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In Uncertainties03.wxmx  we discuss averaging weighted measurements and 
error propagation, with an emphasis on the physical sciences. 

Edwin L. (Ted) Woollett
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Aug. 21, 2024
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Homemade functions fll, head, tail, Lsum are useful for looking at long lists.



Uncertainties03-fit.wxmx 3 / 15

fll ( aL) := [ first (aL), last (aL), length (aL) ]$
head(L) := if listp (L) then rest (L, - (length (L) - 3) ) else 
      error("Input to 'head' must be a list of expressions ")$
tail (L) := if listp (L) then rest (L, length (L) - 3 )  else 
       error("Input to 'tail' must be a list of expressions ")$
Lsum (aList) := apply ("+", aList)$

(%i10)

Averaging Weighted Measurements  3 

We follow Barlow, Sec. 4.2.2.

"Suppose you have a set of measurements {x_i} of some quantity μ and that these 
measurements have different errors σ_i. To combine the values you obviously want to 
form an average in such a way that the better measurements (i.e. those with small σ) 
are given more weight than the poorer, large σ, measurements. To give a specific 
example, suppose that a voltage has been measured as 3.11 +/- 0.02 volts by a 
meter whose resolution is known to be σ1 = 0.02 volts, and 3.13 +/- 0.01 volts by 
another, better, meter whose resolution is known to be σ2 = 0.01 volts. How can 
these be usefully combined to give a single result?"

"Well, if you had taken four measurements with the poorer, 0.02 volt resolution, meter, 
and averaged them, then the average would have had a precision of 0.02/√4 = 0.01 
volts. Four poor measurements are equivalent to one measurement twice as good, 
i.e. with half the error. You can run this argument backwards: one of the good 
measurements is equivalent to four of the inferior ones, and should thus be given 
four times the weight. This gives a result of 
  <V> = (1/5) * 3.11 + (4/5) * 3.13 = 3.126 volts."

(%o11) 3.126

3.11/5 + 3.13*4/5;(%i11)

In Maxima, arithmetic calculations are evaluated from left to right.

"Generalising, the weight you give to a result when averaging should be proportional 
to the inverse square of the resolution."

With <V> = w1*3.11 + w2*3.13, and with the requirement w1 + w2 = 1 (the sum of the
weights is unity), taking w1 = a/σ1^2, w2 = a/σ2^2, constant a to be determined, we 
first find a:

(soln) [ a=
1

12500
]

soln : solve (a/0.02^2 + a/0.01^2 = 1);(%i12)
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We then find the weights w1 and w2 using our solution for the constant a:

(%o13) [ 0.2 ,0.8 ]

at ([a/0.02^2, a/0.01^2], soln);(%i13)

We then convert the decimal weight values to ratios of integers:

(%o14)/R/ [
1

5
,

4

5
]

rat (%);(%i14)

When dealing with measurements of the same quantity x, each with an error σ_k, the 
correct average to form is
              <x> = Σ w_k * x_k
with w_k = (1/σ_k^2) / Σ (1/σ_i^2).

What about the resolution of this average voltage <V> = 3.126 volts? One 
measurement with the σ = 0.02 volts meter plus four measurements with the 
σ = 0.02 volts meter is equivalent to one measurement with the σ = 0.02 volts meter 
plus one measurement with the σ = 0.01 volts meter. The resolution of the average 
should thus be 0.02/√5 = 0.009 volts.

We can generalize the calculation of the resolution of an average by using
       σ_av = sqrt [ Var(<x>) ], and by using
       Var(<x>) = 1 / Σ ( 1/σ_i)^2 )  for the variance of the average <x>.

For our example, Var (<V>)  = 1 / [1/0.02^2  + 1/0.01^2] = 1 / [50^2 + 100^2]
                                             = 1 / 12,500 = 8 x 10^(-5),
whose square root is approximately 0.009.

(%o15) 0.0089443

sqrt ( 1/ ( 1/0.02^2 + 1/0.01^2));(%i15)

A Word of Caution  3.1 
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"Averaging results, whether weighted or not, needs to be done with due caution and 
commensense. Even though a measurement has a small quoted error it can still be, 
not to put too fine a point on it, wrong. If two results are in blatant and obvious 
disagreement, any average is meaningless and there is no point in performing it." 

"Other cases may be less outrageous, and it may not be clear whether the difference 
is due to incompatibility or just unlucky chance. Certainly at some stage you are sure 
to have a result which disagrees with the rest by many (i.e. three or more) standard 
deviations. What is the correct way to deal with it? The first thing to do is go back as 
far as you can and check the readings. You are very likely to find a misplaced 
decimal point, or a pair of numbers transposed in the notebook. If you can easily 
retake the measurement then this should be done—and the moral is to plot your 
points as you go, so that you can catch these rogues at an early stage, before their 
origins get lost in the mists of history." 

"If you cannot find an obvious mistake, then you probably have no choice but to throw 
the point away. However you should always do so with reluctance. If you have several 
such points, and/or if there are more points than you would expect with large (> 2σ) 
deviations, then you should be extremely suspicious, as there is probably some effect 
at work that you do not understand, and you should understand. It is usually a trivial 
matter, but it could be something new and fundamental. Distrust all algorithms that 
advise the automatic rejection of points outside certain limits as they can rapidly get 
out of hand; points should only be condemned after giving them a fair hearing."

Error Propagation in a single variable function  4 

Simple Linear Function Example  4.1 

We follow Barlow, Sec. 4.3.1.

"Suppose that f is a simple linear function of x: f = a x + b, where a and b are exact 
constants and x has some distribution with variance V(x) or, equivalently, error σx. 
x represents a measurement, or perhaps an intermediate result in the analysis, and f 
could be the final result or another intermediate step." 

The variance of f is given by 

Var(f) = <f^2> - <f>^2 = <(a*x+b)^2> - <a*x+b>^2
          = a^2 <x^2> + 2*a*b <x> + b^2 - a^2 <x>^2 - 2*a*b <x> - b^2
          = a^2 ( <x^2> - <x>^2 ) = a^2 Var(x).                                   (4.18a)

Taking the square root of both sides, we get
         σf = |a| σx                                                                            (4.18b)
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"This makes good sense, b is a constant, and adding it to a variable does nothing to 
the spread, 'a' just multiplies the whole distribution by a factor, and increases the width 
accordingly. It also keeps the dimensions straight if necessary."

Distance Travelled at an Approximate Speed Example  4.1.1 

Suppose an object is moving on a frictionless track horizontally with an approximate
speed v = 200 ± 10 m/sec. If we take the time of travel to be exactly 6 sec, what is the
best estimate of the horizontal distance travelled?
distance travelled = Δx = x - x0 = t * v = 6 sec * 200 m/sec = 1200 m.
The error in the distance travelled is σx = t * σv  = 6 sec * 10 m/sec = 60 m.
Thus our best estimate of the distance travelled in six seconds is:
  1200 +/- 60 m.

Nonlinear Function Case  4.2 

"Now consider the more useful case where f is some general function of x. For small 
differences we can expand in a Taylor series" about the point x = x0:
(use ~ to mean approximately equal):

  f(x) ~ f(x0) + (x - x0)* [df(x)/dx] | (x -> x0)
                   =  a*x + b,
where a = [df(x)/dx] | (x -> x0) = constant, and
          b = f(x0) - x0*[df(x)/dx] | (x -> x0) = constant.

This gives, using (4.18a), Var(f) ~ a^2*Var(x), or taking square roots
        σf ~ |a| σx  =  |df/dx| σx
        σf  ~  |df/dx| σx

The derivative df/dx is evaluated at x = x0. The approximation in the result
        σf ~ |df/dx| * σx
is equivalent to the assumption that the error in x is sufficiently small for f(x) to be 
represented by a straight line over the range of the measured values of x. The error 
in f(x) is therefore proportional to the error in x, the constant of proportionality 
being [df(x)/dx] | (x -> x0).

The use of the first order Taylor expansion of f(x) requires that f(x) be a 'smooth'
function (infinitely differentiable at x = x0) and slowing changing with x over a change 
in x value of the order of σx. The first derivative of f(x) should be evaluated at the 
true value of x. If this is unknown then the measured value is used, but the difference 
between the two is insignificant for just this reason.

Trigonometry Example  4.2.1 
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If an angle θ is known with an error of 0.01 radians, then sin (θ) is known with an 
error of 0.01 |cos(θ)|. (Recall that sin (θ) is dimensionless and in Calculus we always 
assume the argument of the trig function is expressed in radians.)

(%o16) cos ( )x

diff (sin (x), x);(%i16)

Maxima's taylor function  4.2.2 

For σ small, the first two terms in a Taylor expansion of f (A + σ) are:

(%o17)/T/ f ( )A +
d

d σ
f ( )σ+A

σ =0
σ+ ...

taylor ( f( A + σ ), σ, 0, 1); (%i17)

Using the calculus chain rule of differentiation, and denoting σ by e (a small number),
  [ d f(A+e)/ de ] | (e = 0) =  {[d (A + e)/ de] * [ d f (A + e) / d (A + e) ] } | (e = 0) 
                      =  [ d f(x)/ dx ] |  (x  = A)

So we can write
   f (A  + σ ) ~ f(A) + σ * d f(A)/ dA
or
   f (<A>  + σ ) ~ f(<A>) + σ * [ d f(A)/ dA ] | (A --> <A>).

Covariance  5 

Covariance in General Use  5.1 



Uncertainties03-fit.wxmx 8 / 15

Following investopedia.com section on covariance:

"Covariance vs. Variance
Covariance is related to variance, a statistical measure for the spread of points in a 
data set. Both variance and covariance measure how data points are distributed 
around a calculated mean. However, variance measures the spread of data along 
a single axis, while covariance examines the directional relationship between two 
variables."

"Covariance vs. Correlation
Covariance is also distinct from correlation, another statistical metric often used 
to measure the relationship between two variables. While covariance measures the 
direction of a relationship between two variables, correlation measures the strength 
of that relationship. This is usually expressed through a correlation coefficient, which 
can range from -1 to +1."

"A correlation is considered strong if the correlation coefficient has a value close 
to +1 (positive correlation) or -1 (negative correlation). A coefficient that is close to 
zero indicates that there is only a weak relationship between the two variables."

"In a financial context, covariance is used to examine how different investments 
perform in relation to one another. A positive covariance indicates that two assets 
tend to perform well at the same time, while a negative covariance indicates that 
they tend to move in opposite directions. Investors might seek investments with a 
negative covariance to help them diversify their holdings."

Barlow on covariance  5.2 
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Following Barlow, Sec. 2.6.1:

"Suppose each item of a data sample consists of a pair of numbers, 
{(x1, y1),(x2, y2), (x3, y3),…}. You can find their means <x> and <y>,  and  
variances, V(x) and V(y), and standard deviations, σx and σy. However, there is 
more information there. You can also look at the two variables together- are they 
independent or do they depend on one another? This is described by the covariance 
between x and y...."

The covariance between variables x and y has the equivalent definitions

Cov (x, y) = (1/N) Σ (x_i - <x>)*(y_i - <y>)
                 =  < (x - <x>) ( y - <y> ) >
                 =  <x*y> - <x>*<y>,

and when Cov (x, y) is not zero, the values of x and y have some dependence on
each other. 

If values of x that are above average have a tendency to occur together with 
above-average γ values (which implies that small x likewise tend to accompany 
small y), then Cov (x, y) will be positive.

If large x tend to go with small y the covariance is negative.

"The covariance between height and weight in a group of adults is presumably 
positive, as tall people tend to weigh more. Between weight and stamina it may 
well be negative, as overweight people may be out of condition in other ways. 
Between height and IQ it is probably zero, as there is no obvious reason for tall 
people to be more clever, or more stupid, than short people."

Correlation  6 
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We follow Barlow, Sec. 2.6.2.

"The covariance is useful, but has dimensions. A covariance between height and 
weight of 7.6, say, means one thing in centimetre-grams and another in metre-kilograms.
A better measure of the relation between two variables is the correlation coefficient, ρ. 
This is defined as:
         ρ = Cov (x, y)/ [ σx * σy]."

"ρ is a number between – 1 and + 1. If ρ is zero then x and y are uncorrelated. 
A positive correlation means that if a particular x happens to be larger than the mean, 
then y will also (on average) be larger than the mean. For a negative ρ, a larger x will 
imply a smaller y. If ρ is 1 (or is  –1) then x and y are completely correlated: if you 
know the value of one, that specifies precisely the value of the other." 

"ρ is dimensionless, and is unaffected by shifts in the origin or by changes in the scale 
for x or y."

Barlow Prob. 2.4  6.1 

We follow a group of 12 students who each take a course in classical mechanics 
with grades x_j and then each take a course in quantum mechanics with grades y_j. 
Given the two sets of twelve grades, calculate the average grade achieved in each 
course, <x> and <y>, the standard deviations σx and σy, the covariance Cov (x, y), 
and the correlation [coefficient].

(mx) 37.5
(sx) 25.912
(my) 55.25
(sy) 14.166
(Cov) 207.46
(Corr) 0.56516

numer : true$
x : [22, 48, 76, 10, 22, 4, 68, 44, 10, 76, 14, 56]$
y : [63, 39, 61, 30, 51, 44, 74, 78, 55, 58, 41, 69]$
mx : mean (x);
sx : std (x);
my : mean (y);
sy : std (y);
Cov : mean (x*y) - mx*my;
Corr : Cov/ (sx*sy);
numer : false$

(%i27)

"The averages are 37.50 and 55.25, with standard deviation 25.9 and 14.2. The 
covariance is 207.5 and the correlation is 0.57."
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Note Maxima's behavior if you multiply lists of the same length (which we did to
calculate the covariance of the lists x and y above).

(%o28) [ A a ,B b ,C c ]

[a, b, c] * [A, B, C];(%i28)

Maxima also has a 'dot product' of lists which uses a period:

(%o29) C c+B b+A a

[a, b, c] . [A, B, C];(%i29)

Error Propagation in a function of two or more variables  7 

We follow Barlow, Sec. 4.3.2.

"Suppose that f is a function of two variables, x and y. As in the previous case, 
consider first a linear relation 
             f = a*x + b*y + c 
where a, b, c are constants."
Var (f) = <f^2> - <f>^2 
          =  < (a*x + b*y + c)^2 > - < a*x + b*y + c >^2          

Using Var(x) = <x^2> - <x>^2,   Var (y) = <y^2> - <y>^2, and the definition of Cov (x, y),
Cov (x, y) = (1/N) Σ (x_i - <x>)*(y_i - <y>)
                 =  < (x - <x>) ( y - <y> ) >
                 =  <x*y> - <x>*<y>,     then   f = a*x + b*y + c implies:

Var (f) = a^2*Var (x) + b^2*Var(y) + 2*a*b*Cov (x, y).

If we assume the variables x and y are measurements of independent variables, so
<x*y> = <x>*<y> and Cov (x, y) = 0,  we then get, with f = a*x + b*y + c,
Var (f) = a^2 * Var (x) + b^2 * Var (y), or
(σf)^2 =  a^2 * (σx)^2  + b^2 * (σy)^2.

In the nonlinear case, we assume f(x,y) is approximately linear in both x and y for 
small values of (x - x0) and (y - y0) to use a two variable Taylor series expansion 
of f(x,y) about (x0, y0), with x a measured value of property x which has a true value 
of x0, and likewise y a different, independent measured property y with a true value y0,
      f (x, y) ~ f (x0, y0) + (x - x0)*[∂f/∂x]_0 + (y - y0)*[∂f/∂y]_0
in which [∂f/∂x]_0 means [∂f/∂x] | (x -> x0, y -> y0, after partial differentiation of f(x,y) 
with respect to x), and thus a constant, and similarly for [∂f/∂y]_0.
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Now let a  == [∂f/∂x]_0 and b == [∂f/∂y]_0, and define a third constant c by:
        c ==  f (x0, y0) - a * x0 - b*y0.
Then f (x,y) ~ a*x + b*y + c, in which a, b, and c are all constants.
This is exactly the linear example we started this section with, so we can immediately
write the result (assuming Cov (x, y) = 0 ),
      Var (f) = a^2 * Var (x) + b^2 * Var (y), or
    (σf)^2 =  [∂f/∂x]^2 * (σx)^2  + [∂f/∂y]^2 * (σy)^2,
with the understanding the first partial derivatives in this expression are each
evaluated at the true values (x0, y0), or at least the best estimates of the true values.     

"This says that the error on x and y, multiplied by suitable scaling factors, are added in 
quadrature. Adding two positive numbers in quadrature gives a smaller result than the 
usual arithmetic addition. Intuitively you can see that this is reasonable: errors of 
overestimation in x have a fair chance of being compensated by errors of 
underestimation in y."

Here we first add the numbers 3 and 4 with the usual arithmetic addition, and then
add the same two numbers in quadrature:

(%o30) 7
(%o31) 5

4 + 3;
sqrt (4^2 + 3^2);

(%i31)

"The extension to more than two variables is straightforward; all you do (provided they 
are all independent, of course) is add the errors in quadrature. Thus for a function 
of x, y, and z,
  (σf)^2 =  [∂f/∂x]^2 * (σx)^2  + [∂f/∂y]^2 * (σy)^2 + [∂f/∂z]^2 * (σz)^2.

Distance s with both approximate a and v0  7.1 
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Suppose an object is moving on a track horizontally with an approximate initial 
speed v0 = (200 ± 10) m/sec and also an approximate constant acceleration
  a = (12 +/- 2) m/sec^2.  If we take the time of travel to be exactly 6 sec, what is the
best estimate of the horizontal distance travelled?

distance travelled == s (v0, a) = x - x0 = v0 * t + (1/2)*a*t^2 
                            = 6 sec * 200 m/sec + (1/2)* (12 m/s^2) * (6 sec)^2 = 1416 m.
The distance travelled is a function of the independent variables (v0, a)
  with ∂s/∂v0 = t = 6 sec, and  ∂s/∂a = (1/2)*t^2 = 18 sec^2

The square of the error in the distance travelled, σs, is then given by

     σs^2 = [∂s/∂v0]^2 (σv0)^2 + [∂s/∂a]^2 (σa)^2
             =   (6 sec)^2 * (10 m/sec)^2 + (18 sec^2)^2 * (2 m/sec^2 )^2
             =  3600 m^2 + 1296 m^2 = 4896 m^2 
     Hence
           σs = 69.97 m ~ 70 m,
and  s = (1416 +/- 70) m.

Nonlinear Example with 3 Variables  7.2 

Let 
         y = A*sin (θ) + B*cos (θ)
and assume A, B, and θ are all independent variables.
Then the error in y is the square root of 

σy^2 =  sin (θ)^2 * σA^2 + cos (θ)^2 * σB^2 +  [ A*cos (θ) - B*sin (θ) ]^2 * σθ^2 .

Ohm's Law Example  7.3 

The steady state current I is given by Ohm's Law:
     I = V / R = voltage/resistance
The usual equation for the square of the error in the current
     σI^2 =  [ ∂I/∂V ]^2 * σV^2 + [ ∂I/∂R ]^2 * σR^2
can be expressed as
   [ σI/I ]^2 = [ σV/V ]^2  +  [ σR/R]^2.

Barlow, Prob. 4.4  7.3.1 

If a voltage is determined by measuring a current of 1120 ± 10mA through a 
resistance of 1400 ± 30 Ω, what is its value and error?
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1 volt = 1 A * 1 Ω, 1 mA = 10^(-3) A.

V  = I*R = 1120 mA * 1400 Ω = 1.12 A * 1400 Ω = 1568 volts.
∂V/∂I = R,  ∂V/∂R = I,
σV^2 = R^2 * σI^2 +  I^2 * σR^2 
          = (1400)^2 * (10^(-2) )^2  + (1.12)^2 * (30)^2
          =  196 + 1128.96 = 1324.66
σV = 36.4 ~ 40 volts.
V = (1570 +- 40) volts

Barlow, Prob. 4.6; Trig Functions  7.4 

A.)  If θ = 0.56 ± 0.01, what are the errors on sin θ, cos θ, and tan θ?

Sig (ff, xx ) := subst (0.56, xx, abs (diff (ff, xx))*0.01)$(%i32)

(%o33) [ 22 ,48 ,76 ,10 ,22 ,4 ,68 ,44 ,10 ,76 ,14 ,56 ]

x;
kill (x)$

(%i34)

(%o35) 0.0084726

Sig (sin(x), x); (%i35)

(%o36) 0.0053119

Sig (cos (x), x);(%i36)

(%o37) 0.013931

Sig (tan (x), x);(%i37)

The errors on sin (x), cos (x), and tan (x), if x = 0.56 +/- 0.01 are
respectively 0.008, 0.005, and 0.014.

B.)  If θ = 1.56 ± 0.01, what are the errors on sin θ, cos θ, and tan θ?
This is about 89.4 degrees.

Sig (f, x ) := subst (1.56, x, abs (diff (f, x))*0.01)$(%i38)
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(%o39) 1.0796 10−4

(%o40) 0.0099994
(%o41) 85.796

Sig (sin(x), x); 
Sig (cos(x), x); 
Sig (tan(x), x); 

(%i41)

The errors on sin (x),  and cos (x), if x = 1.56 +/- 0.01 are
respectively 0.0001 and 0.01.
"The errors on tan(x) are so large that the 'small errors' assumption breaks down
and so no sensible error can be assigned."

Appendix  8 

 partial derivative template
In wxMaxima, press escape key once, then p, then down-key once to get to partial,
then press enter.

∂
∂F/∂x


