the curvey(x) as a straight-line between the neighbouring grid-pointsxn andxn+1. It
follows thatyn+1 = yn + y′n h, or

yn+1 = yn + f(xn, yn)h. (2.1)

The above formula is the essence of Euler’s method. It enables us to calculate all of theyn, given the initial
value,y0, at the first grid-point,x0.
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Numerical errors

There are two major sources of error associated with a numerical integration scheme for o.d.e.’s: namely,
truncation error andround-off error.

Truncation error arises in Euler’s method because the curvey(x) is not generally a straight-line between
the neighbouring grid-pointsxn andxn+1, as assumed above. The error associated with this approximation
can easily be assessed by Taylor expandingy(x) aboutx = xn:

y(xn + h) = y(xn) + h y′(xn) +
h2

2
y′′(xn) + · · · = y(xn) + h f(xn, yn) +

h2

2
y′′(xn) + · · · (2.2)

In other words, every time we take a step using Euler’s method(if h is sufficiently small), because we omit
small terms of orderO(h2) or smaller (ie., wetruncate the expansion), we incur a (local) truncation error of
O(h2), whereh is the step-length.

Suppose that we use Euler’s method to integrate our o.d.e. over anx-interval of order unity. This requires
O(h−1) steps. If each step incurs an error ofO(h2), and the errors are simply cumulative (a fairly conserva-
tive assumption), then the net truncation error isO(h). In other words, the error associated with integrating
an o.d.e. over a finite interval using Euler’s method is directly proportional to the step-length.

If we let ye(x) be the approximate numerical Euler solution (starting atx = 0), and letya(x) be the exact
analytic solution, then the “absolute error”|ye(1) − ya(1)| = O(h).

Thus, if we want to keep the absolute error|ye(x) − ya(x)| in the integration below about10−6 then we
would need to take about one million steps per unit interval in x.

Incidentally, Euler’s method is termed a first-order integration method because the truncation error associated
with integrating over a finite interval scales likeh1. More generally, an integration method is conventionally
callednth order if itslocal truncation error per step isO(hn+1).

Note that truncation error would be incurred even if computers performed floating-point arithmetic opera-
tions to infinite accuracy. Unfortunately, computers do notperform such operations to infinite accuracy. In
fact, a computer is only capable of storing a floating-point number to a fixed number of decimal places.

For every type of computer, there is a characteristic number, η, which is defined as the smallest number
which when added to a number of order unity gives rise to a new number: i.e., a number which when taken
away from the original number yields a non-zero result. Every floating-point operation incurs around-off er-
ror of O(η) which arises from the finite accuracy to which floating-pointnumbers are stored by the computer.

Suppose that we use Euler’s method to integrate our o.d.e. over anx-interval of order unity. This entails
O(h−1) integration steps, and, therefore,O(h−1) floating-point operations. If each floating-point operation
incurs an error ofO(η), and the errors are simply cumulative, then the net round-off error isO(η/h).

The total error,ǫ, associated with integrating our o.d.e. over anx-interval of order unity is (approximately)
the sum of the truncation and round-off errors. Thus, for Euler’s method,ǫ ∼ η

h + h.

Clearly, at large step-lengths the error is dominated by truncation error, whereas round-off error dominates
at small step-lengths. The net error (for the Euler method) attains its minimum value,ǫ0 ∼ η1/2, when
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h = h0 ∼ η1/2. There is clearly no point in making the step-length,h, any smaller thanh0, since this
increases the number of floating-point operations but does not lead to an increase in the overall accuracy.

It is also clear that the ultimate accuracy of Euler’s method(or any other integration method) is determined
by the accuracy,η, to which floating-point numbers are stored on the computer performing the calculation.

The value ofη depends on how many bytes the computer hardware uses to storefloating-point numbers. For
IBM-PC clones, the appropriate value for double precision floating point numbers isη = 2.22 × 10−16. It
follows that the minimum practical step-length for Euler’smethod on such a computer ish0 ∼ 10−8, yielding
a minimum net integration error ofǫ0 ∼ 10−8. This level of accuracy is perfectly adequate for most scientific
calculations. Note, however, that the correspondingη value for single precision floating-point numbers is
only η = 1.19×10−7, yielding a minimum practical step-length and a minimum neterror for Euler’s method
of h0 ∼ 3 × 10−4 andǫ0 ∼ 3 × 10−4, respectively. This level of accuracy is generally not adequate for
scientific calculations, which explains why such calculations are invariably performed using double, rather
than single, precision floating-point numbers on IBM-PC clones (and most other types of computer).

An Example of Global and Local Truncation Errors

We illustrate the concept of global and local truncation errors by using the Euler method with a large step size to find an
approximate numerical solution of the first order o.d.e.dy/dx = 8.5 − 20x + 12x2 − 2x3 with the initial condition
y(0) = 1. We can set the integral of the right-hand side of the o.d.e. (with respect tox from x = 0 to x = xf ) equal to
yf − 1 to find the analytic solutionyan(x), which we callytrue(x) in our session:

(%i1) ratprint:false$
(%i2) dely : integrate(8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3,x,0,xf);
(%o2) -(xfˆ4-8 * xfˆ3+20 * xfˆ2-17 * xf)/2
(%i3) dely : expand(dely);
(%o3) -xfˆ4/2+4 * xfˆ3-10 * xfˆ2+17 * xf/2
(%i4) yx : 1 + dely, xf = x;
(%o4) -xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1
(%i5) ytrue(x) := ’’yx;
(%o5) ytrue(x):=-xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1
(%i6) ytrue(0);
(%o6) 1

In line %i5 the “double quote” operator’’ (two single quotes) was used to defeat the normal quote behavior of the delayed
assignment operator:= . The routine use of the settingdisplay2d:false inside theXmaxima interface allows for easy
copying of Maxima screen output for use in a later line or function definition (as we do in definingeuler_errors here
- in a separate Notebook2 text document). The following function appears in the code filemyode.mac

euler_errors(n,h) :=
block([x,ye,xn,ytrue,g_err:0, gp_err:0,l_err,numer], numer:true,

local(yt,dydx),
/ * since x is not bound yet, these func defs work * /
define(yt(x),-xˆ4/2 + 4 * xˆ3 - 10 * xˆ2 + 17 * x/2 + 1),
define(dydx(x), 8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3),
x:0,
ye : yt(x),
printf(true,"˜& ˜3tx ˜15tytrue ˜24tyeuler ˜35tgl-err ˜48 tl-err ˜%"),
printf(true,"˜& ˜5f ˜10t ˜9f ˜9f ˜%",x,ye,ye),
for i thru n do (

xn : x + h,
ye : ye + dydx(x) * h,
ytrue : yt(xn),
g_err : (ytrue - ye) * 100/ytrue,
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l_err : g_err - gp_err,
printf(true,"˜& ˜5f ˜10t ˜9f ˜9f ˜34t ˜6f ˜47t ˜6f ˜%",xn,yt rue,ye,g_err,l_err),
gp_err : g_err,
x : xn))$

with the output table recording the value ofx , ytrue , yeuler , gl-err (the global percent relative error) andl-err (the
local percent relative error - which is simply the difference between the previous step global percent relative error and the
current step global percent relative error).

(%i7) euler_errors(3,0.5)$
x ytrue yeuler gl-err l-err
0.0 1.0 1.0
0.5 3.21875 5.25 -63.11 -63.11
1.0 3.0 5.875 -95.83 -32.73
1.5 2.21875 5.125 -131.0 -35.15

Because we have used such a large value ofh, we are seeing truncation error here, and not round-off error. We see that
the percent relative error in the first step is63.1 percent. The percent relative error of the Euler solution after the second
step is95.8 percent, so the local relative truncation error in making the second step is32.7 percent.

In order to make a plot showing both the exact solution and theEuler solution, we use a homemade Euler integration
function we discuss in the next section,euler1 , (with code in the filemyode.mac ) which has the syntax
euler1(dydx,y,yinit,[x,xinit,xfinal,dx]) .

(%i8) load(myode);
(%o8) "c:/k2/myode.mac"
(%i9) pts : euler1(8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3,y,1,[x,0,4,0.5])$
(%i10) fll(pts);
(%o10) [[0.0,1.0],[4.0,7.0],9]
(%i11) pts;
(%o11) [[0.0,1.0],[0.5,5.25],[1.0,5.875],[1.5,5.125] ,[2.0,4.5],[2.5,4.75],

[3.0,5.875],[3.5,7.125],[4.0,7.0]]
(%i12) plot2d([-xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1,[discrete,pts],[discrete,pts] ],

[x,0,4], [style,[lines,3],[lines,3],
[points,3,1,1] ],[legend,"exact","Euler",""])$

which produces the plot

 1

 2

 3
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 0  0.5  1  1.5  2  2.5  3  3.5  4

x

exact
Euler

Figure 1: Euler Truncation Error withh = 0.5



2 THE EULER METHOD USING MAXIMA, TRUNCATION ERROR, ROUND-OFF ERROR AND INSTABILITY8

Maxima Code: euler1: General Euler Function for One O.D.E.

The code foreuler1 is in the filemyode.mac . This code assumest is the independent variable, andx(t) is the dependent
variable. euler1(dxdt,x,xi,[t,ti,tf,dt]) returns a list of solution pairs(t, x). (Note thateuler is a reserved
word in Maxima.)

/ * euler1(dxdt,x,xi,[t,ti,tf,dt]) for one dependent variab le x(t),
xi, ti, tf, dt should evaluate to numbers.
dxdt is an expression which can contain, potentially,
both t and x as symbols. * /

euler1(dvar,var,init,domain) :=
block([dt,t0,n,vs,dvar0,euler_soln,r,k1,numer],nume r:true,

init : float(init),
domain : float(domain),
local(dvdt),
define(dvdt(domain[1],var),float(dvar)),
dt : domain[4],
t0 : domain[2],
n: fix((domain[3] - t0)/dt),
vs: init,
dvar0 : dvdt(t0, vs),
if (not(numberp(dvar0))) then

error("Expecting a number when the initial state is
replaced in dvdt, but instead found:",dvar0),

euler_soln : [[t0,vs]],

for i thru n do (
r: errcatch (k1 : dvdt(t0,vs)),
if length(r) = 0 then return()
else vs : vs + k1 * dt,
t0: t0 + dt,
euler_soln : cons([t0,vs], euler_soln)),

reverse(euler_soln))$

The symbol used for the independent variable does not affectthe list of numbers returned - the invocation
pts : euler1(-t * y,y,1,[t,0,1,0.1])$

produces the same output as the invocation
pts : euler1(-x * y,y,1,[x,0,1,0.1])$ or pts : euler1(-t * x,x,1,[t,0,1,0.1])$ .

The functionfll , one of a collection of small file utility functions available in the chapter two code filek2util.mac ,
returns the first and last elements of a list, and also the number of elements in the list, and has the definition

fll(x) := [first(x),last(x),length(x)]$

Example 1

Here we useeuler1 with the same example used in the last section:dy/dx = 8.5− 20x+ 12x2 − 2x3 with the initial
conditiony(0) = 1.

We show convergence to the exact (analytic) solution as we decrease the integration step sizedt = h .

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) dydx : 8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3$
(%i3) yt : -xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1$
(%i4) case(h):= euler1(dydx,y,1,[x,0,4,h])$
(%i5) pts1 : case(0.5);
(%o5) [[0.0,1.0],[0.5,5.25],[1.0,5.875],[1.5,5.125], [2.0,4.5],[2.5,4.75],

[3.0,5.875],[3.5,7.125],[4.0,7.0]]
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(%i6) pts2 : case(0.2)$
(%i7) fll(pts2);
(%o7) [[0.0,1.0],[4.0,4.6],21]
(%i8) pts3 : case(0.1)$
(%i9) fll(pts3);
(%o9) [[0.0,1.0],[4.0,3.8],41]
(%i10) plot2d([yt,[discrete,pts1],[discrete,pts2],[d iscrete,pts3] ],

[x,0,4], [style,[lines,3]],[legend,"exact","h=0.5"," h=0.2","h=0.1"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot

 1
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Figure 2: Convergence to Exact Solution

Next we useeuler1 to make a plot of the Euler method net error (atx = 1) as a function of integration step sizeh,
for the same example o.d.e. we have been using as a test case. The functionyfdiff , which callseuler1 , is in the file
myode.mac .

yfdiff(dydx,ytrue,xfinal,hL) :=
block([tval,yerrL:[],h,esoln,yerr,numer],numer:true ,

tval : float(subst(x = xfinal,ytrue)), / * true value * /
print(" tval = ",tval),
for h in hL do (

esoln : euler1(dydx,y,1,[x,0,xfinal,h]),
yerr : second(last(esoln)) - tval,
print(" ", h, yerr),
yerrL : cons([h, yerr], yerrL)),

reverse(yerrL))$

Here we use the functionyfdiff to make a plot of the net Euler error as a function of integration step size, when
integrating over the interval[x,0,1] . The listhL contains the step sizes to be used.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) dydx : 8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3$
(%i3) yt : -xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1$
(%i4) hL : [0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002,0.0 01]$
(%i5) yerr_pts : yfdiff(dydx,yt,1,hL)$

tval = 3.0
0.5 2.875
0.2 1.06
0.1 0.515
0.05 0.25375
0.02 0.1006
0.01 0.05015
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0.005 0.0250375
0.002 0.010006
0.001 0.0050015

(%i6) fll(yerr_pts);
(%o6) [[0.5,2.875],[0.001,0.0050015],9]
(%i7) plot2d([discrete, yerr_pts],[xlabel,"h"],[ylabe l,"yfdiff(1)"],

[style,[lines,3]],[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 3: Net Euler Error atxf = 1 vs.h

Let the global error atx = 1 beE(h), whereh is the step size. We will assume the formE(h) = a+ b h and find the best
values ofa andb using the standard least squares fit Maxima method. (See alsoour discussion of fitting data in Chapter
3 of Maxima by Example.) We will then make a plot of both the data and the straight line fit. We needed to turn the list
of data into a Maxima matrix in order to use the Maxima methodlsquares_estimates .

(%i8) data : abs(yerr_pts);
(%o8) [[0.5,2.875],[0.2,1.06],[0.1,0.515],[0.05,0.25 375],[0.02,0.1006],

[0.01,0.05015],[0.005,0.0250375],[0.002,0.010006],[ 0.001,0.0050015]]
(%i9) dataM : apply(’matrix,data);
(%o9) matrix([0.5,2.875],[0.2,1.06],[0.1,0.515],[0.0 5,0.25375],[0.02,0.1006],

[0.01,0.05015],[0.005,0.0250375],[0.002,0.010006],
[0.001,0.0050015])

(%i10) load(lsquares);
(%o10) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/s hare/lsquares/lsquares.mac"
(%i11) result : lsquares_estimates(dataM,[h,E],E = a+b * h,[a,b],

initial=[0,1],iprint=[-1,0]);
(%o11) [[a = -2685980626178778230522532194715176213611 334132351051506109903

/12723925665912817064977268566250398274724681946437 1817995084452,
b = 6739084303336038655816563166211558297140319079262 867181871266900

/11769631240969355785103973423781618404120330800454 39316454531181]]
(%i12) result : float(result);
(%o12) [[a = -0.0211097,b = 5.7258245]]
(%i13) myfit : a+b * h, result;
(%o13) 5.7258245 * h-0.0211097
(%i14) plot2d([myfit,[discrete,data]],[h,0,0.1],

[style,[lines,3],[points,3,1,1]],[legend,false],[xl abel,"h"],
[ylabel,"E"],[gnuplot_preamble,"set grid"])$
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which produces the plot

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.02  0.04  0.06  0.08  0.1

E

h

Figure 4: Global Euler Error atx = 1 vs. h

For small values ofh the global errors are larger than we would expect if the global errorE(h) ∼ O(h).

Example 2

A second example is the o.d.e.dy/dx = −x y with the initial conditiony(0) = 1, integrated over the interval[x,0,3] , with the
analytic solutiony = e−

1

2
x2

.

(%i15) dydx : -x * y;
(%o15) -x * y
(%i16) yt : exp(-xˆ2/2);
(%o16) %eˆ-(xˆ2/2)
(%i17) hL : [0.5,0.2,0.1];
(%o17) [0.5,0.2,0.1]
(%i18) yerr_pts : yfdiff(dydx,yt,1,hL);

tval = 0.606531
0.5 0.143469
0.2 0.0463308
0.1 0.0216258

(%o18) [[0.5,0.143469],[0.2,0.0463308],[0.1,0.021625 8]]
(%i19) case(h):= euler1(dydx,y,1,[x,0,3,h])$
(%i20) pts1 : case(0.5)$
(%i21) fll(pts1);
(%o21) [[0.0,1.0],[3.0,0.0],7]
(%i22) pts2 : case(0.2)$
(%i23) fll(pts2);
(%o23) [[0.0,1.0],[3.0,0.00458968],16]
(%i24) plot2d([yt,[discrete,pts1],[discrete,pts2] ],[ x,0,3], [style,[lines,3]],

[legend,"exact","h=0.5","h=0.2"],[ylabel,"y"],
[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 5: Euler Convergence tody/dx = −x y with y(0) = 1
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Example 3

As a third example, we useyfdiff to determine the dependence of global errorE(h) on the step sizeh for the case ofdy/dx = −y
with y(0) = 1, with the analytic solutiony(x) = e−x.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) hL : [0.1,0.05,0.02,0.01,0.005];
(%o2) [0.1,0.05,0.02,0.01,0.005]
(%i3) yfdiff(-y,exp(-x),3,hL);

tval = 0.0497871
0.1 -0.00739591
0.05 -0.00371727
0.02 -0.00149105
0.01 -7.46174297E-4
0.005 -3.73246258E-4

(%o3) [[0.1,-0.00739591],[0.05,-0.00371727],[0.02,-0 .00149105],
[0.01,-7.46174297E-4],[0.005,-3.73246258E-4]]

(%i4) data : %;
(%o4) [[0.1,-0.00739591],[0.05,-0.00371727],[0.02,-0 .00149105],

[0.01,-7.46174297E-4],[0.005,-3.73246258E-4]]
(%i5) data : abs(data);
(%o5) [[0.1,0.00739591],[0.05,0.00371727],[0.02,0.00 149105],

[0.01,7.46174297E-4],[0.005,3.73246258E-4]]
(%i6) dataM : apply(’matrix,data);
(%o6) matrix([0.1,0.00739591],[0.05,0.00371727],[0.0 2,0.00149105],

[0.01,7.46174297E-4],[0.005,3.73246258E-4])

We will assume the formE(h) = a+ b h and find the best values ofa andb using the standard least squares fit Maxima method. (See
also our discussion of fitting data in Chapter 3 of Maxima by Example.) We will then make a plot of both the data and the straight
line fit. We needed to turn the list of data into a Maxima matrixin order to use the Maxima methodlsquares_estimates .

(%i7) load(lsquares);
(%o7) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/sh are/lsquares/lsquares.mac"

(%i8) result : lsquares_estimates(dataM,[h,E],E = a+b * h,[a,b],
initial=[0,1],iprint=[-1,0]);

(%o8) [[a = 30099591741374070410305741760016372393307
/3111916490873068233183797966147733045331270368,

b = 28754287790257175585747436662495393659067425
/388989561359133529147974745768466630666408796]]

(%i9) result : float(result);
(%o9) [[a = 9.67236487E-6,b = 0.0739205]]
(%i10) myfit : a+b * h, result;
(%o10) 0.0739205 * h+9.67236487E-6
(%i20) plot2d([myfit,[discrete,data]],[h,0,0.1],

[style,[lines,3],[points,3,1,1]],[legend,false],[xl abel,"h"],
[ylabel,"E"],[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 6: Global Errors vs. h fordy/dx = −y with y(0) = 1
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Maxima Code: myeuler for Arbitrary Number of First Order O.D .E.’s

In the filemyode.mac is the code formyeuler which has the syntax
myeuler(dxdt,x,xinit,[t,tinit,tfinal,dt]) or
myeuler([dxdt,dydt],[x,y],[xinit,yinit],[t,tinit,tf inal,dt])
and similar for more than two first order o.d.e.’s.

myeuler(ode, var, init, domain) :=
block([uvw,duvw,esoln,n,k1,t0,dt,

r,numer:true,display2d:false],
init : float(init),
domain : float(domain),
if (not(listp(ode))) then (

ode : [ode],
var : [var],
init : [init]),

local(efunc),
define(funmake(efunc,cons(domain[1],var)),float(ode )),
translate(efunc),
dt : domain[4],
t0 : domain[2],
n: fix((domain[3] - t0)/dt),
uvw: init,

duvw : apply(efunc,cons(t0,uvw)),
if (not(numberp(last(duvw)))) then

error("Expecting a number when the initial state
is replaced in the equations, but instead
found:",last(duvw)),

esoln: [cons(t0, init)],
for i thru n do (

r: errcatch (k1: apply(efunc,cons(t0,uvw))),
if length(r)=0 then return()
else uvw: uvw + k1 * dt,
t0: t0 + dt,
esoln : cons(cons(t0,uvw), esoln)),

reverse(esoln))$

The Maxima codemyeuler is adapted from the code design of the Maxima functionrk() , which can be found in
...share/dynamics/dynamics.mac in Maxima v. 5.28.0, copyright2007 Jaime E. Villate
<villate@fe.up.pt> .

We testmyeuler on the simple harmonic oscillator with unit perioddx/dt = vx, dvx/dt = −4 π2 x, with the initial conditions
x(0) = 1, vx(0) = 0, and integrate over the time interval[t,0,1] for three different values of the time stepdt = h . The analytic
solution isx = cos(2 π t).

We remind the reader that the list utility functionsfll andtake are in the chapter 2 filek2util.mac (as well as inmyode.mac )
and have the definitions

fll(x) := [first(x),last(x),length(x)]$

take(%aL,%nn) := (map(lambda([x],part(x,%nn)), %aL))$

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) case(dt) := myeuler([vx,-4 * %piˆ2 * x],[x,vx],[1,0],[t,0,1,dt])$
(%i3) pts1 : case(0.01)$
(%i4) fll(pts1);
(%o4) [[0.0,1.0,0.0],[1.0,1.2177068,0.0631137],101]
(%i5) epts1 : [discrete,take(pts1,1),take(pts1,2)]$
(%i6) pts2 : case(0.005)$
(%i7) fll(pts2);
(%o7) [[0.0,1.0,0.0],[1.0,1.1036747,0.0143259],201]
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(%i8) epts2 : [discrete,take(pts2,1),take(pts2,2)]$
(%i9) pts3 : case(0.002)$
(%i10) fll(pts3);
(%o10) [[0.0,1.0,0.0],[1.0,1.0402647,0.00216153],501 ]
(%i11) epts3 : [discrete,take(pts3,1),take(pts3,2)]$
(%i12) plot2d([cos(2 * %pi * t),epts1,epts2,epts3],[t,0,1],[xlabel,"T"],[ylabel, "X"],

[style,[lines,3]],[legend,"exact","h=0.01","h=0.005 ","h=0.002"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot
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Figure 7: Exact and Euler SHO Solutions

Interactive Exploration of myeuler Code

When looking at new code with unfamiliar features, or when designing new code, it helps to step through the problem interactively
first, before trying to write a general function. For example, a typical interactive approach to understanding the code of myeuler
might be:

(%i1) var : [y1,y2];
(%o1) [y1,y2]
(%i2) tvL : cons(t,var);
(%o2) [t,y1,y2]
(%i3) ode : [y2,-4 * %piˆ2 * y1];
(%o3) [y2,-4 * %piˆ2 * y1]
(%i4) define(funmake(efunc,tvL),float(ode))$
(%i5) init : [1,0];
(%o5) [1,0]
(%i6) uvw : init;
(%o6) [1,0]
(%i7) t0 : 0;
(%o7) 0
(%i8) esoln : [cons(t0, uvw)];
(%o8) [[0,1,0]]
(%i10) tuvw : cons(t0,uvw);
(%o10) [0,1,0]
(%i11) k1 : apply(efunc,tuvw);
(%o11) [0,-39.47841760435743]
(%i12) dt : 0.01;
(%o12) 0.01
(%i13) uvw : uvw + k1 * dt;
(%o13) [1,-0.39478417604357]
(%i14) t0 : t0 + dt;
(%o14) 0.01
(%i15) esoln : cons(cons(t0,uvw),esoln);
(%o15) [[0.01,1,-0.39478417604357],[0,1,0]]
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We see that we are using the Maxima functionapply ; if f is not yet defined, we can see what Maxima does withapply(f,[1,2,3])
(that is, applyingf to a Maxima list).

(%i16) apply(f,[1,2,3]);
(%o16) f(1,2,3)

Now let’s bindf to some function definition.

(%i18) f(a,b,c) := a * b/c$
(%i19) apply(f,[1,2,3]);
(%o19) 2/3
(%i20) apply(’f,[1,2,3]);
(%o20) 2/3

Note that the single quote’ does not defeat the use of the function definition off here.

The linedefine(funmake(efunc,tvL),float(ode))$ is one way to define a function:
define(funmake(myf,[x,y,z]),expr) , whereexpr depends onx,y,z . Theexpr does not have to actually contain all
of the symbolsx,y,z . In our code formyeuler , and in the case of the simple harmonic oscillator done above, the actual content
of the definition ofefunc was
define(funmake(efunc,[t,y1,y2]),[y2,-39.47841760435 743* y1])$ , in which expr was a list of two expres-
sions, neither of which contain the symbolt .

Numerical Instability Example

We quote a short example explaining the issue of numerical instability, presented by Richard Fitzpatrick (Physics, University of
Texas) on his computational physics web page:
http://farside.ph.utexas.edu/teaching/329/lectures/ node34.html .

Numerical instabilities
Consider the following example. Suppose that our o.d.e. isy′ = −αy, whereα > 0, subject to the boundary condition
y(0) = 1.

Of course, we can solve this problem analytically to givey(x) = exp(−αx).

Note that the solution is a monotonically decreasing function ofx. We can also solve this problem numerically using Eu-
ler’s method. Appropriate grid-points arexn = nh, wheren = 0, 1, 2, · · · . Euler’s method yieldsyn+1 = (1−αh) yn.

Note one curious fact. Ifh > 2/α then|yn+1| > |yn|. In other words, if the step-length is made too large then the
numerical solution becomes an oscillatory function ofx of monotonically increasing amplitude: i.e., the numerical
solution diverges from the actual solution. This type of catastrophic failure of a numerical integration scheme is called
a numerical instability. All simple integration schemes become unstable if the step-length is made sufficiently large.

As an example, we use Euler’s method with the o.d.e.dy/dx = −20 y, which has the analytic solutiony(x) = e−20x. We expect
numerical instability (using the Euler algorithm) if the step sizeh > 0.1.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) case(dx) := euler1(-20 * y,y,1,[x,0,1,dx])$
(%i3) pts1 : case(0.12)$
(%i4) fll(pts1);
(%o4) [[0.0,1.0],[0.96,14.757891],9]
(%i5) pts2 : case(0.098)$
(%i6) fll(pts2);
(%o6) [[0.0,1.0],[0.98,0.664833],11]
(%i7) pts3 : case(0.05)$
(%i8) fll(pts3);
(%o8) [[0.0,1.0],[1.0,0.0],21]
(%i9) plot2d([exp(-20 * x),[discrete,pts1],[discrete,pts2],

[discrete,pts3]], [x,0,0.4], [style,[lines,3]],
[legend,"exact","h=0.12","h=0.098","h=0.05"],
[gnuplot_preamble,"set key bottom left;set grid"])$
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which produces the plot
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Figure 8: Euler Integration Instability Example

3 The Euler Method Using R

R Code: euler1

Rather than “translate” the Maxima code foreuler1 into R, we use an entirely different approach which corresponds better with
the natural design of theR language and the natural methods of carrying out tasks inR.

euler1(init,grid,func) R code is in the filemyode.R , and has the definition

## euler1(init,grid,func) calls func to advance the Euler
## solution. func(iv,w) corresponds to independent
## variable = iv, dependent variable = w

euler1 = function(init, grid ,func) {
n = length(grid)
div = grid[2] - grid[1]
w.num = vector(length = n)
w.num[1] = init
for (j in 1:(n-1)) {

w.num [j+1] = w.num [j] +
div * func(grid[j], w.num[j]) }

w.num}

The value of the first argumentinit is the initial (numerical) value of the dependent variable.The value of the second argument
grid is a vector which contains the discrete numerical values of the independent variable (separation being constant) at which output
values of the dependent variable are desired. The value of the third argumentfunc is the name (chosen by the user) of a defined
function of the formfunc(indep-var, dep-var) which implements the right hand side of the o.d.e.dy/dt = f(t, y), or
dy/dx = f(x, y), or du/dv = f(v, u), etc.

Also in myode.R is the vector utility functionfll which prints to the screen the value of the first and last elements of a vector, as
well as the length.

## list utility: print out first, last and length of a vector
fll = function(xL) {

xlen = length(xL)
cat(" ",xL[1]," ",xL[xlen]," ",xlen,"\n") }
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After loading inmyode.R , we define theR functionderivs which corresponds to the right-hand-side of the o.d.e.dy/dt = −y.
If y(0) = 1, then the analytic solution isy(t) = e−t. We then useeuler1 to integrate over the time interval[t,0,3] .

> getwd()
[1] "c:/k2"
> source("myode.R")
> derivs = function(t,y) {-y}
> tL = seq(0,3,0.1)
> fll(tL)

0 3 31
> head(tL)
[1] 0.0 0.1 0.2 0.3 0.4 0.5
> yL = euler1(init=1,grid=tL,func=derivs)
> fll(yL)

1 0.04239116 31
> head(yL)
[1] 1.00000 0.90000 0.81000 0.72900 0.65610 0.59049
> plot(tL, yL, pch=19, xlab = "t", ylab = "y")
> lines(tL, yL)
> grid(lty="solid", col="darkgray")
> curve(exp(-t),0,3, n=200, add=TRUE, col="blue", lwd=3, xname="t")

which produces the plot
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Figure 9: Euler Solution (dots) tody/dt = −y for dt = 0.1

Note that we could have calledeuler1 with the syntax:yL = euler1(1,tL,derivs) since we are maintaining the default
order of the arguments.

> yL = euler1(1,tL,derivs)
> fll(yL)

1 0.04239116 31
> head(yL)
[1] 1.00000 0.90000 0.81000 0.72900 0.65610 0.59049

As a second example of usingeuler1 , we integrate the o.d.e. which depends on two parametersr andK, the “logistic equation”
dy/dt = r y(1− y/K) with y(0) = 2 and withr = 1 and two values ofK.

> derivs = function(t,y){r * y* (1-y/K)}
> tL = seq(0,20,0.2)
> fll(tL)

0 20 101
> r = 1; K = 10
> yL10 = euler1(2,tL,derivs)
> fll(yL10)

2 10 101
> K = 20
> yL20 = euler1(2,tL,derivs)
> fll(yL20)

2 20 101
> plot(tL, yL20, type="l", lwd=3, col="blue",
+ xlab = "t", ylab = "y")
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> lines(tL, yL10,lwd=3,col="red")
> grid(lty="solid", col="darkgray")
> legend("bottom", col=c("blue","red"),

legend = c("K = 20","K = 10"),lwd=3,cex=1.5)

which produces the plot
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Figure 10: Euler Solutions fordy/dt = y (1− y/K) for y(0) = 2, dt = 0.2

As a third example of usingeuler1 we integrate the o.d.e.dy/dt = −t y with y(0) = 1. The analytic solution isy(t) = e−
1

2
t2 .

> derivs = function(t,y) {-t * y}
> tL = seq(0,3,0.1)
> fll(tL)

0 3 31
> yL = euler1(1,tL,derivs)
> fll(yL)

1 0.007791097 31
> plot(tL, yL, type="l", lwd=3, col="blue",
+ xlab = "t", ylab = "y")
> curve(exp(-tˆ2/2),0,3,n=200,add=TRUE,col="red",lwd =3,xname="t")
> grid(lty="solid", col="darkgray")
> legend("topright", col=c("blue","red"),
+ legend = c("Euler","Exact"),lwd=3,cex=1.5)

which produces
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Figure 11: Euler Solution fordy/dt = −t y for y(0) = 1, dt = 0.1
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R Code: myeuler for Arbitrary Number of First Order O.D.E.’s

The code formyeuler is also in the filemyode.R and can be used for an arbitrary number of first order o.d.e.’s, including just one
o.d.e.

For one dimension, the syntax is the same as foreuler1 and the design offunc(t,y) can be the same as used witheuler1 (see
below).

For two or more o.d.e.’s,myeuler returns a list of vectors, and each solution vector must be extracted as a list element:out[[1]]
for example, using double brackets (see below).

Here is the code formyeuler .

myeuler = function(init, grid ,func) {
num.var = length(init)
solnList = list()
n.grid = length(grid)
for (k in 1:num.var) {

solnList[[k]] = vector(length = n.grid)
solnList[[k]][1] = init[k] }

div = grid[2] - grid[1]
yL = vector(length = num.var)
for (j in 1:(n.grid-1)) {

for (k in 1:num.var) yL[k] = solnList[[k]][j]
dyL = func(grid[j], yL) # returns a vector of derivatives
for (k in 1:num.var) solnList[[k]][j+1] = solnList[[k]][j ] +

div * dyL[k]}
if (num.var==1) solnList[[1]] else solnList}

Two Examples of Using R myeuler

Example 1

Here is an example for the solution of the single o.d.e.dy/dt = −t y for y(0) = 1, after loading inmyeuler.R .

> tL = seq(0,3,0.1)
> fll(tL)

0 3 31
> deriv = function(t,y) { -t * y }
> yL = myeuler(1,tL,deriv)
> fll(yL)

1 0.007791097 31
> head(yL)
[1] 1.0000000 1.0000000 0.9900000 0.9702000 0.9410940 0.9 034502
> tail(yL)
[1] 0.037617673 0.028213255 0.020877809 0.015240800 0.01 0973376 0.007791097

Example 2

Here is an example of use for the simple harmonic oscillator with unit period, which requires two first order o.d.e.’s. In the code for
func , calledsho , we lety[1] representx andy[2] representvx .

Thus the codesho must take the form (notesho returns the vectorc(dx,dvx) ; the names of the local function variablesdx and
dvx are of course arbitrary and can be changed):

sho = function(t,y) {
with(as.list(y), {

dx = y[2]
dvx = -4 * piˆ2 * y[1]
c(dx,dvx)})}

It is important that the order of the vector returned be the same as the order of the numbers provided for the vector argument init .
If init = c(1,0) corresponding tox(0) = 1 , vx(0) = 0 , thensho should return the derivativesc(dxdt, dvxdt) .
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The definition ofsho can be shortened to

sho = function(t,y) {
with(as.list(y), c(y[2], -4 * piˆ2 * y[1]) )}

and can be further shortened to

sho = function(t,y) with(as.list(y), c(y[2], -4 * piˆ2 * y[1]) )

Each of these three versions of the functionsho can be used withmyeuler .

> getwd()
[1] "c:/k2"
> source("myeuler.R")
> sho = function(t,y) {
+ with(as.list(y), {
+ dx = y[2]
+ dvx = -4 * piˆ2 * y[1]
+ c(dx,dvx)})}
> tL = seq(0,1,0.001)
> fll(tL)

0 1 1001
> out = myeuler(c(1,0),tL,sho)
> xL = out[[1]]
> fll(xL)

1 1.019935 1001
> vxL = out[[2]]
> fll(vxL)

0 0.0005298591 1001
> max(vxL)
[1] 6.376897
> plot(tL,vxL,type="l",lwd=3,col="red",xlab = "t",ylab = "",ylim=c(-7,7))
> lines(tL,xL,lwd=3,col="blue")
> grid(lty="solid",col="darkgray")
> legend("topleft", col=c("blue","red"), lwd=3, legend= c("x","vx"),cex=1.2)

which produces
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Figure 12: SHO:dx/dt = vx, dvx/dt = −4π x, x(0) = 1, vx(0) = 0
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4 Fourth Order Runge-Kutta Code for Maxima and R

We quote from Richard Fitzpatrick’s (Physics, University of Texas) Computational Physics web page
http://farside.ph.utexas.edu/teaching/329/lectures/ node35.html with some editing and elisions. His
definition ofk1, k2, k3, k4 differs from ours by a factor ofh.

Runge-Kutta methods

There are two main reasons why Euler’s method is not generally used in scientific computing. Firstly, the truncation
error per step associated with this method is far larger thanthose associated with other, more advanced, methods (for a
given value ofh). Secondly, Euler’s method is too prone to numerical instabilities.

The methods most commonly employed by scientists to integrate o.d.e.’s were first developed by the German math-
ematicians C.D.T. Runge and M.W. Kutta in the latter half of the nineteenth century. The basic reasoning behind
so-called Runge-Kutta methods is outlined in the following.

The main reason that Euler’s method has such a large truncation error per step is that in evolving the solution fromxn

to xn+1 the method only evaluates derivatives at the beginning of the interval: i.e., atxn. The method is, therefore,
very asymmetric with respect to the beginning and the end of the interval.

We can construct a more symmetric integration method by making an Euler-like trial step to the midpoint of the interval,
and then using the values of bothx andy at the midpoint to make the real step across the interval. To be more exact,
k1 = h f(xn, yn), k2 = h f(xn + h/2, yn + k1/2), yn+1 = yn + k2 +O(h3).

As indicated in the error term, this symmetrization cancelsout the first-order error, making the method second-order.
In fact, the above method is generally known as a second-order Runge-Kutta method. Euler’s method can be thought
of as a first-order Runge-Kutta method.

Of course, there is no need to stop at a second-order method. By using two trial steps per interval, it is possible to cancel
out both the first and second-order error terms, and, thereby, construct a third-order Runge-Kutta method. Likewise,
three trial steps per interval yield a fourth-order method,and so on.

The general expression for the total error,ǫ, associated with integrating our o.d.e. over anx-interval of order unity
using annth-order Runge-Kutta method is approximatelyǫ ∼ η

h + hn.

Here, the first term corresponds to round-off error, whereasthe second term represents truncation error. The minimum
practical step-length,h0, and the minimum error,ǫ0, take the valuesh0 ∼ η1/(n+1), ǫ0 ∼ ηn/(n+1),respectively. It can
be seen thath0 increases andǫ0 decreases asn gets larger. However, the relative change in these quantities becomes
progressively less dramatic asn increases.

In the majority of cases, the limiting factor when numerically integrating an o.d.e. is not round-off error, but rather
the computational effort involved in calculating the function f(x, y). Note that, in general, annth-order Runge-Kutta
method requiresn evaluations of this function per step. It can easily be appreciated that asn is increased a point is
quickly reached beyond which any benefits associated with the increased accuracy of a higher order method are more
than offset by the computational “cost” involved in the necessary additional evaluation off(x, y) per step. Although
there is no hard and fast general rule, in most problems encountered in computational physics this point corresponds
to n = 4. In other words, in most situations of interest a fourth-order Runge Kutta integration method represents an
appropriate compromise between the competing requirements of a low truncation error per step and a low computational
cost per step.

We now revert toour conventionon the definition of thek1, k2, k3, k4, which differs from Fitzpatrick’s by a factor ofh.

To solve the single first order o.d.e.dy/dx = f(x, y) using a steph, the standard fourth-order Runge-Kutta method takes the form
(usingour convention):

yn+1 = yn +
h

6
(k1 + 2 k2 + 2 k3 + k4) (4.1)

xn+1 = xn + h (4.2)
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where
k1 = f(xn, yn) (4.3)

k2 = f(xn + h/2, yn + h k1/2) (4.4)

k3 = f(xn + h/2, yn + h k2/2) (4.5)

k4 = f(xn + h, yn + h k3) (4.6)

4.1 Maxima Code: rk4

The standard available Maxima method for fourth order fixed step Runge-Kutta integration isrk() , which is currently written in
Lisp, and can be viewed in
...share\dynamics\complex_dynamics.lisp .

Here we presentMaxima (rather than Lisp) code for the standard fourth order (fixed step) Runge-Kutta integration code, adapted
from Maxima (ver. 5.28)rk code, written by Maxima developer Jaime E. Villate,<villate@fe.up.pt> .

Our version is calledrk4 and can be found in the code filemyode.mac . In this code the independent variable is calledt , and the
step lengthh is calleddt . The current solutionuvw is a Maxima list. This code returns a list of the form
[ [t0,x1(t0),x2(t0)...],[t1,x1(t1),x2(t1),...],...] .
This code can integrate an arbitrary number of first order o.d.e.’s. This code does not do syntax checks.

/ * the rk4 syntax is the same as Maxima’s rk() syntax.

if the dxdt expression is a function of (t,x), then:
for one o.d.e: rk4(dxdt,x,xinit,[t,tinit,tfinal,dt])

If the dx1dt expression and the dx2dt expression are functio ns of (t,x1,x2),
then for two o.d.e.’s:

rk4([dx1dt,dx2dt],[x1,x2],[x1init,x2init],[t,tinit, tfinal,dt])
and so on.

* /

rk4(ode, var, init, domain) :=
block([uvw,rksoln,n,k1,k2,k3,k4,t0,t1,dt,

r,numer:true,display2d:false],
init : float(init),
domain : float(domain),
if (not(listp(ode))) then (

ode : [ode],
var : [var],
init : [init]),

local(rkfunc),
define(funmake(rkfunc,cons(domain[1],var)),float(od e)),
translate(rkfunc),
dt : domain[4],
t0 : domain[2],
n: fix((domain[3] - t0)/dt),
uvw: init,

if (not(numberp(last(apply(rkfunc,cons(t0,uvw)))))) t hen
error("Expecting a number when the initial state is
replaced in the equations, but instead found:",

last(apply(rkfunc,cons(t0,uvw)))),

rksoln: [cons(t0, init)],
for i thru n do (

r: errcatch (
t1: domain[2]+i * dt,
k1: apply(rkfunc,cons(t0,uvw)),
k2: apply(rkfunc,cons((t0+t1)/2, uvw+k1 * dt/2)),
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k3: apply(rkfunc,cons((t0+t1)/2,uvw+k2 * dt/2)),
k4: apply(rkfunc,cons(t1,uvw+k3 * dt))),

if length(r)=0 then return()
else uvw: uvw + dt * (k1+2 * k2+2 * k3+k4)/6,
t0: t1,
rksoln : cons(cons(t0,uvw), rksoln)),

reverse(rksoln))$

4.1.1 Five Examples of Maxima rk4

Example 1

We userk4 here with the same large step sizeh = 0.5, and the same first order o.d.e.dy/dx = 8.5− 20 x+ 12 x2 − 2 x3, with the
initial conditiony(0) = 1, as we used in Sec. ( 2) where we used the Euler method. In that earlier section we also derived the exact
solution for comparison with the approximate numerical solution, getting−x4/2 + 4 x3 − 10 x2 + 17 x/2 + 1.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) pts : rk4(8.5 - 20 * x + 12 * xˆ2 - 2 * xˆ3,y,1,[x,0,4,0.5])$
(%i3) fll(pts);
(%o3) [[0.0,1.0],[4.0,3.0],9]
(%i4) pts;
(%o4) [[0.0,1.0],[0.5,3.21875],[1.0,3.0],[1.5,2.2187 5],[2.0,2.0],

[2.5,2.71875],[3.0,4.0],[3.5,4.71875],[4.0,3.0]]
(%o5) plot2d([-xˆ4/2+4 * xˆ3-10 * xˆ2+17 * x/2+1,[discrete,pts],[discrete,pts] ],

[x,0,4], [style,[lines,3],[lines,3],
[points,3,1,1] ],[legend,"exact","rk4",""],
[gnuplot_preamble, "set key bottom right;set grid"])$

which produces
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Figure 13: rk4 Truncation Error withh = 0.5

Despite the large step size, the fourth order Runge-Kutta method sticks quite close to the analytic solution, and the value of
yrk4(4) = yexact(4).
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Example 2

A second example is the first order o.d.e.dy/dx = −x y, with the initial conditiony(0) = 1, integrated over the interval[x,0,3] ,
with the analytic solutiony = e−

1

2
x2

.

(%i6) dydx : -x * y;
(%o6) -x * y
(%i7) ytrue : exp(-xˆ2/2);
(%o7) %eˆ-(xˆ2/2)
(%i8) hL : [0.5,0.2,0.1];
(%o8) [0.5,0.2,0.1]
(%i9) yerr_pts : yfdiff_rk4(dydx,ytrue,1,hL);

tval = 0.606531
0.5 -3.63124582E-5
0.2 7.00094823E-7
0.1 6.66862736E-8

(%o9) [[0.5,-3.63124582E-5],[0.2,7.00094823E-7],[0.1 ,6.66862736E-8]]
(%i10) case(h):= rk4(dydx,y,1,[x,0,3,h])$
(%i11) pts1 : case(0.5)$
(%i12) fll(pts1);
(%o12) [[0.0,1.0],[3.0,0.0130755],7]
(%i13) pts2 : case(0.2)$
(%i14) fll(pts2);
(%o14) [[0.0,1.0],[3.0,0.0111361],16]
(%i15) plot2d([ytrue,[discrete,pts1],[discrete,pts2] ],[x,0,3],

[style,[lines,1]],[legend,"exact","h=0.5","h=0.2"],
[ylabel,"y"],[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 14: rk4 Convergence tody/dx = −x y with y(0) = 1

Example 3

We testrk4 on the simple harmonic oscillator with unit period:dx/dt = vx, dvx/dt = −4 π2 x, with the initial conditions
x(0) = 1, vx(0) = 0, and integrate over the time interval[t,0,1] for three different values of the time stepdt = h . The
analytic solution isx = cos(2 π t).

We remind the reader that the list utility functionsfll andtake are in the chapter 2 filek2util.mac (as well as inmyode.mac )
and have the definitions

fll(x) := [first(x),last(x),length(x)]$

take(%aL,%nn) := (map(lambda([x],part(x,%nn)), %aL))$

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"



4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 25

(%i2) case(dt) := rk4([vx,-4 * %piˆ2 * x],[x,vx],[1,0],[t,0,1,dt])$
(%i3) pts1 : case(0.1)$
(%i4) rpts1 : [discrete,take(pts1,1),take(pts1,2)]$
(%i5) fll(pts1);
(%o5) [[0.0,1.0,0.0],[1.0,0.99592,0.0440659],11]
(%i6) pts2 : case(0.05)$
(%i7) rpts2 : [discrete,take(pts2,1),take(pts2,2)]$
(%i8) fll(pts2);
(%o8) [[0.0,1.0,0.0],[1.0,0.999868,0.00309201],21]
(%i9) plot2d([cos(2 * %pi * t),rpts1,rpts2],[t,0,1],[xlabel,"T"],[ylabel,"X"],

[style,[lines,3]],[legend,"exact","h=0.1","h=0.05"] ,
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot
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Figure 15: Exact and rk4 SHO Solutions

Example 4: Rigid Body Motion

The three Euler equations of motion for the angular velocityvector componentsω1, ω2, ω3 of an unforced rigid body with principal
moments of inertiaI1, I2, I3 are

dω1

d t
=

I2 − I3
I1

ω2 ω3 (4.7)

dω2

d t
=

I3 − I1
I2

ω3 ω1 (4.8)

dω3

d t
=

I1 − I2
I3

ω1 ω2 (4.9)

We seek a solution for whichI1 = 0.5, I2 = 2, I3 = 3, and the initial conditions areω1(0) = 1, ω2(0) = 0, ω3(0) = 0.9.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) (i1 : 0.5, i2 : 2, i3 : 3)$
(%i3) rsoln : rk4([(i2-i3) * w2* w3/i1, (i3-i1) * w3* w1/i2, (i1-i2) * w1* w2/i3],

[w1,w2,w3],[1,0,0.9],[t,0,20,0.01])$
(%i4) fll(rsoln);
(%o4) [[0.0,1.0,0.0,0.9],[20.0,0.606204,0.628747,0.8 07385],2001]
(%i5) tL : take(rsoln,1)$
(%i6) fll(tL);
(%o6) [0.0,20.0,2001]
(%i7) (w1L : take(rsoln,2), w2L : take(rsoln,3), w3L : take( rsoln,4))$
(%i8) pts1 : [discrete,tL,w1L]$
(%i9) pts2 : [discrete,tL,w2L]$
(%i10) pts3 : [discrete,tL,w3L]$
(%i11) plot2d([ pts1,pts2,pts3], [y,-1.1,1.5],[style,[ lines,3]],

[xlabel,"t"],[ylabel,"Angular Velocity Components"],
[legend, "w1","w2","w3"])$
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which produces the plot

-1

-0.5

 0

 0.5

 1

 1.5

 0  5  10  15  20

A
ng

ul
ar

 V
el

oc
ity

 C
om

po
ne

nt
s

t

w1
w2
w3

Figure 16: Unforced Rigid Body Angular Velocity Vector Components

Example 5: The Lorenz Equations

An example of a model with three o.d.e.’s is the Lorenz model

d x

d t
= a x+ y z (4.10)

d y

d t
= b (y − z) (4.11)

d z

d t
= −x y + c y − z (4.12)

which we solve with our Maxima coderk4 assuming the initial conditions arex(0) = 1, y(0) = 1, z(0) = 1, and the
parameters have the valuesa = −8/3, b = −10, andc = 28. We use a homemade functionrange(list) , which is included in
myode.mac and ink2util.mac and which has the definition

range(aaL) := print(" min = ",lmin(aaL)," max = ", lmax(aaL) )$

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) (a : -8/3, b : -10, c : 28)$
(%i3) ode : [a * x + y * z, b * (y-z), -x * y + c * y -z]$
(%i4) var : [x,y,z]$
(%i5) init : [1,1,1]$
(%i6) domain : [t,0,1,0.01]$
(%i7) rksoln : rk4(ode,var,init,domain)$
(%i8) tL : take(rksoln,1)$
(%i9) fll(tL);
(%o9) [0.0,1.0,101]
(%i10) xL : take(rksoln,2)$
(%i11) range(xL);

min = 0.961737 max = 47.833954
(%o11) 47.833954
(%i12) yL : take(rksoln,3)$
(%i13) range(yL)$

min = -9.7615215 max = 19.555041
(%i14) zL : take(rksoln,4)$
(%i15) range(zL)$

min = -10.394135 max = 27.183473
(%i16) xpts : [discrete, tL, xL]$
(%i17) ypts : [discrete, tL, yL]$
(%i18) zpts : [discrete, tL, zL]$
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(%i19) plot2d([xpts,ypts,zpts],[x,0,1],
[style,[lines,3]], [xlabel,"t"],[ylabel,""],
[legend,"x","y","z"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot
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Figure 17: Maxima myrk4 with Lorenz Equations

We also ploty(x):

(%i20) plot2d([discrete,xL,yL],[style,[lines,3]],[xl abel,"x"],
[ylabel,"y"],[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 18:y(x) for Lorenz Equations

As practice, we write the nested listrksoln as a four column data file usingwrite_data .

(%i21) write_data(rksoln,"c:/k2/mydata.txt");
(%o21) done
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If you look at the filemydata.txt with a text editor, the top of the file is

0.0 1.0 1.0 1.0
0.01 0.984891 1.0125672 1.2599178
0.02 0.973114 1.0488237 1.5239971
0.03 0.965159 1.1072089 1.7983099
0.04 0.961737 1.186868 2.0885401
0.05 0.963806 1.2875571 2.4001545

which displays the four columns of space separated data which represents the output ofrk4 for this problem.

To read such a space separated text data file into your Maxima session, you useread_nested_list , which returns a nested list
identical to the output ofrk4 .

(%i22) mysoln : read_nested_list("c:/k2/mydata.txt")$
(%i23) fll(mysoln);
(%o23) [[0.0,1.0,1.0,1.0],[1.0,29.362404,-9.3786158, -8.35706],101]
(%i24) fll(rksoln);
(%o24) [[0.0,1.0,1.0,1.0],[1.0,29.362404,-9.3786158, -8.35706],101]

4.1.2 Failure of Maxima rk4 for a Stiff O.D.E.

The van der Pol equation
z′′ − µ (1− z2) z′ + z = 0 (4.13)

describes a non-conservative oscillator with non-linear damping and was originally designed as a model for electric circuits using
vacuum tubes. The solutionz(t), for largeµ, changes slowly witht over a region, and then changes very rapidly in the next region,
with the solution approaching a distorted square wave for largeµ.

We let y1 = z andy2 = z′. Theny′1 = z′ = y2, andy′2 = z′′ = µ (1 − y21) y2 − y1. We solve this pair of o.d.e.’s first for the
“non-stiff” case, usingµ = 1, with no problems.

(%i1) load(myode);
(%o1) "c:/k2/myode.mac"
(%i2) nonstiff : rk4([y2, y2 * (1-y1ˆ2) - y1],[y1,y2],[2,0],[t,0,30,0.01])$
(%i3) fll(nonstiff);
(%o3) [[0.0,2.0,0.0],[30.0,-2.0079102,0.0519626],300 1]
(%i4) tL : take(nonstiff,1)$
(%i5) fll(tL);
(%o5) [0.0,30.0,3001]
(%i6) zL : take(nonstiff,2)$
(%i7) fll(zL);
(%o7) [2.0,-2.0079102,3001]
(%i8) plot2d([discrete,tL,zL],[style,[lines,3]],[yla bel,"z"],[xlabel,"t"])$

which produces the plot
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Figure 19: Non-stiff van der Pol Case
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However, trying to userk4 with µ = 1000, leads to a floating point overflow error return.

(%i9) stiff : rk4([y2, 1000 * y2 * (1-y1ˆ2) - y1],[y1,y2],[2,0],[t,0,30,0.01])$
EXPT: floating point overflow.

For this type of problem, thedeSolveRpackage of solvers is needed.

By the way, if you try the same stiff case with the current Maxima methodrk , you will seemany screens of an identical error
message:

(%i10) stiff : rk([y2, 1000 * y2 * (1-y1ˆ2) - y1],[y1,y2],[2,0],[t,0,30,0.01])$
EXPT: floating point overflow.
EXPT: floating point overflow.
EXPT: floating point overflow.
EXPT: floating point overflow.
EXPT: floating point overflow.
etc., etc.

The adjustable step contributed Maxima methodrkf45 can be used to solve moderately stiff initial value problems, although it is
not designed for that purpose. We will discuss more about thesyntax ofrkf45 in a later section. The main difference (compared
with rk ) is that instead of specifying the step size, you omit the step size entirely. We tryrkf45 here to see that it gives at least a
graceful exit.

(%i11) load(rkf45);
(%o11) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/s hare/contrib/rkf45/rkf45.mac"
(%i12) stiff : rkf45([y2, 1000 * y2 * (1-y1ˆ2) - y1],[y1,y2],[2,0],[t,0,30])$
Warning: rkf45: Integration stopped at x = 8.7296685 (stiff problem?)

Iterations limit has been reached. Check if differential
equations/initial conditions are given correctly, reduce
accuracy, and/or increase maximum number of steps.

4.2 R Code: myrk4

If you have already loaded in theRpackagedeSolve, that package contains a method calledrk4 . In order to prevent confusion with
that method (which requires a differentfunc template: see our later discussion), we callour codemyrk4 .

TheRcode formyrk4 is in myode.R .

## myrk4: each element of solnList is a vector
## which contains the grid values
## of one of the dependent variables.

myrk4 = function(init, grid ,func) {
num.var = length(init)
solnList = list()
n.grid = length(grid)
for (k in 1:num.var) {

solnList[[k]] = vector(length = n.grid)
solnList[[k]][1] = init[k] }

h = grid[2] - grid[1] # step size
yL = vector(length = num.var) # solution at beginning of each step
for (j in 1:(n.grid-1)) {

for (k in 1:num.var) yL[k] = solnList[[k]][j]
k1 = func(grid[j], yL) # vector of derivatives
k2 = func(grid[j] + h/2, yL + h * k1/2) # vector of derivatives
k3 = func(grid[j] + h/2, yL + h * k2/2) # vector of derivatives
k4 = func(grid[j] + h, yL + h * k3) # vector of derivatives
for (k in 1:num.var) solnList[[k]][j+1] = solnList[[k]][j ] +

h* (k1[k] + 2 * k2[k] + 2 * k3[k] + k4[k])/6 }
if (num.var==1) solnList[[1]] else solnList}

The syntax of the required external functionfunc to compute the needed derivatives is the same as in the case ofthe R function
myeuler above.



4 FOURTH ORDER RUNGE-KUTTA CODE FOR MAXIMA AND R 30

4.2.1 Three Examples of R myrk4

Example 1

Here we usemyrk4 and myeuler to compare the solution of the single o.d.e.dy/dt = −t y for y(0) = 1, after loading in
myode.R .

> source("myode.R")
> tL = seq(0,3,0.1)
> fll(tL)

0 3 31
> deriv = function(t,y) { -t * y }
> yL = myrk4(1,tL,deriv)
> fll(yL)

1 0.01111038 31
> yL.euler = myeuler(1,tL,deriv)
> fll(yL.euler)

1 0.007791097 31
> plot(tL,yL,type="l",lwd=3,col="red",xlab="t",ylab= "y")
> abline(h=0,v=0)
> grid()
> lines(tL,yL.euler,lwd=3,col="green")
> legend("topright", col=c("red","green"),lwd=3,
+ legend=c("myrk4","euler"))

which produces the plot
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Figure 20: myrk4 and myeuler forh = 0.1

Example 2

We next testmyrk4 on the simple harmonic oscillator with unit period:dx/dt = vx, dvx/dt = −4 π2 x, with the initial conditions
x(0) = 1, vx(0) = 0, and compare with the performance ofmyeuler . The analytic solution isx = cos(2 π t).

> tL = seq(0,1,0.001)
> fll(tL)

0 1 1001
> sho = function(t,y) with(as.list(y), c(y[2], -4 * piˆ2 * y[1]) )
> out = myrk4(c(1,0),tL,sho)
> xL = out[[1]]
> fll(xL)

1 1 1001
> vxL = out[[2]]
> fll(vxL)

0 5.127315e-10 1001
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> max(vxL)
[1] 6.283185
> out.euler = myeuler(c(1,0),tL,sho)
> xL.euler = out.euler[[1]]
> fll(xL.euler)

1 1.019935 1001
> vxL.euler = out.euler[[2]]
> fll(vxL.euler)

0 0.0005298591 1001
> plot(tL,xL,type="l",lwd=2,col="red",xlab="t",ylab= "x")
> lines(tL,xL.euler,lwd=2,col="green")
> legend("top", col=c("red","green"),lwd=3,
+ legend=c("myrk4","myeuler"))

which produces the plot
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Figure 21: SHO: myrk4 and myeuler forh = 0.001

Example 3: The Lorenz Model with R

An example of a model with three o.d.e.’s is the Lorenz model

d x

d t
= a x+ y z (4.14)

d y

d t
= b (y − z) (4.15)

d z

d t
= −x y + c y − z (4.16)

which we solve with ourR codemyrk4 assuming the initial conditions arex(0) = 1, y(0) = 1, z(0) = 1, and the parameters
have the valuesa = −8/3, b = −10, andc = 28.

> source("myode.R")
> lorenz = function(t,y) {
+ with( as.list(y), {
+ dx = a * y[1] + y[2] * y[3]
+ dy = b * (y[2] - y[3])
+ dz = -y[1] * y[2] + c * y[2] - y[3]
+ c(dx,dy,dz)})}
> tL = seq(0,1,0.01)
> a = -8/3 ; b = -10; c = 28
> yini = c(1,1,1)
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> out = myrk4(yini,tL,lorenz)
> xL = out[[1]]
> range(xL)
[1] 0.9617372 47.8339541
> yL = out[[2]]
> range(yL)
[1] -9.761521 19.555041
> zL = out[[3]]
> range(zL)
[1] -10.39413 27.18347
> plot(tL,xL,type="l",lwd=3,col="blue",ylim=c(-12,50 ),xlab="t",ylab="")
> lines(tL,yL,lwd=3,col="red")
> lines(tL,zL,lwd=3,col="green")
> grid(lty="solid", col="darkgray")
> legend("topright",col= c("blue","red","green"),lwd= 3,
+ legend = c("x","y","z"))

which produces the plot
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Figure 22: Lorenz Model with our R code myrk4

We also make of plot ofy(x):

> plot(xL,yL,type = "l",lwd=3,col="blue",xlab="x",ylab ="y")
> grid(lty="solid",col="darkgray")

which produces
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Figure 23: Lorenz Model:y(x)
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4.2.2 Failure of R myrk4 for a Stiff O.D.E.

We again integrate the van der Pol equation (see Sec. (4.1.2)). First a non-stiff case withµ = 1.

> vanderPol = function(t,y){
+ with( as.list(y), c(y[2], mu * y[2] * (1-y[1]ˆ2) - y[1]))}
> tL = seq(0,30,0.01)
> fll(tL)

0 30 3001
> yini = c(2,0)
> mu = 1
> nonstiff = myrk4(yini,tL,vanderPol)
> zL = nonstiff[[1]]
> fll(zL)

2 -2.00791 3001
> plot(tL,zL,type="l",lwd=3,col="blue",xlab="t",ylab ="z")

which produces
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Figure 24: Non-Stiff van der Pol caseµ = 1

Next we try a stiff case, withµ = 1000, and the same sequence of times and the same initial conditions.

> mu = 1000
> stiff = myrk4(yini,tL,vanderPol)
> zL = stiff[[1]]
> any(is.nan(zL))
[1] TRUE
> all(is.nan(zL))
[1] FALSE
> fll(zL)

2 NaN 3001
> head(zL)
[1] 2.000000e+00 1.993400e+00 6.460842e+01 8.833844e+42 NaN
[6] NaN
> tail(zL)
[1] NaN NaN NaN NaN NaN NaN

All but the first four values ofzL areNaN(not a number), which indicates afailure of myrk4 in dealing with this stiff case.

We have usedany(is.nan(vec)) , which returnsTRUEif at least one element ofvec is NaN.

> xL = c(1,2,3,4,NaN,5,NaN)
> yL = c(1,2,3,4,5)
> any(is.nan(xL))
[1] TRUE
> any(is.nan(yL))
[1] FALSE
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5 The Standard and Contributed Maxima Methods

5.1 rk

The standard fixed step fourth order Runge-Kutta method isrk , which has the same syntax as our Maxima coderk4 :

if the dxdt expression is a function of (t,x), then:
for one o.d.e: rk(dxdt,x,xinit,[t,tinit,tfinal,dt])

If the dx1dt expression and the dx2dt expression are functio ns of (t,x1,x2),
then for two o.d.e.’s:

rk([dx1dt,dx2dt],[x1,x2],[x1init,x2init],[t,tinit,t final,dt])
and so on.

Nothing has to be loaded into your work session to userk . Sincerk is a fixed step method, with the step size chosen by the user,
the value of the step size should be reduced at least once fromits initial value, in order to assess the effects on the global solution. A
rough rule of thumb is to start with a step size that is of the order of one hundredth of the integration interval.
In order to easily extract the list of timestL , and the list of the first dependent variabley1L , etc., from the list returned byrk , we
recommend the use of our home-made list utility functiontake , which can be made available by loading ink2util.mac from our
Chapter 2 files.

5.2 rkf45

This is a contributed method, located in...share\contrib\rkf45\ , where you can findrkf45.mac (which contains the
needed code),rkf45.pdf , rkf45.dem , as well as a test file.

The version ofrkf45 in Maxima ver. 5.31 has a number of bugs which will be fixed in later versions. The chapter 2 filemyrk4.mac
contains the bug fixes.

The author of this method has a web page:
https://sites.google.com/site/pjpapasot/maxima/libr aries/rkf45 .

Fehlberg discovered a 5-th order method that only requires 6evaluations while the same combination of evaluations but with different
factors yields a 4-th order scheme. Therefore this approachallows an error estimation (by comparing the two cases at each step) at
a much reduced computational cost (with 6 evaluations only). By making such an error estimate for each step, the step sizecan be
adjusted to keep the estimated errors small.

Depending upon the computational effort required to compute the function evaluations, this method can produce a significant de-
crease in computational effort.

We include part of the top section ofrkf45.mac here as a guide to getting started with this method (with somevery light editing).
We have replaced the symbolfunc with the symbolvar in the following.

Author: Panagiotis J. Papasotiriou
--------------------------------------------------- -----------------------------
Brief description:

rkf45 is a Maxima function for solving initial value problem s with automatic
step size and error control.
This is an implementation of the Runge-Kutta-Fehlberg 4th- 5th-order scheme.
--------------------------------------------------- -----------------------------
Syntax:

rkf45(ode,var,init,interval,options)
rkf45([ode1,ode2,...],[var1,var2,...],[init1,init2, ...],interval,options)

The first form solves a first-order differential equation, (o.d.e.), with
respect to the initial condition init, where var is the depen dent variable
and init is the value of the dependent variable at the initial point.
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Similarly, the second form solves a system of first-order di fferential
equations, ode1,ode2,..., with respect to the initial cond itions
init1,init2,..., where var1, var2,... are the dependent va riables and
init1,init2,... are the values of the dependent variables a t the initial point.

Differential equation(s) should be given as expressions de pending only on the
independent and dependent variables, and should define the derivative of the
dependent variable with respect to the independent variabl e. For instance, the
differential equation y’(x)+(x+1) * y=0 should be given as -(x+1) * y.

The argument "interval" should be a list of three elements. T he first element
identifies the independent variable, while the second and t hird elements are
the initial and final values for the independent variable, a s in [x,0,6].

The initial value does not need to be less than final value, so an interval
such as [x,6,0] is also valid.

rkf45 accepts the following optional arguments:

* full_solution: A Boolean. If set to true, a full list of the so lution at
all intermediate points will be returned. If set to false,
only the solution at the last integration point is
returned. Default: true.

* absolute_tolerance: The desired absolute tolerance of the result. Default:
1e-6.

* max_iterations: Maximum number of iterations. Default: 10 000.

* h_start: Initial integration step. Default: one 100th of th e
integration interval, (interval[3]-interval[2])/100.

* report: A Boolean. If set to true, rkf45 prints a report at
exit, giving details about the calculations done.
Default: false.

The integration step size is selected automatically in such a way that the
estimated local error is less than user-specified absolute tolerance.

The result is returned as a list with n+1 columns, where n is th e number of
first-order differential equations. The first column cont ains the values of
the independent variable selected by the algorithm. The sec ond column
contains the values of the first dependent variable at the co rresponding
value of the independent variable. Similarly, the third col umn contains the
values of the second dependent variable at the correspondin g value of the
independent variable, and so on.

rkf45 can be used to solve moderately stiff initial value pro blems, although
it is not designed for that purpose.
--------------------------------------------------- -----------------------------
Examples:

(1) A first-order differential equation, y’=x * (y-1)+3, with y(0)=-2:
rkf45(x * (y-1)+3,y,-2,[x,0,4]) returns the solution at selected po ints

from x=0 to x=4.

(2) A second-order differential equation, y’’=x+y * y’, with y(-1)=2, y’(-1)=0:
rkf45([y2,x+y1 * y2],[y1,y2],[2,0],[x,-1,4]) returns the solution at sele cted
points from x=-1 to x=4.
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Example 1

Here is an example from the demo filerkf45.dem which finds the solution of the single o.d.e.dy/dx = −3 x y2+1/(1+x3) over
the range[x,0,5] and with the initial conditiony(0) = 0. The optional argumentreport = true is included. See comments
by the author ofrkf45 (Panagiotis J. Papasotiriou ) in his file rkf45.pdf . (To use the bugfree code version, you
would useload(myrkf45) or load("myrkf45.mac") ).

(%i1) fpprintprec:7$
(%i2) load(rkf45);
(%o2) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/sh are/contrib/rkf45/rkf45.mac"
(%i3) rksoln : rkf45(-3 * x* yˆ2+1/(xˆ3+1),y,0,[x,0,5],report=true)$
--------------------------------------------------- ---
Info: rkf45:

Integration points selected: 42
Total number of iterations: 45

Bad steps corrected: 4
Minimum estimated error: 3.0488505E-10
Maximum estimated error: 9.5960328E-7

Minimum integration step taken: 0.05
Maximum integration step taken: 0.31668
--------------------------------------------------- ---
(%i4) plot2d([discrete,rksoln],[xlabel,"x"],[ylabel, "y"],

[style,[lines,3]],[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 25: rkf45 Solution

We now repeat with a request for more accuracy, by using the optionalabsolute_tolerance flag.

(%i5) rksoln2 : rkf45(-3 * x* yˆ2+1/(xˆ3+1),y,0,[x,0,5],
absolute_tolerance = 1e-12, report=true)$

--------------------------------------------------- ---
Info: rkf45:

Integration points selected: 1168
Total number of iterations: 1173

Bad steps corrected: 6
Minimum estimated error: 4.8670316E-15
Maximum estimated error: 9.4750206E-13

Minimum integration step taken: 0.0017906
Maximum integration step taken: 0.016874
--------------------------------------------------- ---
(%i6) plot2d([[discrete,rksoln],[discrete,rksoln2]],

[xlabel,"x"],[ylabel,"y"],
[style,[lines,1]],[gnuplot_preamble,"set grid"],
[legend,"1e-6","1e-12"])$



5 THE STANDARD AND CONTRIBUTED MAXIMA METHODS 37

which produces the plot
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Figure 26: rkf45 Solutions

Example 2

Here is another example from the demo file, which solves a single o.d.e. for three values of a parameter calleds . See comments by the author of
rkf45 (Panagiotis J. Papasotiriou ) in his file rkf45.pdf .

The very useful Maxima functionmakelist is used here with the particular syntaxmakelist(expr, p, pList) , in which the param-
eterp takes on values in the listpList , and for each suchp, expr is evaluated.

We first usemakelist to form a list (eqnL ) of symbolic expressions fordy/dt for three values of a parameters . We then make a list (solnL )
of numerical solutions for these three cases ofs usingrkf45 with y(0) = 0, integrating over the time interval[t,0,100] , and accepting all
the defaults. We then use the same syntax ofmakelist to form the main first argument ofplot2d :
makelist([discrete,sv],sv,solnL) , in whichsv is a dummy argument which takes on successively the values inthe listsolnL .

(%i8) eqnL : makelist(s-1.51 * y+3.03 * yˆ2/(1+yˆ2),s,[0.206,0.204,0.202]);
(%o8) [3.03 * yˆ2/(yˆ2+1)-1.51 * y+0.206,3.03 * yˆ2/(yˆ2+1)-1.51 * y+0.204,

3.03 * yˆ2/(yˆ2+1)-1.51 * y+0.202]
(%i9) solnL : makelist(rkf45(ode,y,0,[t,0,100]),ode,eq nL)$
(%i10) plot2d(makelist([discrete,sv],sv,solnL),[styl e,[lines,2]],[xlabel,"t"],

[ylabel,"y"],[legend,"s=0.206","s=0.204","s=0.202"] ,
[gnuplot_preamble,"set key left"])$

which produces the plot
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Figure 27: rkf45 Solutions for Different Values of s
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Example 3

Here is an example of integrating the Lorenz model (see abovein Sec. ( 4.2.1)). We need to load the contributed filerk45f.mac ,
and we also load our list utility filek2util.mac , which provides definitions offll , take , andrange .

(%i1) fpprintprec:7$
(%i2) load(rkf45);
(%o2) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/sh are/contrib/rkf45/rkf45.mac"
(%i3) load(k2util);
(%o3) "c:/k2/k2util.mac"
(%i4) (a : -8/3, b : -10, c : 28)$
(%i5) ode : [a * x + y * z, b * (y-z), -x * y + c * y -z]$
(%i6) var : [x,y,z]$
(%i7) init : [1,1,1]$
(%i8) interval : [t,0,1]$
(%i9) rksoln : rkf45(ode,var,init,interval)$
(%i10) tL : take(rksoln,1)$
(%i13) fll(tL);
(%o13) [0,1.0,282]
(%i14) xL : take(rksoln,2)$
(%i15) range(xL)$

min = 0.96172 max = 47.84057
(%i16) yL : take(rksoln,3)$
(%i17) range(yL)$

min = -9.761498 max = 19.56929
(%i18) zL : take(rksoln,4)$
(%i19) range(zL)$

min = -10.39593 max = 27.18298
(%i20) xpts : [discrete, tL, xL]$
(%i21) ypts : [discrete, tL, yL]$
(%i22) zpts : [discrete, tL, zL]$
(%i23) plot2d([xpts,ypts,zpts],

[style,[lines,3]], [xlabel,"t"],[ylabel,""],
[legend,"x","y","z"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot
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Figure 28: The Lorenz Model Using rkf45

This solution agrees with that we found earlier (Sec. ( 4.1.1)) using our Maxima coderk4 , as well as the solution using either
R:myrk4 (Sec. ( 4.2.1)) orR:ode (see next section).
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6 Standard R Methods using deSolve’s ode

TheRpackagedeSolvecontains a large number of numerical methods for the integration of systems of ordinary differential equations
in the context of initial value problems.

The textSolving Differential Equations in R, by Karline Soetaert, Jeff Cash, and Francesca Mazzia, Springer-Verlag, 2012, presents
many examples of the use of the solvers available indeSolve. In addition to conventional initial value problems, the authors present
methods for the solution of differential algebraic equations, delay differential equations, partial differential equations, and boundary
value problems.

New users of this package can just use theode function, which has the syntax

ode (y, times, func, parms, ...)

in whichy is the initial value (or vector of initial valuesc(y10, y20,...) of the dependent variables,times is a vector of times
at which output is requested (typically produced using the functionseq ), func is aR function which returns the rate of change (first
derivatives) of the dependent variables, and must have a particular form, andparms contains the value(s) of parameters to be used
in the integration.

If there are no parameters which are needed to completely define the derivatives returned byfunc , or if you wish to just use gobal
assignments to set the values of the parameters, then you canuseparms=NULL as the input toode .

Once you have loadeddeSolveusinglibrary(deSolve) , you can get the manual page forode using? ode . Here is an edited
version of the top of that page (note that this description ofthe syntax and methods assumes that the independent variable is time):

ode {deSolve} R Documentation
General Solver for Ordinary Differential Equations
Description

Solves a system of ordinary differential equations;
a wrapper around the implemented ODE solvers

Usage

ode(y, times, func, parms,
method = c("lsoda", "lsode", "lsodes", "lsodar",

"vode", "daspk", "euler", "rk4", "ode23", "ode45",
"radau", "bdf", "bdf_d", "adams", "impAdams",
"impAdams_d", "iteration"), ...)

Arguments

y: the initial (state) values for the ODE system, a vector. If y
has a name attribute, the names will be used to label the outpu t matrix.

times: time sequence for which output is wanted; the first va lue
of times must be the initial time.

func: either an R-function that computes the values of the de rivatives
in the ODE system (the model definition) at time t, or a charac ter

string giving the name of a compiled function in a dynamicall y
loaded shared library.

If func is an R-function, it must be defined as:
func = function(t, y, parms,...).

t is the current time point in the integration.
y is the current estimate of the variables in the ODE system.

If the initial values y has a names attribute, the names
will be available inside func.

parms is a vector or list of parameters;
... (optional) are any other arguments passed to the functio n.
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The return value of func should be a list, whose first element
is a vector containing the derivatives of y with respect to
time, and whose next elements are global values that are requ ired
at each point in times. The derivatives must be specified in
the same order as the state variables y.

If func is a string, then dllname must give the name of the shar ed
library (without extension) which must be loaded before ode is
called. See package vignette "compiledCode" for more detai ls.

parms: parameters passed to func.

method: (optional: the default method is lsoda)
the integrator to use, either a function that performs integ ration,

or a list of class rkMethod, or a string: "lsoda", "lsode",
"lsodes","lsodar","vode", "daspk", "euler", "rk4", "ode 23",
"ode45", "radau", "bdf", "bdf_d", "adams", "impAdams" or
"impAdams_d" ,"iteration".
Options "bdf", "bdf_d", "adams", "impAdams" or "impAdams_ d" are
the backward differentiation formula, the BDF with diagona l
representation of the Jacobian, the (explicit) Adams and th e
implicit Adams method, and the implicit Adams method with
diagonal representation of the Jacobian respectively
(see details). The default integrator used is lsoda.

(The method "iteration" is special in that here the function
func should return the new value of the state variables rathe r
than the rate of change. This can be used for individual
based models, for difference equations, or in those cases
where the integration is performed within func). See last ex ample.

... additional arguments passed to the integrator or to the m ethods.

Details

This is simply a wrapper around the various ode solvers.

The default integrator used is lsoda.

Value: A matrix of class deSolve with up to as many rows as elem ents
in times and as many columns as elements in y plus the number
of "global" values returned in the second element of the
return from func, plus an additional column (the first)
for the time value. There will be one row for each element in
times unless the integrator returns with an unrecoverable e rror.
If y has a names attribute, it will be used to label the columns
of the output value.

Author: Karline Soetaert <karline.soetaert@nioz.nl>

The defaultlsoda method used by the wrapperode always starts with the non-stiffexplicit multi-step Adams method, and when
stiffness is detected, switches to animplicit multistep solver (“bdf”: backward differentiation formula).

6.1 One First Order O.D.E.: Solvingdy/dx = −x y with y(0) = 1

We will use the simple o.d.e.dy/dx = −x y with y(0) = 1 to explore the behavior ofode . We know that, by default,ode calls
the independent variable a time t, so we have to adapt our approach toode ’s behavior. We will see that we have much freedom in
defining the names of the derivative function, and the names of its three formal arguments. We can override column labeling on the
output matrix whichode returns by usingcolnames . We can also force our intended labels and title on the final plot produced.

We start with defining the needed derivativesfunc containing the three required arguments, acceptingt as the independent
variable for now. Note that, crucially, the derivative function returns a list.
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> library(deSolve)
> deriv = function(t, y, parms) list( -t * y)
> tL = seq(0,3,0.01)
> yini = 1
> out = ode(y=yini, times=tL, func=deriv, parms=NULL)
> head(out)

time 1
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)

which produces the basic default plot of the output (matrix)
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Figure 29: basic ode solution:dy/dt = −t y for y(0) = 1

In the output of thehead command, we see the first column has the label “times” (which we can change usingcolnames ), and the
second column has the label “1”. In the simple default plot produced byplot(out) we get the “1” again as the plot title.

We can extract the vectoryL of values ofy(t) from the matrixout returned byode usingyL = out[,2] , which extracts the
second column of the matrixout .

Our next approach is to change the definition ofderiv to deriv = function(x,y,parms) ... , with x playing the role of
the independent variable, and defining a sequence ofx values usingxL = seq(...) . We also giveyini the “name attribute” by
supplying the namey in the formyini = c(y = 1) .

> deriv = function(x, y, parms) list( -x * y)
> yini = c(y = 1)
> xL = seq(0,3,0.01)
> out = ode(yini, xL, func=deriv, parms=NULL)
> head(out)

time y
[1,] 0.00 1.0000000
[2,] 0.01 0.99995s00
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)
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which produces the plot
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Figure 30: trying ode solution:dy/dx = −x y for y(0) = 1

We can add some optional arguments to get rid of the “time” label on the x-axis, and also dress up the plot with color and extra line
thickness and a grid:

> plot(out,lwd=3,col="blue",xlab="x",ylab="y")
> grid(lty="solid",col="darkgray")

which produces
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Figure 31: better ode solution:dy/dx = −x y for y(0) = 1

Perhaps an easier way to override the “times” label is to usecolnames .

> colnames(out)
[1] "time" "y"
> colnames(out) = c("x","y")
> colnames(out)
[1] "x" "y"
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> head(out)
x y

[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)

which gets a basic plot with the correct labels:
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Figure 32: colnames cure for ode solution:dy/dx = −x y for y(0) = 1

We can now modify the notation ofderiv to useode to solve the o.d.e.dz/dx = −x z with z(0) = 1.

> deriv = function(x, z, parms) list( -x * z)
> zini = c(z = 1)
> xL = seq(0,3,0.01)
> out = ode(zini, xL, func=deriv, parms=NULL)
> colnames(out)
[1] "time" "z"
> colnames(out) = c("x","z")
> head(out)

x z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508
> plot(out)

which produces the default plot with the correct title and axis label:
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Figure 33: basic ode solution:dz/dx = −x z for z(0) = 1
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We can use a different name for the third argument ofderiv here, say,p, and still get the proper solution.

> deriv = function(x, z, p) list( -x * z)
> out = ode(zini, xL, func=deriv, parms=NULL)
> colnames(out)
[1] "time" "z"
> colnames(out) = c("x","z")
> head(out)

x z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

As long as we leave the args toode in the standard order, we don’t need to usefunc=deriv , but justderiv , for example.

> out = ode(zini, xL, deriv, NULL)
> colnames(out) = c("x","z")
> head(out)

x z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

We can use any other name for thefunc derivatives function.

> dzdx = function(x, z, p) list( -x * z)
> out = ode(zini, xL, dzdx, NULL)
> colnames(out) = c("x","z")
> head(out)

x z
[1,] 0.00 1.0000000
[2,] 0.01 0.9999500
[3,] 0.02 0.9998000
[4,] 0.03 0.9995501
[5,] 0.04 0.9992003
[6,] 0.05 0.9987508

6.2 Two First Order O.D.E.’s: Using the Parameters Argument

We discuss an instructive example adapted from page 73 (and following) in the pdf document “Using R for Scientific Computing”, by
Karline Soetaert and Filip Meysman, Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology, The Netherlands,
February 2011.

This pdf document can be found in zip format athttp://cran.r-project.org/other-docs.html .

Assume the pair of first order o.d.e.sdA/dt = r (x−A)− k AB anddB/dt = r (y −B) + k AB, determine the time evolution of
concentrationsA(t) andB(t), subject to the values of the fixed parametersr, x, k, y, and given initial values ofA andB.

A possible form for the needed derivatives function is

derivs = function(t, y, p) {
with (as.list(c(y, p)), {

dA = r * (x-A) - k * A* B
dB = r * (y-B) + k * A* B
list(c(dA, dB)) }) }

Note that the symboly appears both as the formal second argument toderivs , and also as a parameter in calculating the derivatives.
This looks dangerous, but will work fine as long as we pass the value of the parametery via the third argumentp. A more cautious
approach would be to usederivs = function(t,state,parameters) {...} .
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The R-statementwith( as.list (c(y,p)), ... , together with supplyingyini with the “names attribute”, will allow the
state variables and parameters to be addressed by their names. Again, note carefully that a list must be returned by the derivatives
function, with the elements of the enclosed vector in the same order as given inyini .

> library(deSolve)
> derivs = function(t, y, p) {
+ with (as.list(c(y, p)), {
+ dA = r * (x-A) - k * A* B
+ dB = r * (y-B) + k * A* B
+ list(c(dA, dB)) }) }
> params = c(x = 1, y = 0.1, k = 0.05, r = 0.05)
> yini = c(A = 1, B = 1)
> yini
A B
1 1
> tL = seq(0,300,1)
> out = ode(yini, tL, func = derivs, parms = params)
> head(out)

time A B
[1,] 0 1.0000000 1.0000000
[2,] 1 0.9523189 1.0037869
[3,] 2 0.9090687 1.0052854
[4,] 3 0.8699226 1.0047151
[5,] 4 0.8345728 1.0022854
[6,] 5 0.8027203 0.9982009

Times and concentration vectors can be defined using matrix notation, sinceode returns a matrix. Of course, we already have the vector of times
tL which we started with, but this is also given byout[,"time"] , which returns the first column of the matrixout , which has the label
“time”. The same vector is of course returned usingout[,1] .

A vector containing the concentrations of species A can be defined byAL = out[,"A"] , and likewiseBL = out[,"B"] . However, we
could also useAL = out[,2] andBL = out[,3] .

We use theR functionrange , which returns a vector, to control the vertical extent of the plot via theplot argumentylim .

> range(out[,"A"])
[1] 0.5739162 1.0000000
> range(out[,"B"])
[1] 0.3702302 1.0052854
> yrange = range (c(out[,"A"], out[,"B"])); yrange
[1] 0.3702302 1.0052854
> plot(out, which = "A", xlab = "time", ylab = "concentration ",
+ lwd = 3, type = "l", ylim = yrange, main = "concentation model " )
> lines(out[,"time"], out[,"B"], lwd = 3, lty = 2)
> legend("topright", legend = c("A", "B"),lwd = 3, lty = c(1, 2))

which produces the plot
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Figure 34: Concentrations ofA andB vs. Time
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which can be contrasted with the default and simplest plot:

> plot(out,lwd=2)

which produces
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Figure 35: basic plot(out): Concentrations ofA andB vs. Time

and in which the two side-by-side plots have different vertical scales.

Of course, as we have seen before, we can define the parametersused in the above problem as global parameters, and then callode
with the fourth arg asparms = NULL, and get the same solutions and the same plots.

However, you will find thatR returns an error, claiming that the derivatives function isreturning three derivatives instead of the
needed two derivatives (corresponding to the number of initial values). This occurs because the symboly is now being used in two
ways: as a globally set parameter with the valuey = 0.1 , and also as the formal second argument ofderivs .

As we have seen, it is no problem to have a parameter calledy inside thederivs function as well as being the second formal
argument ofderivs as long as you pass the value of the parameter y via the third argument of derivs , as we did above.

So with globally defined parametery , we must be more careful and redefinederivs :

> derivs = function(t, state, parameters) {
+ with (as.list(state), {
+ dA = r * (x-A) - k * A* B
+ dB = r * (y-B) + k * A* B
+ list(c(dA, dB)) }) }
> x = 1; y = 0.1; k = 0.05; r = 0.05
> out = ode(yini, tL, func = derivs, parms = NULL)
> head(out)

time A B
[1,] 0 1.0000000 1.0000000
[2,] 1 0.9523189 1.0037869
[3,] 2 0.9090687 1.0052854
[4,] 3 0.8699226 1.0047151
[5,] 4 0.8345728 1.0022854
[6,] 5 0.8027203 0.9982009

6.3 Three First Order O.D.E.’s: The Lorenz Model

An example of a model with three o.d.e.s is the Lorenz model, (see Sec. (4.2.1) for a treatment which used ourRcodemyrk4 ).

d x

d t
= a x+ y z (6.1)
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d y

d t
= b (y − z) (6.2)

d z

d t
= −x y + c y − z (6.3)

which we solve here withR:ode assuming the initial conditions arex(0) = 1, y(0) = 1, z(0) = 1, and the parameters have
the valuesa = −8/3, b = −10, andc = 28. We look only at the initial stage of the evolution.

> library(deSolve)
> yini = c(x=1, y=1, z=1)
> a = -8/3; b = -10; c = 28
> lorenz = function(t,state,parameters) {
+ with( as.list(state), {
+ dx = a * x + y * z
+ dy = b * (y - z)
+ dz = -x * y + c * y -z
+ list( c(dx, dy, dz) )})}
> tL = seq(0,1,0.01)
> out = ode(y = yini, times = tL, func = lorenz, parms = NULL)
> head(out)

time x y z
[1,] 0.00 1.0000000 1.000000 1.000000
[2,] 0.01 0.9848912 1.012567 1.259918
[3,] 0.02 0.9731148 1.048823 1.523999
[4,] 0.03 0.9651593 1.107207 1.798314
[5,] 0.04 0.9617377 1.186866 2.088545
[6,] 0.05 0.9638068 1.287555 2.400161

Before making a plot, we review the steps needed to save the solution generated byode to a text data file, and the methods needed
to read that data file intoR again. Since the output ofode is already a matrix, we don’t need to useas.matrix to convert a
data.frame into a matrix. We can then usewrite with the transpose of the matrixt(out) , providing a file name in the form
of a string, and providing the number of columns the data should occupy. We can usefile.show to display the resulting text file
contents in a separate window. We can then useread.table to turn the contents of the text data file into adata.frame which
we callmydata here.

> is.matrix(out)
[1] TRUE
> write(t(out),file="mydata.txt",ncolumns=4)
> file.show("mydata.txt")

The use offile.show displays the contents of the data file in a separate window, and the top part of that file is

0 1 1 1
0.01 0.9848912 1.012567 1.259918
0.02 0.9731148 1.048823 1.523999
0.03 0.9651593 1.107207 1.798314
0.04 0.9617377 1.186866 2.088545
0.05 0.9638068 1.287555 2.400161
0.06 0.9726091 1.409569 2.738552

We can then read the data file contents into adata.frame usingread.table :

> mydata = read.table(file="mydata.txt",header=FALSE)
> head(mydata)

V1 V2 V3 V4
1 0.00 1.0000000 1.000000 1.000000
2 0.01 0.9848912 1.012567 1.259918
3 0.02 0.9731148 1.048823 1.523999
4 0.03 0.9651593 1.107207 1.798314
5 0.04 0.9617377 1.186866 2.088545
6 0.05 0.9638068 1.287555 2.400161
> colnames(mydata) = c("t","x","y","z")
> head(mydata)

t x y z
1 0.00 1.0000000 1.000000 1.000000
2 0.01 0.9848912 1.012567 1.259918
3 0.02 0.9731148 1.048823 1.523999
4 0.03 0.9651593 1.107207 1.798314
5 0.04 0.9617377 1.186866 2.088545
6 0.05 0.9638068 1.287555 2.400161
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> str(mydata)
’data.frame’: 101 obs. of 4 variables:

$ t: num 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
$ x: num 1 0.985 0.973 0.965 0.962 ...
$ y: num 1 1.01 1.05 1.11 1.19 ...
$ z: num 1 1.26 1.52 1.8 2.09 ...
> is.data.frame(mydata)

[1] TRUE
> head(mydata$"t")
[1] 0.00 0.01 0.02 0.03 0.04 0.05
> head(mydata[[1]])
[1] 0.00 0.01 0.02 0.03 0.04 0.05

Note that thedata.frame produced byread.table is not a matrix, and we must use more direct methods to extractthe columns
of mydata in order to make plots.

We now return to the matrixout (of class “deSolve”), produced byode to make the default plot.

> plot(out,lwd=3,col="blue")

which produces the plot
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Figure 36: The Lorenz Model Using R:ode

This example illustrates the default behavior ofplot , when the first slots are matrices of classdeSolve , (except that we have
thickened the lines, and chosen a blue color) once you have loaded in theR packagedeSolve. If you have passed the names of
the variables toode indirectly via the special form ofyini above (“ x = 1”, for example), the dependent variables are plotted sep-
arately in rows of (a maximum of) two columns, with titles above, using black color, and using the styletype = "l" automatically.

The horizontal and vertical axes are not drawn, nor is a grid added. The first column ofout is taken to represent “times”, and that
automatically is the label of the horizontal axis.

The main benefit of passing the names of the dependent variables inyini argument ofode is that you can freely refer to these
names in your code for the functionlorenz , instead of referring to the dependent variables viay[1], y[2], y[3] .

We now use the data-framemydata , generated by reading intoR the solution data from a saved text data file, to make a plot of the
x column versus thet column.

> plot(mydata$"t",mydata$"x",lwd=3,col="blue",ylab=" x",xlab="t",type="l")
> grid(lty = "solid", col = "darkgray")
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which produces the plot
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Figure 37:x(t) from data-frame mydata

Instead of using the dollar sign extraction method, we can use the double bracket extraction method for obtaining a vector from a
data-frame (as we must when extracting elements of aR list). Thus

> plot(mydata[[1]],mydata[[2]],lwd=3,col="blue",ylab ="x",xlab="t",type="l")
> grid(lty = "solid", col = "darkgray")

produces the same plot.

We now combine the three curves implied byout into one plot.

> yrange = range(c(out[,"x"],out[,"y"],out[,"z"])); yra nge
[1] -10.39412 47.83396
> plot(out,which = "x", type = "l", lwd = 3, col="blue",
+ xlab = "time", ylab = "", ylim = yrange,
+ main = "Lorenz Equations")
> lines(tL, out[,"y"], lwd = 3, col = "red")
> lines(tL, out[,"z"], lwd = 3, col = "green")
> grid(lty = "solid", col = "darkgray")
> legend("topright",lwd=3,col=c("blue","red","green" ),
+ legend = c("x","y","z"), cex=1.2 )

which produces the plot
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Figure 38: The Lorenz Model Using R:ode
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We also ploty(x).

> plot(out[,"x"],out[,"y"],type="l",lwd=3,col="blue" ,xlab="x",
+ ylab="y")
> grid(lty = "solid", col = "darkgray")

which produces
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Figure 39: The Lorenz Model:y(x)

6.4 Solving the Stiff Case of the van der Pol Equation

We return to the van der Pol equation (see Sec. (4.1.2)). We start with the non-stiff casemu = 1.

> derivs = function(t,y,p){
+ with( as.list(y), {
+ dy1 = y[2]
+ dy2 = mu* y[2] * (1-y[1]ˆ2) - y[1]
+ list( c(dy1, dy2) )})}
> library(deSolve)
> tL = seq(0,30,0.01)
> yini = c(2,0)
> mu = 1
> out = ode(y=yini, times=tL, func=derivs, parms=NULL)
> colnames(out) = c("t","z","vz")
> plot(out, which="z", type="l", lwd=2, col="blue")

which produces the plot ofz versus time:
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Figure 40: Non-stiffµ = 1 Case van der Pol Equation
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and then a stiff caseµ = 1000:

> mu = 1000
> tL = 0:3000
> fll(tL)

0 3000 3001
> out = ode(y=yini,times=tL,func=derivs,parms=NULL)
> colnames(out) = c("t","z","vz")
> plot(out,which="z",type="l",lwd=2,col="blue")

which produces the plot ofz versus time:
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Figure 41: Stiffµ = 1000 Case van der Pol Equation

7 Using External Forcing Data for O.D.E.’s

7.1 Forcing Data Using Maxima

Consider integratingdy/dt = −t y+ f(t), wheref(t) is an interpolating function based on a set of data for a time dependent driving
force.

To be able to compare the integration with a (possibly) noisydata set with the integration with a noiseless driving term,we will start
with an analytic “signal”cos(2 π t), and find the solution using that analytic signal first. We will then add some noise to that signal
and assume we need to integrate the given differential equation subject to a discrete set of noisy signal points.

This can be done by creating an interpolating function, based on that discrete noisy data, and we will then compare the solutions.

Finally, we will write the noisy discrete data to a text data file, and practice reading that data file into Maxima (as a nested list), which
can then be used to create an interpolating function and solve the given driven o.d.e.

We will use the phrase “analytic solution” to refer to the solution of the o.d.e. generated byrk using the analytic signal expression.
We assume you have loadedk2util.mac into your Maxima session and thus have access to the functionsfll , jitter , xyData ,
and others we will use.

(%i1) signal(t) := cos(2 * %pi * t)$
(%i2) dydt : -t * y + signal(t)$
(%i3) soln_a : rk(dydt,y,1,[t,0,1,0.01])$
(%i4) fll(soln_a);
(%o4) [[0.0,1.0],[1.0,0.62964204202687],101]
(%i5) fpprintprec:7$
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(%i6) taL : take(soln_a,1)$
(%i7) fll(taL);
(%o7) [0.0,1.0,101]
(%i8) yaL : take(soln_a,2)$
(%i9) fll(yaL);
(%o9) [1.0,0.62964,101]

We then make a plot of the “analytic solution” of our o.d.e.

(%i10) plot2d([discrete,taL,yaL],[t,0,1],[xlabel,"t" ],
[ylabel,"ya"],[style,[lines,3]],
[gnuplot_preamble,"set grid"])$

which produces the plot
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Figure 42: Solution of the ODE Using the Analytic Signal

We next generate a discrete list of signal valuessL corresponding to the timestL , using the given analytic signal. We then add some semi-random
noise to create the list of noisy signal valuessnL at those same discrete times.

(%i11) tL : makelist(t,t,0,1,0.02)$
(%i12) fll(tL);
(%o12) [0,1.0,51]
(%i13) sL : float(map(’signal, tL))$
(%i14) fll(sL);
(%o14) [1.0,1.0,51]
(%i15) s1 : make_random_state(2014)$
(%i16) set_random_state(s1)$
(%i17) snL : jitter(sL, 0.2)$
(%i18) fll(snL);
(%o18) [0.90291,1.053531,51]
(%i19) plot2d([[discrete,tL,sL],[discrete,tL,snL]],

[style,[lines],[points,1,5,1]],[legend,"signal","no isy signal"],
[x,0,1],[xlabel,"t"],[ylabel,"signal"],
[gnuplot_preamble,"set key bottom left"])$

which shows the noisy data points together with the original“analytic signal”.
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Figure 43: Noisy Data Points with Analytic Signal
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Now we can use this discrete set of noisy data points to createa linear interpolating functionslin(t) .

(%i20) load("interpol.mac");
(%o20) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/s hare/numeric/interpol.mac"
(%i21) tsnL : xyData(tL,snL)$
(%i22) fll(tsnL);
(%o22) [[0,0.90291],[1.0,1.053531],51]
(%i23) define(slin(x), linearinterpol(tsnL))$
(%i24) slin(0.5);
(%o24) -0.88955

We plot the noisy data points together with the newly createdlinear interpolating functionslin(t) .

(%i25) plot2d([[discrete,tL,snL], slin(t)],[t,0,1],
[style,[points,2,5,1],[lines,2]],[legend,"noisy sign al","slin"],
[xlabel,"t"],[ylabel,""],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot
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Figure 44: Noisy Data Points with Linear Interpolation

We now generate a solution of the given o.d.e. usingslin(t) as the external driving term.

(%i26) dydt : -t * y + slin(t)$
(%i27) soln_lin : rk(dydt,y,1,[t,0,1,0.01])$
(%i28) fll(soln_lin);
(%o28) [[0.0,1.0],[1.0,0.65303],101]
(%i29) t1L : take(soln_lin,1)$
(%i30) fll(t1L);
(%o30) [0.0,1.0,101]
(%i31) y1L : take(soln_lin,2)$
(%i32) fll(y1L);
(%o32) [1.0,0.65303,101]

We then plot the analytic solutiony(t) and the solution generated using the linear interpolating functionslin(t) .

(%i33) plot2d([[discrete,taL,yaL],[discrete,t1L,y1L] ],[x,0,1],
[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y slin"],
[gnuplot_preamble,"set key bottom left"])$

which produces
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Figure 45: Solution Generated Using Linear Interpolating Function Compared
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We next create a cubic spline interpolating functioncsp(t) from the noisy signal points.

(%i34) define(csp(x), cspline(tsnL))$
(%i35) csp(0.5);
(%o35) -0.88955
(%i36) plot2d([[discrete,tL,snL], csp(t)],[t,0,1],

[style,[points,1,5,1],[lines]],[legend,"noisy signal ","csp"],
[xlabel,"t"],[ylabel,"signal"],
[gnuplot_preamble,"set key bottom left"])$

which shows the plot
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Figure 46: Noisy Data Points with Cubic Spline Interpolation

We now generate a solution of o.d.e. using the cubic spline interpolation functioncsp(t) as driving term.

(%i37) dydt : -t * y + csp(t)$
(%i38) soln_csp : rk(dydt,y,1,[t,0,1,0.01])$
(%i39) fll(soln_csp);
(%o39) [[0.0,1.0],[1.0,0.65395],101]
(%i40) t2L : take(soln_csp,1)$
(%i41) fll(t2L);
(%o41) [0.0,1.0,101]
(%i42) y2L : take(soln_csp,2)$
(%i43) fll(y2L);
(%o43) [1.0,0.65395,101]

We now make a plot of the analytic solution and the solution generated with with the cubic spline interpolating functioncsp(t) .

(%i44) plot2d([[discrete,taL,yaL],[discrete,t2L,y2L] ],[x,0,1],
[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y csp"],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot
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Figure 47: Solution Generated Using Cubic Spline Interpolating Function Compared
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We next create a “moving average” interpolating functionsma(t) , usingMA_smooth from k2util.mac .

(%i45) snLs : MA_smooth(snL,3)$
(%i46) fll(snLs);
(%o46) [1.034703,1.004872,49]
(%i47) fll(tL);
(%o47) [0,1.0,51]

The list of “smoothed” points returned byMA_smooth is shorter (by two elements) than the input listsnL and tL , so we chop off the first
and last elements oftL to createtLr . We then usexyData from k2util.mac to create the kind of input list which we need to create an
interpolating functionsma(t) .

(%i48) tLr : rest(rest(tL),-1)$
(%i49) fll(tLr);
(%o49) [0.02,0.98,49]
(%i50) tsnLs : xyData(tLr, snLs)$
(%i51) fll(tsnLs);
(%o51) [[0.02,1.034703],[0.98,1.004872],49]
(%i52) define(sma(x), linearinterpol(tsnLs))$
(%i53) sma(0.5);
(%o53) -0.89857
(%i54) plot2d([[discrete,tL,snL], sma(t)],[t,0,1],

[style,[points,1,5,1],[lines]],[legend,"noisy signal ","sma"],
[xlabel,"t"],[ylabel,"signal"],
[gnuplot_preamble,"set key bottom left"])$

which produces the plot of the noisy data points with the linear interpolationsma(t) of the smoothed data points.
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Figure 48: Noisy Data Points with the Linear Interpolation of the Smoothed Points

We can now generate a solution of the o.d.e. usingsma(t) as the driving term.

(%i55) dydt : -t * y + sma(t)$
(%i56) soln_sma : rk(dydt,y,1,[t,0,1,0.01])$
(%i57) fll(soln_sma);
(%o57) [[0.0,1.0],[1.0,0.65134],101]
(%i58) t3L : take(soln_sma,1)$
(%i59) y3L : take(soln_sma,2)$
(%i60) plot2d([[discrete,taL,yaL],[discrete,t3L,y3L] ],[x,0,1],

[style,[lines]],[xlabel,"t"],[ylabel,"y"],
[legend, "y analytic", "y sma"],
[gnuplot_preamble,"set key bottom left"])$

which produces the comparison plot
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Figure 49: Solution Generated Using Linear Interpolation of Moving Average
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We now write the noisy datatsnL to a text data file with space separation (the default) usingwrite_data .

(%i61) fll(tsnL);
(%o61) [[0,0.90291],[1.0,1.053531],51]
(%i62) write_data(tsnL,"c:/k2/mydata.txt");
(%o62) done

If the file happens to be open, the write is done after the file isclosed, and overwrites the previous contents.

You can load the data in the data file just created back into Maxima in the form of a nested list (which is what we need to createan
interpolating function) by usingread_nested_list . The latter function again assumes that the data on each lineof the file is
space separated. If the data is comma separated, you would use read_nested_list(file-path, comma) .

(%i63) tydata : read_nested_list("c:/k2/mydata.txt")$
(%i64) fll(tydata);
(%o64) [[0,0.90291],[1.0,1.053531],51]

7.2 Forcing Data Using R

Consider integratingdy/dt = −t y+ f(t), wheref(t) is an interpolating function based on a set of data for a time dependent driving
force.

To be able to compare the integration with a (possibly) noisydata set with the integration with a noiseless driving term,we will start
with an “analytic signal”cos(2 π t), and find the solution using that analytic signal first. We will then add some noise to that signal
and assume we need to integrate the given differential equation subject to a discrete set of noisy signal points.

This can be done by creating an interpolating function, based on that discrete noisy data, and we will then compare the solutions.

Finally, we will write the noisy discrete data to a text data file, and practice reading that data file into R, which can then be used to
create an interpolating function and solve the given driveno.d.e.

We will use the phrase “analytic solution” to refer to the solution of the o.d.e. generated byode using the analytic signal expression.
We use the utility functionfll included inmyode.R , defined by:

## vector utility: print out first, last and length of a vecto r

fll = function(xL) {
xlen = length(xL)
cat(" ",xL[1]," ",xL[xlen]," ",xlen,"\n") }

Here we define the “analytic” signal, useode to solve the given o.d.e. and then make a plot of the “analyticsolution” of our o.d.e.

> library(deSolve)
> signal = function(t) cos(2 * pi * t)
> deriv = function(t,y,p) list(-t * y + signal(t))
> taL = seq(0,1,0.01)
> yini = 1
> out.a = ode(y=yini,times=taL,func=deriv,parms=NULL)
> colnames(out.a) = c("t","y")
> is.matrix(out.a)
[1] TRUE
> head(out.a)

t y
[1,] 0.00 1.000000
[2,] 0.01 1.009942
[3,] 0.02 1.019743
[4,] 0.03 1.029363
[5,] 0.04 1.038758
[6,] 0.05 1.047890
> fll(out.a[,"t"])

0 1 101
> fll(out.a[,"y"])

1 0.6296414 101
> plot(out.a,lwd=3,col="blue",main = "ode soln with analy tic signal")
> grid(lty="solid",col="darkgray")
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which produces the plot
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Figure 50: Solution of ODE Using Analytic Signal

We next generate a vector of signal valuessL corresponding to a set of discrete timestL , using the given analytic signal. We then add
some semi-random noise (usingR’s built-in function jitter ) to create a vector of noisy signal valuessnL at those same discrete
times.

> tL = seq(0,1,0.02)
> fll(tL)

0 1 51
> sL = sapply(tL, signal)
> fll(sL)

1 1 51
> set.seed(2014)
> snL = jitter(sL, amount=0.2)
> fll(snL)

0.9143223 1.197421 51
> curve(signal,0,1,n=200,lwd=3,col="blue",xlab="t",y lab="signal")
> points(tL,snL,pch=19)

which produces a plot of the signal plus noisy points:
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Figure 51: Signal Plus Noisy Signal Points
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Now we use theR functionapproxfun with this discrete set of noisy data points to create a linearinterpolating functionslin(t) . We then
show both the noisy data points plus the linear interpolation.

> slin = approxfun(tL,snL)
> slin(0.5)
[1] -0.8101318
> curve(slin,0,1,n=200,lwd=2,col="red",xlab="t",ylab ="signal")
> points(tL,snL,pch=19)

which produces the plot:
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Figure 52: Noisy Signal Points Plus Linear Interpolation

We can now generate a solution of the given o.d.e. usingslin(t) as the external driving term.

> deriv = function(t,y,p) list(-t * y + slin(t))
> out.lin = ode(y=yini, times=taL, func=deriv, parms=NULL )
> colnames(out.lin) = c("t","y")
> head(out.lin)

t y
[1,] 0.00 1.000000
[2,] 0.01 1.008956
[3,] 0.02 1.017538
[4,] 0.03 1.026278
[5,] 0.04 1.035705
[6,] 0.05 1.045012
> plot(out.a,lwd=2,col="blue")
> lines(out.lin,lwd=2,col="red")
> grid(lty="solid",col="darkgray")
> legend("topright",col=c("blue","red"),
+ legend=c("analytic","noisy - linear interp "),lwd=2)

which produces the comparison plot
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Figure 53: Solution with Linear Interpolation of Noisy DataCompared
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We next create a smoothed cubic spline interpolating function csp(t) from the noisy signal points, using theR functionsmooth.spline .
The functionsmooth.spline expects adata.frame type of argument, so we combine the times and the noisy signalvalues into a
data.frame . The output ofsmooth.spline is a complicated object (usestr on the output to see how to access the information
returned). The functionsmooth.spline does not itself produce an interpolation function, but we will need to useapproxfun on its output
to get that interpolating functioncsp(t) . If you need to extract the output times and smoothed values,you useout$x andout$y respectively.
Also, out$yin extracts the vector of input noisy values.

> tsn.pts = data.frame(t=tL, sn = snL)
> head(tsn.pts)

t sn
1 0.00 0.9143223
2 0.02 0.8596782
3 0.04 1.0189480
4 0.06 0.8536510
5 0.08 0.8962448
6 0.10 0.6429496
> tsn.pts.sp = smooth.spline(tsn.pts)
> head(tsn.pts.sp$x)
[1] 0.00 0.02 0.04 0.06 0.08 0.10
> head(tsn.pts.sp$y)
[1] 1.0076263 0.9637875 0.9178666 0.8667904 0.8083882 0.7 409158
> head(tsn.pts.sp$yin)
[1] 0.9143223 0.8596782 1.0189480 0.8536510 0.8962448 0.6 429496
> csp = approxfun(tsn.pts.sp)
> csp(0.5)
[1] -0.929025
> curve(csp,0,1,n=200,lwd=2,col="red",xlab="t",ylab= "signal")
> points(tL,snL,pch=19)

which shows the plot
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Figure 54: Noisy Signal Points Plus smooth.spline Interpolation

We can now generate a solution of the given o.d.e. usingcsp(t) as the external driving term.

> deriv = function(t,y,p) list(-t * y + csp(t))
> out.csp = ode(y=yini, times=taL, func=deriv, parms=NULL )
> colnames(out.csp) = c("t","y")
> head(out.csp)

t y
[1,] 0.00 1.000000
[2,] 0.01 1.009916
[3,] 0.02 1.019511
[4,] 0.03 1.028778
[5,] 0.04 1.037710
[6,] 0.05 1.046291
> plot(out.a,lwd=2,col="blue")
> lines(out.csp,lwd=2,col="red")
> grid(lty="solid",col="darkgray")
> legend("topright",col=c("blue","red"),
+ legend=c("analytic","noisy - smooth.spline "),lwd=2)
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which produces the plot
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Figure 55: Solution with smooth.spline Interpolation of Noisy Data Compared

We could have skipped some of the above steps, and simply used
csp = approxfun(smooth.spline(data.frame(tL,snL))) to generate the interpolation function based on
smooth.spline .

> csp = approxfun(smooth.spline(data.frame(tL,snL)))
> csp(0.5)
[1] -0.929025

To use theR function write to create (or overwrite) a text data file containing the noisysignal points, we need to create a
data.frame , convert to matrix form, and then write the transpose of thatmatrix, providing a file name, and the number of columns.

> tsn.df = data.frame(tL,snL)
> head(tsn.df)

tL snL
1 0.00 0.9143223
2 0.02 0.8596782
3 0.04 1.0189480
4 0.06 0.8536510
5 0.08 0.8962448
6 0.10 0.6429496
> tsn.M = as.matrix(tsn.df)
> write(t(tsn.M), file="mydata.txt", ncolumns = 2)
> file.show("mydata.txt")

causes the noisy data to be written tomyfile.txt . TheR function file.show opens a separate “R Information” window, and
you will see that there are no text column headings written tothe file, and that the default write is to use “space separation“ as the
data separators.

We can then read back in this noisy signal data using theR functionread.table , which also assumes the default space separated
data, and returns adata.frame .

> tsn.dat = read.table(file="mydata.txt",header=FALSE)
> str(tsn.dat)
’data.frame’: 51 obs. of 2 variables:

$ V1: num 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 ...
$ V2: num 0.914 0.86 1.019 0.854 0.896 ...

> head(tsn.dat$V1)
[1] 0.00 0.02 0.04 0.06 0.08 0.10
> head(tsn.dat$V2)
[1] 0.9143223 0.8596782 1.0189480 0.8536510 0.8962448 0.6 429496
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Thisdata.frame version of the noisy signal data can then be immediately turned into a (linear) interpolating functionns(t) and
used as above, or turned into a smoothed-spline interpolating functionns.csp(t) , and used as above.

> ns = approxfun(tsn.dat)
> ns(0.5)
[1] -0.8101318
> ns.csp = approxfun(smooth.spline(tsn.dat))
> ns.csp(0.5)
[1] -0.929025

8 Integrating O.D.E.’s with Discontinuous Derivatives

8.1 Example 1: Oral Drug Dose Model

Example 1 Using Maxima

Let t be the time in days,y1(t) be the drug concentration in the intestine, andy2(t) be the drug concentration in the bloodstream. We quote the
description of a two-compartment model describing oral drug intake, from Sec. 3.4.1.1 of Solving Differential Equations in R, by Karline Soetaert,
Jeff Cash, and Francesca Mazzia, Springer-Verlag, 2012.

Consider a person taking a pill every day at the same time [which is taken here to be at midnight]. As the pill passes the gastro-
intestinal tract, the drug enters the blood by absorption through the gut wall. The delivery of the drug to the gastro-intestinal tract
proceeds for 1 hour after which it ceases until the next ingestion and so on. Once in the blood, the drug distributes in the tissues,
where it is chemically inactivated and subsequently excreted from the body.

An (overly) simple two-compartment model isdy1/dt = −a y1 + u(t), anddy2/dt = a y1 − b y2.

Herea is the [blood] absorption rate,b is the removal rate from the blood, and the termu(t) represents the daily delivery of the drug
to the intestinal tract, which we assume to occur over a period of 1 hour. The discontinuity in this model lies in the dosingof the
drug to the intestine, which takes a constant value for one hour and is then zero for the rest of the day.

We assumea = 6, b = 0.6, andu(t) = 2 during the drug ingestion hour at the start of each day. Sincethis is a periodic process, we can use the
Maxima modulo functionmod. We try two different time steps withrk . We need to make the time steps small enough for the solver to catch the
drug ingestion process.

(%i1) u(t) := (if mod(24 * t,24) <= 1 then 2 else 0)$
(%i2) u(1/26);
(%o2) 2
(%i3) u(1/20);
(%o3) 0
(%i4) soln_a : rk([u(t) - 6 * y1, 6 * y1 -0.6 * y2],[y1,y2],[0,0],

[t,0,10,0.05])$
(%i5) taL : take(soln_a,1)$
(%i6) fll(taL);
(%o6) [0.0,10.0,201]
(%i7) y1aL : take(soln_a,2)$
(%i8) fll(y1aL);
(%o8) [0.0,0.016942082631278,201]
(%i9) fpprintprec:7$
(%i10) y2aL : take(soln_a,3)$
(%i11) fll(y2aL);
(%o11) [0.0,0.13582,201]
(%i12) soln_b : rk([u(t) - 6 * y1, 6 * y1 -0.6 * y2],[y1,y2],[0,0],

[t,0,10,0.01])$
(%i17) tbL : take(soln_b,1)$
(%i18) fll(tbL);
(%o18) [0.0,10.0,1001]
(%i13) y1bL : take(soln_b,2)$
(%i14) fll(y1bL);
(%o14) [0.0,0.0035768,1001]
(%i15) y2bL : take(soln_b,3)$
(%i16) fll(y2bL);
(%o16) [0.0,0.11798,1001]
(%i20) plot2d([[discrete,taL,y1aL],[discrete,tbL,y1b L]],

[xlabel,"days"],[ylabel,"y1"],
[legend,"dt=0.05","dt=0.01"])$
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which produces a plot of the intestine concentrationy1(t) for two different time steps, with the smaller time step producing drug doses which
accurately reflect the given conditions that the drug dose isprovided over the course of one hour at the start of each day.
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Figure 56: Intestine Drug Concentrationy1 Over Ten Days

We then make a plot of the concentration of the drug in the bloodstreamy2(t) for the same two time steps.

(%i25) plot2d([[discrete,taL,y2aL],[discrete,tbL,y2b L]],
[xlabel,"days"],[ylabel,"y2"],
[legend,"dt=0.05","dt=0.01"],
[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the plot
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Figure 57: Blood Drug Concentrationy2 Over Ten Days

At the start of the solution, and for each first hour of the day,the drug is ingested, which causes a steep rise in the intestinal con-
centration. As the drug enters the blood, its concentrationin the intestine decreases exponentially, while initiallyincreasing in the
blood, where it is degraded. Since the inflow to the blood drops exponentially, at a certain point in time, loss will exceedinput, and
the concentration in the blood will start to decrease until the next drug dose.

The initial concentration in the blood is very small, but as time proceeds, the daily-averaged concentration increasesto reach some
kind of dynamic equilibrium...
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Example 1 Using R

See the description of this problem in the previous section.mod(a,b) in Maxima isa %% bin R (“ a modulus b”).

> a = 6; b = 0.6
> yini = c(intestine=0, blood=0)
> derivs = function(t,y,p) {
+ if ( (24 * t) %% 24 <= 1)
+ uptake = 2
+ else
+ uptake = 0
+ dy1 = -a * y[1] + uptake
+ dy2 = a * y[1] - b * y[2]
+ list(c(dy1, dy2))}
> tL = seq(0, 10, 1/24)
> library(deSolve)
> out = ode(y = yini, times = tL, func = derivs, parms=NULL)
> plot(out, lwd = 2, xlab = "day")

which produces the plot
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Figure 58: Intestine and Blood Drug Concentration Over Ten Days

8.2 Example 2

Example 2 Using Maxima

We solvedy/dt = a(t) t y, wherea(t) = 1 for t < 3 anda(t) = 0.2 for t > 3. Assumey(0) = 0.1, and find the solution in the
range0 ≤ t ≤ 5.

As a check on the Runge-Kutta solution, we can find the analytic solution in the separate time intervals and match the analytic
solutions att = 3, findingy1(t) = 0.1 et

2/2 for 0 ≤ t < 3 andy2(t) = 3.6598 e0.1 t
2

for t > 3.

(%i1) a(t) := (if t < 3 then 1 else 0.2)$
(%i2) a(1);
(%o2) 1
(%i3) a(4);
(%o3) 0.2
(%i4) soln : rk(a(t) * t * y,y,0.1,[t,0,5,0.01])$
(%i5) fll(soln);
(%o5) [[0.0,0.1],[5.0,44.40743307705374],501]
(%i6) fpprintprec:7$
(%i7) plot2d([discrete,soln])$
(%i8) t1L : makelist(t,t,0,3,0.1)$
(%i9) y1L : map(lambda([t],0.1 * exp(0.5 * tˆ2)),t1L)$
(%i10) fll(y1L);
(%o10) [0.1,9.001713,31]
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(%i11) t2L : makelist(t,t,3,5,0.1)$
(%i12) fll(t2L);
(%o12) [3,5.0,21]
(%i13) y2L : map(lambda([t],3.6598 * exp(0.1 * tˆ2)),t2L)$
(%i14) fll(y2L);
(%o14) [9.001655,44.58549,21]
(%i16) plot2d([[discrete,t1L,y1L],[discrete,t2L,y2L] ,

[discrete, soln]],[xlabel,"t"],[ylabel,"y"],
[style,[lines,1,1],[lines,1,1],[lines,1,2]],
[legend,"analytic","analytic","rk"],
[gnuplot_preamble,"set key top left;set grid"])$

which produces the plot

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  1  2  3  4  5

y

t

analytic
analytic

rk

Figure 59: Analytic and rk Solution Compared

We see that the Runge-Kutta solution agrees with the analytic solution.

Example 2 Solution Using R

Here we only show the numerical integration result usingode .

> yini = 0.1
> deriv = function(t,y,p){
+ if (t<3) a=1 else a=0.2
+ list( a * t * y )}
> tL = seq(0,5,0.01)
> out = ode(y = yini, times = tL, func = deriv, parms=NULL)
> plot(out,lwd=2,col="blue",main="Example 2",xlab="t" ,ylab="y")

which produces the plot
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Figure 60: Example 2: ode Solution Using R
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9 Integrating O.D.E.’s with Discontinuous Dependent Variables Using R

The optionalevents argument is used withode or lsoda , etc., to allow suddent changes to the dependent variables in a set of first order
ordinary differential equations.

OncedeSolvehas been loaded, usingsource(deSolve) , you can find information on theevents argument which can be used withode
or some of the specific solvers, by typing? events . (The functionode useslsoda by default.)

9.1 Events Specified by a data.frame in R
The first example discussed (in thatevents manual page) is a model of two variables, each of which has zero derivative, and each of which only
changes in value because of a set of timed events which are described by a data frame, calledeventdat in this example.

The four columns of this supplied data frame must be in the order (var, time, value, method), and must define 1.) the name of the variable to be
affected, 2.) the time the variable is to be affected, 3.) the“value” to be used, and 4.) one of three methods.

The three available methods are"add" , "multiply" (which can be abbreviated"mult" ), and"replace" (which can be abbreviated
"rep" ).

The list of output timestL which are supplied for the argumenttimes to ode should include the event times in the second column of the data
frame, otherwise the event will be missed.

> derivs = function(t,v,p){list(c(0,0))}
> yini = c(v1 = 1, v2 = 2)
> tL = seq(0, 10, 0.1)
> eventdat = data.frame( var = c("v1", "v2", "v2", "v1"),
+ time = c(1, 1, 5, 9) ,
+ value = c(1, 2, 3, 4),
+ method = c("add", "mult", "rep", "add"))
> eventdat

var time value method
1 v1 1 1 add
2 v2 1 2 mult
3 v2 5 3 rep
4 v1 9 4 add
> out = ode(func = derivs, y = yini, times = tL, parms = NULL,
+ events = list(data = eventdat))
> plot(out)

which produces the plot
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Figure 61: Events Example Using R
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9.2 Intravenous Drug Injection Model Using R
An example of using a data frame to supply a sequence of eventsis provided by SCM in their Section 3.4.1.2. They show how to integrate a first
order differential equation in which the value of the dependent variable (here the drug concentration in the blood) is suddenly increased by 40 units
every day above its value just prior to the injection.

The drug is injected directly into the blood stream and then degrades as in the above example of oral ingestion of a pill, with the behavior
dy/dt = −b y.

> b = 0.6
> yini = c(blood = 0)
> deriv = function(t,blood,p){ list(-b * blood ) }
> injectevents = data.frame(var = "blood", time = 0:20,
+ value = 40, method = "add" )
> head(injectevents)

var time value method
1 blood 0 40 add
2 blood 1 40 add
3 blood 2 40 add
4 blood 3 40 add
5 blood 4 40 add
6 blood 5 40 add
> tL = seq(0,10,1/24)
> library(deSolve)
> out = ode(y = yini, times = tL, func = deriv, parms=NULL,
+ events = list( data = injectevents) )
> plot(out,lwd=2,xlab="days")

which produces the plot
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Figure 62: Daily Intravenous Drug Injection: Blood Concentration Using R

9.3 Using an Event Function at Specific Times
The second example in theevents manual page (after some modifications here) considers two dependent variablesv1 andv2 which obey the
equationsdv1/dt = 0 anddv2/dt = −v2/2 except for special event moments in whichv1 increases by one unit andv2 is replaced by the product
of the new value ofv1 with a random number in the range 0 to 5.

This example callsrunif to obtain a random number between 0 and 1. (The syntaxrunif(n, min = 0, max = 1) returnsn semi-
random numbers in the rangemin to max, which have the default values shown.)

We include printouts of the values of the time, the random number generated, the new value ofv1 and the new value ofv2. Thetime argument in
theevents list is chosen to ask for these event actions to take place att = 3 andt = 7.

Once we seed the random number generator, a unique sequence of semi-random numbers in generated, which can help us understand the operation
of this mode of usingode .
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> derivs = function(t, v, p) {list(c(0, -0.5 * v[2]))}
> yini = c(v1 = 1, v2 = 2)
> tL = seq(0, 10, 0.1)
> set.seed(2014)
> 5* runif(5)
[1] 1.4290282 0.8445435 3.1295609 1.5484316 2.7492267
> eventfun = function(t, y, p){
+ with (as.list(y),{
+ v1 = v1 + 1
+ ar = 5 * runif(1)
+ v2 = ar * v1
+ cat("t = ",t," ar = ",ar," v1 = ",v1," v2 = ",v2,"\n")
+ c(v1, v2)})}
> set.seed(2014)
> out = ode( y = yini, times = tL, func = derivs, parms = NULL,
+ events = list(func = eventfun, time = c(3,7)) )
t = 0 ar = 1.429028 v1 = 2 v2 = 2.858056
t = 3 ar = 0.8445435 v1 = 2 v2 = 1.689087
t = 7 ar = 3.129561 v1 = 3 v2 = 9.388683
> plot(out,lwd=2, col="blue")

which produces the plot

0 2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

v1

time

0 2 4 6 8 10

0
2

4
6

8

v2

time

Figure 63: Event Function Example

We see from the value printouts that the function is called once att = 0, which pulls the first random number1.4290282 , but we see from the
plot that this initial call toeventfun does not affect the values ofv1 or v2. The second call toeventfun occurs att = 3, and the second
random number0.8445435 is used to determine the new value ofv2. The third call toeventfun occurs att = 7, and the third random
number3.129561 is used to determine the new value ofv2.

9.4 Example 1: Using an Event Function when a Root Condition is Satisfied
In this example (also from theevents manual page) we consider a single dependent variabley(t) for which y(0) = 2, and except for isolated
times,dy/dt = −y/10, causingy(t) to be a decreasing function. However, whenever the condition y = 1/2 is satisfied, the value ofy is immedi-
ately reset to the valuey = 1.

An “event function” called (here)eventfun defines this reset ofy. A “root function” called (here)rootf defines the quantity which must
evaluate to zero in order for the action specified byeventfun to take place. The list supplied for theode argevents should include both
the value offunc , and the elementroot = TRUE , which replaces the list of event times, as intime = c(3,7) in the previous example.
Finally, a new argument,rootfun , recognised byode , must be given the chosen name of the “root function”, as inrootfun = rootf .

> deriv = function(t, y, p) list(-0.1 * y)
> rootf = function (t, y, p) y - 0.5
> eventfun = function(t, y, p) y = 1
> yini = 2
> tL = seq(0, 100, 0.1)
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> out = ode(y = yini, times = tL, func = deriv, parms = NULL,
+ events = list(func = eventfun, root = TRUE),
+ rootfun = rootf)
> plot(out,lwd=2,col="blue",main="",xlab="t",ylab="y ")

which produces the plot
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Figure 64: Event and Root Function Example

9.5 Example 2: Event Function when a Root Condition is Satisfied

Consider a simple harmonic oscillator with unit angular frequency, sod
2x
dt2

= −x. Let y[1] representx and lety[2]

represent
vx = dx/dt. Thendy[1]/dt = y[2] anddy[2]/dt = -y[1] . Let sho be the derivatives function. Definerootf as
the “root function”, which is satisfied wheny[2] = vx = 0 . Defineeventfun to simply return the dependent variables
unaltered when an event is triggered. We assume the initial conditionsx0 = 5, vx0 = 5 , so the analytic solutions are
x = 7.0711 * cos(t - pi/4) andvx = -7.0711 * sin(t - pi/4) , where7.0711 = 5/sin(pi/4) .

> sho = function(t, y, p ) list(c( y[2], -y[1] ))
> rootf = function(t, y, p) y[2]
> eventfun = function(t, y, p) y
> tL = seq(0, 15, 0.1)
> yini = c(5, 5)

We first callode to define a solution without supplying an events list. In thiscase there is no “event”, and the integration
stops when the root function condition is satisfied, that is wheny[2] = 0 .

> out1 = ode(y = yini, times = tL, func = sho, parms = NULL,
+ rootfun = rootf)
> colnames(out1)=c("t","x","vx")
> plot(out1,lwd=2,col="blue")
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which produces the plot
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Figure 65: SHO and Root Function Example

which shows the integration halting when the velocity reaches zero, (to within double precision floating point numbers),
which occurs whent = π/4.

> tail(out1)
t x vx

[4,] 0.3000000 6.254294 3.299082e+00
[5,] 0.4000000 6.552406 2.658210e+00
[6,] 0.5000000 6.785048 1.990779e+00
[7,] 0.6000000 6.949897 1.303457e+00
[8,] 0.7000000 7.045306 6.031120e-01
[9,] 0.7853966 7.071073 -3.505903e-16

We next callode with theevents list, and in this case the integration continues until the end of the times provided intL ,
and nothing interesting happens since the event function returns the dependent variables unaltered.

> out = ode(y = yini, times = tL, func = sho,
+ parms = NULL, rootfun = rootf,
+ events = list(func = eventfun, root = TRUE))
> colnames(out) = c("t","x","vx")
> plot(out,lwd=2,col="blue")

which produces the plot
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Figure 66: SHO with Event and Root Function Example 1

The object returned byode , when invoked with therootfun argument, includes the times when the root condition was
satisfied, which is the vector extracted via:attributes(out)$troot .
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> troot = attributes(out)$troot # time of roots
> troot
[1] 0.7853978 3.9269903 7.0685830 10.2101758 13.3517685

which allows us to place small dots on our plot at the time values in the vectortroot .

> points(troot, rep(0, length (troot)), pch=19)

which produces a plot in which only the second plot is altered:
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Figure 67: SHO with Event and Root Function Example 2

The last example at the end of theevents manual page shows how to deal with multiple roots, for example triggering an
event when eitherx=0 or vx=0 . SCM present the example of integration of a bouncing ball intheir Sec. 3.4.2.

9.6 Use of a Switching Parameter as a State Variable

This section is related to SCM, Sec. 3.4.3, “Temperature in aClimate Controlled Room.” The model dynamics will be different depending on a
“switching function”. If g(t) is the switch, and we consider a process in which there are only two different dynamical regimes, then, for example,
if g = TRUEthendy/dt = f1(t) and ifg = FALSE thendy/dt = f2(t). If there are more than two regimes, we can assign numerical values
to the switch to indicate the different regimes.

A specific example is a temperature controlled room in which the heating is switched on when the temperature drops below 18deg C, and the
heating is switched off when the temperature is higher than 20 deg C. We also assume a constant heating or cooling rate in the two phases.

A “parameter” is always assumed to remain constant during anintegration, so the switching function cannot be represented as a parameter. Instead,
we increase the number of dependent variables by one by promoting the switching parameter to be a state variable which haszero derivative, but
can change value when an “event” takes place.

Let the temperature be calledtemp and be represented byy[1] . Let the switching parameter be calledheating_on and be represented by
y[2] . We assume the initial temperature (t = 0) is 18 deg.C (y[1]=18 ), and the heating is initially switched on (y[2] = TRUE ).

We assume the temperaturey[1] either increases at a rate of 1 deg.C per unit time (heat on mode: y[2] = TRUE ) or decreases at a rate of 0.5
deg.C per unit time (heat off mode:y[2] = FALSE ).

An alternative approach used in SCM is to lety[2] = 1 when the heating is on and lety[2] = 0 when the heating is off. This approach
takes advantage of the fact that the numerical value0 is interpreted as having the logical valueFALSE, and the numerical value1 is interpreted as
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having the logical valueTRUE. (See? Logic .) Then one can use the logical negation operator! to change the value from effectivelyFALSE
to effectivelyTRUE, as shown here.

> as.logical(0)
[1] FALSE
> as.logical(1)
[1] TRUE
> !0
[1] TRUE
> !1
[1] FALSE
> as.numeric(!0)
[1] 1
> as.numeric(!1)
[1] 0

However, we choose in the following to lety[2] be consistently treated as a logical variable, with value eitherTRUEor FALSE. In the definition
of eventfunc below, the last line must cause the function to return both ofthe dependent variables. In the definition ofout below, note that
lsode is used rather thanode ; the latter (unless called with the option"method" = lsode ) useslsoda as the default integrator, and the
regime remains in a heating on mode throughout the times specified (the events are not properly caught).

> yini = c(temp = 18, heating_on = TRUE)
> derivs = function(t, y, p) {
+ dy1 = ifelse(y[2] , 1.0, -0.5)
+ dy2 = 0
+ list(c(dy1, dy2))}
> rootf = function(t, y, p) c(y[1]-18, y[1]-20)
> eventfunc = function(t, y, p) {
+ y[1] = y[1]
+ y[2] = ! y[2]
+ y}
> tL = seq(0, 20, 0.1)
> out = lsode( y = yini, times = tL, func = derivs,
+ parms = NULL, rootfun = rootf,
+ events = list(func = eventfunc, root = TRUE))
> plot(out, lwd=2, col="blue")

which produces the plot
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Figure 68: Temperature Controlled Room

The solver has stored the times the heating was turned on or turned off, given by the$troot attribute ofout .

> attributes(out)$troot
[1] 2 6 6 6 8 12 14 18

The fact thatt=6 is listed three times (instead of once) is a “numerical artifact” of the solver used, and SCM assert that the solverradau does a
better job thanlsode coping with these root events.


