
Dowling19Afit.wxmx 1 / 47

Solving Simultaneous Differential Eqns

TABLE OF CONTENTS

PREFACE --- 1
REFERENCES --- 2
SOLUTIONS USING desolve-- ----------------------- 2
SOLUTIONS USING rk -- 4
SOLUTIONS USING MATRIX METHODS -- 6
 REVIEW OF MAXIMA MATRIX FUNCTIONS ------------------------------------ 6
 FUNCTION ODE1S (A, B, Y0) SYNTAX --- 7
 SOLUTION OF dY/dt = A . Y USING matrixexp (A, t) . Y0 ----------------------- 7
 DETAILS OF THE ODE1S MATRIX METHOD -------------------------------------- 12
STABILITY AND PHASE DIAGRAMS FOR A SET OF 2 ODE'S ---------------- 16
SOLVING A1 . dY/dt = A2 . Y + B USING ODE2S(A1,A2,B,Y0) ------------------ 31
INFLATION AND UNEMPLOYMENT MODEL AS A SET OF ODE'S ------------ 37
 PROOF OF MODEL CONVERGENCE --- 46

load(draw)$ set_draw_defaults(line_width=2, grid = [2,2], point_type = filled_circle,
 head_type = 'nofilled, head_angle = 20, head_length = 0.5,
 background_color = light_gray, draw_realpart=false)$
 fpprintprec:5$ ratprint:false$ kill(all)$

(%i5)

(%o1) c:/work5/Econ2.mac

load ("Econ2.mac");(%i1)

Preface 1

Dowling19Afit.wxmx 2 / 47

Dowling19A.wxmx is one of a number of wxMaxima files available in the section
 Economic Analysis with Maxima
on my CSULB webpage.

In Dowling19A.wxmx, we use Maxima to discuss solution methods for a set of first order ordinary
differential equations. We use desolve, rk, and our own matrix methods. We end with a
reconsideration of the inflation and unemployment model discussed in Dowling18C.wxmx,
following Chiang and Wainwright's Ch. 19, Sec. 4.

We have changed some of the symbols used in particular problems. An approximate
pdf translation (using Microsoft print to pdf) is available as Dowling19Afit.pdf. That pdf file
can be searched using Ctrl-F.

Ted Woollett
https://home.csulb.edu/~woollett/
woollett@charter.net
Feb. 25, 2022

References 2

Fundamental Methods of Mathematical Economics, Alpha C. Chiang and Kevin Wainwright,
4th ed., 2005, McGraw-Hill

Don't Try Using ode2 for a Set of First Order ODE's 3

How not to solve a pair of first order ODE's: trying to use ode2:

(de1)
d

d t
y1=−0.5 y2+5 y1−12

(de2)
d

d t
y2=5 y2−2 y1−24

(solns) [
d

d t
y1=−0.5 y2+5 y1−12 ,

d

d t
y2=5 y2−2 y1−24]

not a proper differential equation
(solns) false

de1 : 'diff (y1,t) = 5*y1 - 0.5*y2 - 12;
de2 : 'diff (y2,t) = -2*y1 + 5*y2 - 24;
solns : ode2 ([de1, de2], [y1, y2], t);

(%i4)

Solutions Using desolve ([eqn_1, ..., eqn_n], [x_1, ..., x_n]) 4

Dowling19Afit.wxmx 3 / 47

Solve the following system of first-order, autonomous, linear differential equations:
 dy1/dt = 5*y1 - 0.5*y2 - 12, y1(0) = 12,
 dy2/dt = - 2*y1 + 5*y2 - 24, y2(0) = 4.

(eqn1)
d

d t
y1 ()t =−0.5 y2 ()t +5 y1 ()t −12

(eqn2)
d

d t
y2 ()t =5 y2 ()t −2 y1 ()t −24

(soln) [y1 ()t =5 %e6 t +4 %e4 t +3 ,y2 ()t =−10 %e6 t +8 %e4 t +6]

atvalue (y1(t), t = 0, 12)$
atvalue (y2(t), t = 0, 4)$
eqn1 : diff (y1(t), t) = 5*y1(t) - 0.5*y2(t) - 12;
eqn2 : diff (y2(t), t) = - 2*y1(t) + 5*y2(t) - 24;
soln : desolve ([eqn1, eqn2], [y1(t), y2(t)]);

(%i9)

[y1(t) = 5*%e^(6*t)+4*%e^(4*t)+3,y2(t) = (-10*%e^(6*t))+8*%e^(4*t)+6]$

grind(%)$(%i10)

Let y1ex and y2ex be Maxima expressions which depend on the value of t.

(%o11) [5 %e6 t +4 %e4 t +3 ,−10 %e6 t +8 %e4 t +6]

[y1ex, y2ex] : map ('rhs, soln);(%i11)

(%o12) [12 ,4]

at([y1ex, y2ex], t = 0);(%i12)

It turns out that the eigenvalues (characteristic roots) of the coefficient matrix are (6, 4),
and the "complementary solution" yc is a linear combination of exp(r1*t) and exp(r2*t),
 and for this set of 1st order ODE's, r1 = 6, r2 = 4 are both positive, leading to an unstable
model/solution.

y1ex is always positive, and y2ex will go negative quickly from its initial value 4, since 6*t
dominates 4*t in an exponent.

Dowling19Afit.wxmx 4 / 47

(%t14)

(%o14)

xmax : 0.2$
wxdraw2d (xlabel = "t", key_pos = top_left,
 key = "y1(0) = 12", explicit (y1ex, t, 0, xmax),
 color = red, key = "y2(0) = 4", explicit (y2ex, t, 0, xmax), key = "",
 color = black, line_width = 1, explicit (0, t, 0, xmax));

(%i14)

(%o15) 0.095263

find_root (y2ex, t, 0.05, 0.15);(%i15)

So y2ex is negative for t > 0.0953.

Solutions Using Maxima's Runge-Kutta Routine rk 5

Dowling19Afit.wxmx 5 / 47

The purely numerical Maxima function rk can be used for one or more first order ODE's.

For one ODE the syntax is
 results : rk (dydt, y, y0, [t, t0, tlast, dt])
where dydt depends of y and t, y is the independent variable whose value at t0 is y0.
t is the independent variable, and a list (we have called results here):
 [[t0, y0], [t0 + dt, y(t + dt)], [tlast, y(tlast)]]
is returned corresponding to the requested interval dt. The returned list (suppose we call it
results) can immediately be plotted using wxdraw2d (points (results)).

For two ODE's the syntax is
 results : rk ([dudt, dvdt], [u, v], [u0, v0], [t, t0, tlast, dt])
where u and v are the two dependent variables, t is the independent variable, dudt and dvdt
each in general depend on u, v, and t, and u0 and v0 are the respective values of u and v when
t = t0.

For a pair of first order ODE's the list 'results' looks like:
 [[t0, u(t0), v(t0)], [t0 + dt, u(t0+dt), v(t0 + dt)], ..., [tlast, u(tlast), v(tlast)]].

One can then use the Maxima function makelist to form a (t,u) points list via:
 tu_points : makelist ([results[j][1], results [j][2]], j, 1, length (results)),
and form a (t,v) points list via:
 tv_points : makelist ([results[j][1], results [j][3]], j, 1, length (results)).

One can then use (for example):
 wxdraw2d (points (tu_points), color = red, points(tv_points)).

Solve the following system of first-order, autonomous, linear differential equations:
 dy1/dt = 5*y1 - 0.5*y2 - 12, y1(0) = 12,
 dy2/dt = - 2*y1 + 5*y2 - 24, y2(0) = 4
using the Maxima Runge-Kutta numerical integrator rk.

(results) [[0.0 ,12.0 ,4.0] , [0.01 ,12.472 ,3.7081] , [0.02 ,12.971 ,3.3913] , [
0.03 ,13.496 ,3.0478] , [0.04 ,14.05 ,2.6756] , [0.05 ,14.635 ,2.2726] , [0.06 ,
15.252 ,1.8367] , [0.07 ,15.902 ,1.3654] , [0.08 ,16.589 ,0.85628] , [0.09 ,
17.313 ,0.30657] , [0.1 ,18.078 ,−0.28659] , [0.11 ,18.885 ,−0.92626] , [0.12 ,
19.736 ,−1.6157] , [0.13 ,20.635 ,−2.3585] , [0.14 ,21.585 ,−3.1583] , [0.15 ,
22.586 ,−4.0191] , [0.16 ,23.644 ,−4.9451] , [0.17 ,24.761 ,−5.9409] , [0.18 ,
25.941 ,−7.0113] , [0.19 ,27.187 ,−8.1615] , [0.2 ,28.503 ,−9.3968]]

results : rk ([5*y1 - 0.5*y2 -12, -2*y1 + 5*y2 - 24], [y1, y2], [12, 4], [t, 0, 0.2, 0.01]);(%i16)

Dowling19Afit.wxmx 6 / 47

(ty1_pts) [[0.0 ,12.0] , [0.01 ,12.472] , [0.02 ,12.971] , [0.03 ,13.496] , [0.04 ,
14.05] , [0.05 ,14.635] , [0.06 ,15.252] , [0.07 ,15.902] , [0.08 ,16.589] , [0.09 ,
17.313] , [0.1 ,18.078] , [0.11 ,18.885] , [0.12 ,19.736] , [0.13 ,20.635] , [0.14 ,
21.585] , [0.15 ,22.586] , [0.16 ,23.644] , [0.17 ,24.761] , [0.18 ,25.941] , [0.19

,27.187] , [0.2 ,28.503]]

ty1_pts : makelist ([results[j][1], results[j][2]], j, 1, length (results));(%i17)

(ty2_pts) [[0.0 ,4.0] , [0.01 ,3.7081] , [0.02 ,3.3913] , [0.03 ,3.0478] , [0.04 ,
2.6756] , [0.05 ,2.2726] , [0.06 ,1.8367] , [0.07 ,1.3654] , [0.08 ,0.85628] , [
0.09 ,0.30657] , [0.1 ,−0.28659] , [0.11 ,−0.92626] , [0.12 ,−1.6157] , [0.13 ,−
2.3585] , [0.14 ,−3.1583] , [0.15 ,−4.0191] , [0.16 ,−4.9451] , [0.17 ,−5.9409] ,
[0.18 ,−7.0113] , [0.19 ,−8.1615] , [0.2 ,−9.3968]]

ty2_pts : makelist ([results[j][1], results[j][3]], j, 1, length (results));(%i18)

(%t19)

wxdraw2d (xlabel = "t", key_pos = top_left, key = "y1", points (ty1_pts), color = red, key = "y2",
 points (ty2_pts), key = "", color = black, line_width = 1, explicit (0, t, 0, 0.2))$

(%i19)

The numerical Maxima rk method of solution can be used for any number of first order ODE's.
Higher order ODE's can be turned into a set of first order ODE's.

Solutions for dY/dt = A . Y(t) + B using Matrix Methods 6

Review of Maxima Matrix Functions 6.1

To use matrix methods to find y1(t) and y2(t), we need to review Maxima's matrix syntax.

Dowling19Afit.wxmx 7 / 47

matrix(row_1,...,row_n), Create a rectangular matrix with rows: row_1,. . . ,row_n
zeromatrix (m, n), m rows, n columns matrix, with all elements = 0,
A + B, Sum of matrices A and B
A - B, Difference of matrices A and B
s*A, Multiply matrix A with scalar s
A . B, Matrix Product of matrices A and B
A^^n, n-th power of matrix A, i.e., A . A.· · · . A n times
A^^(-1) or invert (A), Inverse of matrix A
determinant (A), or det (A) from Econ2.mac, returns the determinant.
A[n], row n of matrix A
A[n, m], (n,m) element of matrix A = (row n, column m) element of matrix A
ident(n), Identity matrix of order n
transpose(A), Transpose of matrix A
matrixexp (A, t) "matrix exponential function" %e^^(t*A) for given matrix A
charpoly(A,x), Characteristic polynomial of A
eigenvalues(A) ==> [list of eigenvalues of matrix A, list of multiplicity of each eigenvalue]

eigenvectors(A) ==> [eigenvalues(A), list of corresponding eigenvector components]

Additional matrix functions defined in Econ2.mac are
 cvec, mtrace, det, squarep, colVecSolve, ODE1S, ODE2S.

Maxima Function ODE1S (A, B, Y0) Syntax 6.2

The Maxima function ODE1S (A, B, Y0), defined in Econ2.mac, uses matrix methods to solve
for the solution of dY/dt = A . Y(t) + B, in which Y is a matrix column vector with n elements
depending on t, A is a square n x n matrix of numerical elements, and B is either a given n
element matrix column vector (with constant numerical values), or if there is no given B column
vector in the problem, B is replaced by either the number 0 or replaced by zeromatrix (n, 1).
Finally Y0 is an n element numerical matrix column vector giving the desired initial values Y(0).

For a problem in which there is no B term, and we are solving dY/dt = A . Y(t), with Y(0) = Y0,
we can either use ODE1S (A, 0, Y0) or ODE1S (A, zeromatrix (n, 1), Y0), in which
n = length(A) = length (Y0).

It is actually easier to just use (if no B in the problem):

 Ys : matrixexp (A, t) . Y0,
 or Ys : expand (matrixexp (A, t) . Y0) in such a problem.

Solution of dY(t)/dy = A . Y(t), with Y(0) given, using matrixexp (A, t) 6.3

Dowling19Afit.wxmx 8 / 47

We assume A is a 2 x 2 matrix with row1 = [6, 5], row2 = [1, 2], Y(t) is a 2 element column vector
depending on t, and Y(0) = transpose (matrix ([4,1])) = cvec([4,1]). The Maxima function
cvec, defined in Econ2.mac, creates a matrix column vector from a list of components.

This matrix ODE dY/dt = A . Y(t) then stands for the two component equations, with
Y = cvec([y1, y2]):

 dy1/dt = 6*y1 + 5*y2,
 dy2/dt = y1 + 2*y2.

(A)
6

1

5

2

(Y0)
4

1

(Ys)

25 %e7 t

6
−

%e t

6

5 %e7 t

6
+

%e t

6

(%o23)
4

1

A : matrix ([6, 5], [1, 2]);
Y0 : cvec ([4,1]);
Ys : expand (matrixexp (A, t) . Y0);
at (Ys, t = 0);

(%i23)

Solution of dY(t)/dy = A . Y(t), with Y(0) given, using ODE1S 6.4

Since there is no given column vector B here, we can replace B by the number 0:

(Ys)

25 %e7 t

6
−

%e t

6

5 %e7 t

6
+

%e t

6

(%o25)
4

1

Ys : ODE1S (A, 0, Y0);
at (Ys, t = 0);

(%i25)

or we can use B --> zeromatrix (2,1).

Dowling19Afit.wxmx 9 / 47

(B)
0

0

(Ys)

25 %e7 t

6
−

%e t

6

5 %e7 t

6
+

%e t

6

(%o28)
4

1

B : zeromatrix (2,1);
Ys : ODE1S (A, B, Y0);
at (Ys, t = 0);

(%i28)

Construction of the matrix exponential "by hand". 6.5

We can manufacture the "matrix exponential" e^^(t*A) "by hand" by defining a 2x2 matrix φi(t)
such that Y(t) = k1*exp(r1*t)*V1 + k2*exp(r2*t)*V2, where k1 and k2 are constants to be
determined, is written in the alternative form:
 Y(t) = φi(t) . matrix([k1], [k2]) = φi(t) . cvec ([k1,k2]).
We then let φi0 = at (φi, t = 0), and define the matrix exponential as
 EAt : φi (t). invert (φi0), which has the property: at (EAt, t = 0) = ident(2) = matrix([1,0],[0,1]).

(φi)
V11 , 1 %e r1 t

V12 , 1 %e r1 t

V21 , 1 %e r2 t

V22 , 1 %e r2 t

φi : matrix ([exp (r1*t)*V1[1,1], exp (r2*t)*V2[1,1]],
 [exp (r1*t)*V1[2,1] , exp (r2*t)*V2[2,1]]);

(%i29)

(φi0)
V11 , 1

V12 , 1

V21 , 1

V22 , 1

φi0 : at (φi, t = 0);(%i30)

Here is our "by hand" matrix exponential we call EAt:

Dowling19Afit.wxmx 10 / 47

(EAt)

−
V21 , 1 V12 , 1 %er2 t − V11 , 1 V22 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

−
V12 , 1 V22 , 1 %er2 t − V12 , 1 V22 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

V11 , 1 V21 , 1 %er2 t − V11 , 1 V21 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

V11 , 1 V22 , 1 %er2 t − V21 , 1 V12 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

(%o32)
−

V21 , 1 V12 , 1 − V11 , 1 V22 , 1

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

0

0

1

(%o33)
4

1

(%o34)

−
4 V21 , 1 V12 , 1 %er2 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
+

V11 , 1 V21 , 1 %er2 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
+

4 V11 , 1 V22 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
−

V11 , 1 V21 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

−
4 V12 , 1 V22 , 1 %er2 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
+

V11 , 1 V22 , 1 %er2 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
+

4 V12 , 1 V22 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1
−

V21 , 1 V12 , 1 %er1 t

V11 , 1 V22 , 1 − V21 , 1 V12 , 1

EAt : φi . invert (φi0), ratsimp;
at (EAt, t = 0);
Y0;
EAt . Y0, expand;

(%i34)

which we compare with matrixexp (A, t):

Dowling19Afit.wxmx 11 / 47

(%o35)
6

1

5

2

(MEAt)

5 %e7 t + %e t

6

%e7 t − %e t

6

5 %e7 t − 5 %e t

6

%e7 t + 5 %e t

6

(%o37)
1

0

0

1

(%o38)
4

1

(%o39)

25 %e7 t

6
−

%e t

6

5 %e7 t

6
+

%e t

6

A;
MEAt : matrixexp (A,t);
at (MEAt, t = 0);
Y0;
MEAt . Y0, expand;

(%i39)

Solutions of dY(t)/dt = A . Y(t) + B, with Y(0) given, using ODE1S 6.6

Here we return to the same set of ODE's we solved using desolve in the first section, but
now we use matrix methods.

Solve the following system of first-order, autonomous, linear differential equations:
 dy1/dt = 5*y1 - 0.5*y2 - 12, y1(0) = 12,
 dy2/dt = - 2*y1 + 5*y2 - 24, y2(0) = 4.

We convert these two differential equations into one matrix equation:
 dY/dt = A . Y + B,
In which A is a 2 x 2 square matrix of coefficients:

(A)
5

− 2

− 0.5

5

A : matrix ([5, -0.5], [-2, 5]);(%i40)

and B is a 2 element matrix column vector:

Dowling19Afit.wxmx 12 / 47

(B)
− 12

− 24

B : cvec ([-12, -24]);(%i41)

The "intertemporal solution" Ye is found by assuming dY/dt = 0: A . Ye = - B, or
Ye = - invert (A) . B.

(Ye)
3.0

6.0

Ye : - invert (A) . B;(%i42)

Define Y0 as the matrix column vector of initial values of the components of Y(t).
We then calculate Y(t), calling it Ys, using ODE1S (A, B, Y0).

(Y0)
12

4

(Ys)
5 %e6 t + 4 %e4 t + 3.0

− 10 %e6 t + 8 %e4 t + 6.0

(%o45)
12.0

4.0

Y0 : cvec ([12, 4]);
Ys : ODE1S (A, B, Y0);
at (Ys, t = 0);

(%i45)

Matrix Details of the ODE1S Solution of dY(t)/dy = A . Y(t) + B 6.7

We go through some of the gory details of employing the standard Maxima matrix functions which
we used to write the Maxima function ODE1S in Econ2.mac

We get both a list of eigenvalues of A and a list of corresponding eigenvectors (in a list form)
by using the standard Maxima function eigenvectors (A).

(%o46)
5

− 2

− 0.5

5

(%o47) [[[6 ,4] , [1 ,1]] , [[[1 ,−2]] , [[1 ,2]]]]

A;
[ev, evec] : eigenvectors (A);

(%i47)

Dowling19Afit.wxmx 13 / 47

The list ev contains two lists; the first is a list of two eigenvalues found, r1 = 6, r2 = 4.
The second list in ev is a list of the multiplicity of each eigenvalue found, here the multiplicity
is 1 for both r1 and for r2, which is what we want in order to use ODE1S.

(%o48) [[6 ,4] , [1 ,1]]

ev;(%i48)

(%o49) [6 ,4]

ev[1];(%i49)

Here is our r1:

(%o50) 6

ev[1][1];(%i50)

and here is our r2:

(%o51) 4

ev[1][2];(%i51)

The list evec is

(%o52) [[[1 ,−2]] , [[1 ,2]]]

evec;(%i52)

which consists of two sublists and hence a "length" of 2:

(%o53) 2

length(evec);(%i53)

evec[1][1] gives a list of the elements of the eigenvector corresponding to r1 = 1.

(%o54) [[1 ,−2]]

evec[1];(%i54)

Here are the components of the eigenvector V1 corresponding to the eigenvalue r1:

(%o55) [1 ,−2]

evec[1][1];(%i55)

which we can turn into a matrix column vector using cvec (list) defined in Econ2.mac:

Dowling19Afit.wxmx 14 / 47

(%o56)
1

− 2

cvec (evec[1][1]);(%i56)

Here we define r1, and V1, and show A . V1 = r1*V1.

(r1) 6

(V1)
1

− 2

(%o59)
6.0

− 12

(%o60)
6

− 12

r1 : 6;
V1 : cvec ([1, -2]);
A . V1;
r1*V1;

(%i60)

To see the actual way you would need to type this in from scratch, it helps to set display2d to
false temporarily:

(%o62) matrix([1],[-2])

display2d : false$
V1;
display2d : true$

(%i63)

You need to be careful about getting the first and second elements of the vector V1 using
Maxima's list notation:

(%o64) 1
(%o65) −2

V1[1,1];
V1[2,1];

(%i65)

Here we repeat the above with r2 and V2:

Dowling19Afit.wxmx 15 / 47

(r2) 4

(V2)
1

2

(%o68)
4.0

8

(%o69)
4

8

r2 : 4;
V2 : cvec ([1, 2]);
A . V2;
r2*V2;

(%i69)

(%o70)
1

2

(%o71) 1
(%o72) 2

V2;
V2[1,1];
V2[2,1];

(%i72)

We then write Y(t) as the sum of the particular solution Ye and the complementary solution
containing two constants k1 and k2, to be determined by the initial conditions.

(%o73) [k1 ,k2]

(Y)
k1 %e6 t + k2 %e4 t + 3.0

− 2 k1 %e6 t + 2 k2 %e4 t + 6.0

[k1, k2];
Y : Ye + k1*exp(r1*t)*V1 + k2*exp(r2*t)*V2;

(%i74)

To apply the initial conditions, require Y(0) = Y0. Here we use our Maxima function
colVecSolve (C1, C2) (defined in Econ2.mac), where C1 and C2 are each a matrix column vector.

(%o75)
12

4

(solns) [k2=4 ,k1=5]

Y0;
solns : colVecSolve (at (Y, t = 0), Y0);

(%i76)

Now specialize the indefinite solution Y written down above, using solns:

Dowling19Afit.wxmx 16 / 47

(Ys)
5 %e6 t + 4 %e4 t + 3.0

− 10 %e6 t + 8 %e4 t + 6.0

Ys : at (Y, solns);(%i77)

Here is our code for colVecSolve:

(%o79) colVecSolve(%B,%C):=block([%eqnL:[],num:length(%B)],
 if length(%C) # num
 then return(" column vecs must be same length"),
 for j thru num do %eqnL:cons(%B[j,1] = %C[j,1],%eqnL),
 solve(%eqnL)[1])

display2d : false$
fundef (colVecSolve);
display2d : true$

(%i80)

Stability and Phase Diagrams for a System of Two ODE's 7

We follow Dowling Sec. 19.5 "Stability and Phase Diagrams for Simultaneous Differential
Equations", together with Chiang & Wainwright Sec. 19.5 "Two Variable Phase Diagrams".

In our Dowling Ch. 16, Sec. 6, we discussed the use of phase diagram analysis for a single
ordinary differential equation of the form dx/dt = f(x(t)), and there we made plots of vx = dx/dt
(on the vertical axis) versus x (on the horizontal axis), to discuss stability of solution questions.

In this section, we instead make a plot of y2 on the vertical axis and y1 on the horizontal axis. At
every instant t, there will be a point in this (y1, y2) plane which represents the momentary state
of the two (dependent) variable system.

We start with the matrix form
 dY/dt = A . Y(t) + B,
in which A = matrix ([a11, a12], [a21, a22]), and B = matrix ([b1], [b2]),
so the single matrix equation stands for the set of two ode's:
 dy1/dt = a11*y1 + a12*y2 + b1,
 dy2/dt = a21*y1 + a22*y2 + b2.

Dowling19Afit.wxmx 17 / 47

Quoting Dowling, p. 439, (with a few editorial changes)
"Given a system of linear autonomous differential equations, the intertemporal equilibrium level
will be asymptotically stable, i.e., Y(t) willl converge to Ye as t --> ∞, if and only if both
characteristic roots are negative. In the case of complex roots, the real parts must be negative.
If all the roots are positive, the system will be unstable. A 'saddle point equilibrium', in which the
roots have opposite signs, will usually be unstable. An exception to the latter rule is the case in
which the initial conditions y10 and y20 satisfy
 y20 = (r1 - a11)*(y10 - y1e)/a12 + y2e,
where r1 = the negative root, we have what is called a 'saddle path', y10 and y20 happen to be
on the saddle path, and y1(t) and y2(t) will then converge to their intertemporal equilibrium level
(see Example 10)."

"A 'phase diagram' for a system of two differential equations, linear or nonlinear, graphs y2 on
the vertical axis and y1 on the horizontal axis. The (y1, y2) plane is called the 'phase plane'.
Construction of a phase diagram is easiest explained in terms of an example."

Example 9: Convergent Phase Diagram Case Analysis 7.1

Given the system of linear autonomous differential equations
 dy1/dt = - 4 y1 + 16,
 dy2/dt = - 5 y2 + 15,
a phase diagram is used below to test the stability of the model. Since neither dependent variable
is a function of the other dependent variable in this simple model, each equation can be graphed
independently.

1. Determine the intertemporal equilibrium values y1e, y2e. y1e is a solution for which dy1/dt = 0,
so y1e = 4. Likewise y2e is a solution for which dy2/dt = 0, or y2e = 3.

The line y2 = 3 (the "y2 isocline") divides the phase plane (y1,y2) into two isosectors, one above
the isocline and one below. The intersection of the isoclines defines the intertemporal
equilibrium Ye = (4,3).

Dowling19Afit.wxmx 18 / 47

(%t81)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 8], yrange = [0, 6], key = "dy2/dt = 0",
 explicit (3, x, 0, 8), color = red, key = "dy1/dt = 0", parametric (4, yy, yy, 0, 6),
 color = black, key = "(3,2)", points ([[3, 2]]))$

(%i81)

2. Determine the motion around the y1 isocline, using arrows of horizontal motion.
To the left of the y1 isocline, y1 < 4 and dy1/dt will be positive (y1 will be increasing), using the
first ode. To the right of the y1 isocline, y1 > 4 and dy1/dt will be negative (y1 will be decreasing).
This motion of the system point will occur for any value of y2

3. Determine the motion around the y2 isocline. Above the y2 isocline, y2 > 3 and dy2/dt will be
negative (y2 will be decreasing), using the second ode. Below the y2 isocline, y2 < 3 and dy2/dt
will be positive (y2 will be increasing), for any value of y1.

We can put a corner arrow feature in the quadrants of the phase plane to remind ourselves
of what we have concluded so far.

Dowling19Afit.wxmx 19 / 47

(%t82)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 8], yrange = [0, 6],
 key_pos = top_center,key = "dy2/dt = 0", explicit (3, x, 0, 8),
 color = red, key = "dy1/dt = 0", parametric (4, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.3,vector ([0.5,5.5],[1,0]),
 vector ([0.5,5.5], [0, -1]), vector ([7.5,5.5],[-1,0]), vector ([7.5,5.5], [0, -1]),
 vector ([0.5,0.5],[0,1]), vector ([0.5,0.5], [1, 0]),
 vector ([7.5,0.5],[-1,0]), vector ([7.5,0.5], [0, 1]))$

(%i82)

To draw convergent system point motion in the lower quadrants, we use the standard form of
a parabola having vertex at (x0, y0), having axis of symmetry be the y-axis (vertical) and opening
down: y = - a*(x - x0)^2 + y0, with a > 0, so we take y = - 0.2*(x-4)^2+3, and we place a small
arrow at x = (2 and 6), y = 2.2, since:

(%o83) 2.2

at (-0.2*(x-4)^2+3, x = 2);(%i83)

(%o84) 2.2

at (-0.2*(x-4)^2+3, x = 6);(%i84)

Likewise we use a similar parabola formula in the two upper quadrants, but replace -0.2 with
0.2 so the parabola opens in the upward direction. Note that:

(%o85) 3.8

at (0.2*(x-4)^2+3, x = 2);(%i85)

(%o86) 3.8

at (0.2*(x-4)^2+3, x = 6);(%i86)

Dowling19Afit.wxmx 20 / 47

(%t87)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 8], yrange = [0, 6],
 key_pos = top_center,key = "dy2/dt = 0", explicit (3, x, 0, 8),
 color = red, key = "dy1/dt = 0", parametric (4, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.3,vector ([0.5,5.5],[1,0]),
 vector ([0.5,5.5], [0, -1]), vector ([7.5,5.5],[-1,0]), vector ([7.5,5.5], [0, -1]),
 vector ([0.5,0.5],[0,1]), vector ([0.5,0.5], [1, 0]),
 vector ([7.5,0.5],[-1,0]), vector ([7.5,0.5], [0, 1]),
 explicit (- 0.2*(x - 4)^2 + 3, x, 1, 2.5), vector([2,2.2],[0.2,0.2]),
 explicit (- 0.2*(x - 4)^2 + 3, x, 5.5, 7), vector ([6,2.2],[-0.2,0.2]),
 explicit (0.2*(x-4)^2 + 3, x, 1, 2.5), vector ([2, 3.8], [0.2, -0.2]),
 explicit (0.2*(x-4)^2 + 3, x, 5.5, 7), vector ([6, 3.8],[-0.2, -0.2]))$

(%i87)

It is, of course, easier to use vector ([x0,y0], [dx,dy]) in each of the quadrants once to indicate the
general system motion in that quadrant.

Dowling19Afit.wxmx 21 / 47

(%t88)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 8], yrange = [0, 6],
 key_pos = top_center,key = "dy2/dt = 0", explicit (3, x, 0, 8),
 color = red, key = "dy1/dt = 0", parametric (4, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.3,
 /* corner vectors */
 vector ([0.5,5.5],[1,0]), vector ([0.5,5.5], [0, -1]),
 vector ([7.5,5.5],[-1,0]), vector ([7.5,5.5], [0, -1]),
 vector ([0.5,0.5],[0,1]), vector ([0.5,0.5], [1, 0]),
 vector ([7.5,0.5],[-1,0]), vector ([7.5,0.5], [0, 1]),
 /* quadrant vectors */
 head_length = 0.5, vector ([2,1],[1,1]), vector ([2,5],[1,-1]), vector ([6, 1],[-1, 1]),
 vector ([6,5],[-1,-1]))$

(%i88)

Without committing ourselves to initial values and a definite solution, we can formulate Example
9 in a matrix form: dY/dt = A . Y + B, and use the Maxima function eigenvalues with the matrix A.

(A)
− 4

0

0

− 5

(%o90) [[−5 ,−4] , [1 ,1]]

A : matrix ([-4, 0], [0, -5]);
eigenvalues (A);

(%i90)

Both eigenvalues are real and negative, indicating the complementary solution has the
form k1*V1*exp(-5*t) + k2*V2*exp(-4*t), in which V1 and V2 are the corresponding eigenvectors.
This complementary solution converges to zero, leaving the equilibrium solution Ye (implied by
dY/dt = 0).

Dowling19Afit.wxmx 22 / 47

(B)
16

15

(Ye)
4

3

B : cvec ([16, 15]);
Ye : - invert (A) . B;

(%i92)

So having the matrix A determines the eigenvalues r1 and r2, leading to general answers about
whether or not the system will reach the nominal equilibrium values Ye (implied by A and B).

Even if we have no available method to solve for the eigenvalues of a pair of ode's, we can use
the phase plane analysis to predict stability or instability of a given model.

Example 10: Saddle Point Equilibrium Case 7.2

Given the system of linear autonomous differential equations
 dy1/dt = 2 y2 - 6,
 dy2/dt = 8 y1 - 16,
a phase diagram is used below to test the stability of the model.

1. Determine the isoclines from the given pair of ode's.

The y1 isocline is the horizontal line y2 = 3; on this line dy1/dt = 0.
The y2 isocline is the vertical line y1 = 2; on this line dy2/dt = 0.

(%t93)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6))$

(%i93)

Dowling19Afit.wxmx 23 / 47

2. Determine the motion around the y1 isocline, on which dy1/dt = 0.
Recall the given odes: dy1/dt = 2 y2 - 6, dy2/dt = 8 y1 - 16,

Above the y1 isocline, y2 > 3, and dy1/dt > 0, so y1 increases with time t, thus arrows of motion
point to the right.

Below the y1 isocline, y2 < 3, and dy1/dt < 0, so y1 decreases with time, arrows of motion point to
the left.

3. Determine the motion around the y2 isocline, on which dy2/dt = 0.

To the left of the y2 isocline, y1 < 2, dy2/dt < 0, y2 is decreasing with time, arrows of motion point
downward.
To the right of the y2 isocline, y1 > 2, dy2/dt > 0, y2 is increasing with time, arrows of motion
point upward.

4. Show this system motion with quadrant arrows of motion.

(%t94)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.2,
 vector ([0.25,5.5],[0.5, 0]), vector ([0.25,5.5], [0, -1]),
 vector ([3.4,4.7],[0.5,0]), vector ([3.4,4.7], [0, 1]),
 /* vector ([0.5, 1],[- 0.9,0]), vector ([0.5, 1], [0, - 1]), */
 vector ([0.7, 1.3], [- 0.5, 0]), vector ([0.7, 1.3], [0, - 1]),
 vector ([3.75,0.5],[-0.5,0]), vector ([3.75,0.5], [0, 1]))$

(%i94)

Add a diagonal line.

Dowling19Afit.wxmx 24 / 47

(%o95) [[a=−
10

7
,b=

41

7
]]

solve ([5.5 = a*0.25 + b, 0.5 = a*3.75 + b], [a, b]);(%i95)

(%t96)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.2,
 vector ([0.25,5.5],[0.5, 0]), vector ([0.25,5.5], [0, -1]),
 vector ([3.4,4.7],[0.5,0]), vector ([3.4,4.7], [0, 1]),
 /* vector ([0.5, 1],[- 0.9,0]), vector ([0.5, 1], [0, - 1]), */
 vector ([0.7, 1.3], [- 0.5, 0]), vector ([0.7, 1.3], [0, - 1]),
 vector ([3.75,0.5],[-0.5,0]), vector ([3.75,0.5], [0, 1]),
 line_width = 1, explicit (- 10*x/7 + 41/7, x, 0.5, 3.5))$

(%i96)

We use two parabolas opening up and down, having a vertical axis coinciding with the line x = 2,
one with vertex at (x0 = 2, y0 = 4) opening up, using the standard form
 y = a*(x-x0)^2 + y0 with a > 0.
We use the same formula for a parabola opening down with vertex at (x0 = 2, y0 = 2) and
with a < 0.

(%o97) 4.8

at (0.8*(x-2)^2 + 4, x = 3);(%i97)

(%o98) 1.2

at (-0.8*(x - 2)^2 + 2, x = 1);(%i98)

Dowling19Afit.wxmx 25 / 47

We use two more parabolas having the standard form
 x = a*(y - y0)^2 + x0
with vertex at (x0, y0), opening to the right for a > 0, opening to the left for a < 0.
To plot these two curves we use the draw2d function
 implicit (f(x,y), x, x1, x2, y, y1, y2),
in which f (x,y) is either an expression depending on x and y, or an equation depending on x and y.

To place a small vector on the ends of these latter two curves, we right click the plot, select
"popout interactively", and expand the result to full screen. We can then read off the coordinates
of the cursor position on the screen in the lower left corner. Those numbers become a first
approximation to the numbers (xs, ys) in vector ([xs, ys], [dx, dy]). Some trial and error is needed
to get a reasonable looking arrow (and it will be clear we didn't spend enough time on this!)

(%t99)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6),
 color = black, key = "", head_length = 0.2,
 /* corner vectors */
 vector ([0.25,5.5],[0.5, 0]), vector ([0.25,5.5], [0, -1]),
 vector ([3.4,4.7],[0.5,0]), vector ([3.4,4.7], [0, 1]),
 vector ([0.7, 1.3], [- 0.5, 0]), vector ([0.7, 1.3], [0, - 1]),
 vector ([3.75,0.5],[-0.5,0]), vector ([3.75,0.5], [0, 1]),
 /* diagonal line */
 line_width = 1, explicit (- 10*x/7 + 41/7, x, 0.5, 3.5),
 /* four system motion curves */
 line_width = 2, explicit (0.8*(x-2)^2 + 4, x, 1, 3), vector ([3,4.8], [0.2,0.3]),
 explicit (-0.8*(x - 2)^2 + 2, x, 1,3), vector ([1,1.2], [-0.2,-0.3]),
 implicit (x = 0.2*(y-3)^2 + 3, x, 2.8, 3.5, y, 2, 4), vector ([3.193,3.97],[0.18,0.33]),
 implicit (x = - 0.2*(y - 3)^2 + 1, x, 0.5, 1.2, y, 2, 4), vector ([0.828,2.05],[-0.2,-0.32]))$

(%i99)

Dowling19Afit.wxmx 26 / 47

We see that the system is unstable, irregardless of in which of the four quadrants the system
point (y1(t), y2(t)) is located at t = 0, even in the NorthWest and SouthEast quadrants.

Without committing ourselves to initial values and a definite solution, we can formulate Example
10 in a matrix form: dY/dt = A . Y + B, and use the Maxima function eigenvalues with the matrix A
and also calculate Ye using A and B.

(A)
0

8

2

0

(B)
− 6

− 16

(Ye)
2

3

(%o103) [[−4 ,4] , [1 ,1]]

A : matrix ([0, 2], [8, 0]);
B : cvec ([-6, -16]);
Ye : - invert (A) . B;
eigenvalues (A);

(%i103)

The eigenvalues are +/- 4, indicating the complementary solution has the form
 k1*V1*exp(4*t) + k2*V2*exp(-4*t),
in which V1 and V2 are the corresponding eigenvectors. This complementary solution grows
exponentially large for 4*t >> 1.

The diagonal line in our figure is a "saddle path". Only if the initial conditions fall on the saddle
path will the steady-state equilibrium prove to be stable.

Quoting Dowling again on this point:

"A 'saddle point equilibrium', in which the roots have opposite signs, will usually be unstable. An
exception to the latter rule is the case in which the initial conditions y10 and y20 satisfy
 y20 = (r1 - a11)*(y10 - y1e)/a12 + y2e,
where r1 = the negative root, and we have what is called a 'saddle path', y10 and y20 happen to be
on the saddle path, and y1(t) and y2(t) will then converge to their intertemporal equilibrium level
(see Example 10)."

In Ex. 10 the negative root is r1 - -4, y1e = 2, y2e = 3, A[1,1] = a11 = 0, A[1,2] = a12 = 2, so
we need y2(0) = 7 - 2*y1(0) initial conditions.

Let's try y10 = 3, so we need y20 = 7 - 2*3 = 1, in the SouthEast quadrant.

Dowling19Afit.wxmx 27 / 47

=============================
==============================

(%o106) [[0.0 ,3.0 ,1.0] , [1.2 ,2.0082 ,2.9835] ,121]

kill(y1,y2)$
R : rk ([2*y2 - 6, 8*y1 - 16], [y1, y2], [3, 1], [t, 0, 1.2, 0.01])$
fll(R);

(%i106)

(%o108) [[3.0 ,1.0] , [2.0082 ,2.9835] ,121]

y1y2_pts : makelist ([R[j][2], R[j][3]], j, 1, length (R))$
fll (y1y2_pts);

(%i108)

(%t109)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6),
 key = "", color = black, point_size = 0.2, points (y1y2_pts))$

(%i109)

This plot of our numerical integration of the pair of ode's shows that by choosing y10 and y20
carefully, we get a convergent solution.

Let's choose a slightly different starting point for the system, with the same set of ode's.

(%o112) [[0.0 ,3.02 ,1.0] , [1.2 ,3.2234 ,5.4136] ,121]

kill(y1,y2)$
R : rk ([2*y2 - 6, 8*y1 - 16], [y1, y2], [3.02, 1], [t, 0, 1.2, 0.01])$
fll(R);

(%i112)

Dowling19Afit.wxmx 28 / 47

(%o114) [[3.02 ,1.0] , [3.2234 ,5.4136] ,121]

y1y2_pts : makelist ([R[j][2], R[j][3]], j, 1, length (R))$
fll (y1y2_pts);

(%i114)

(%t115)

wxdraw2d (xlabel = "y1", ylabel = "y2", xrange = [0, 4], yrange = [0, 6], key_pos = top_center,
 color = red, key = "dy1/dt = 0", explicit (3, x, 0, 4),
 color = blue, key = "dy2/dt = 0", parametric (2, yy, yy, 0, 6),
 key = "", color = black, point_size = 0.2, points (y1y2_pts))$

(%i115)

which shows that a small fluctuation in initial conditions results in a non-convergent model.

Solutions for A1 . dY/dt = A2 . Y(t) + B Using desolve 8

We consider Dowling's example, Sec. 19.2, Ex. 3, page 432,
 dy1/dt = - 3 y1 + 1.5 y2- 2.5 dy2/dt + 2.4,

 dy2/dt = 2 y1 - 5 y2 + 16,

with initial conditions y1(0) = 14, y2(0) = 15.4, which Dowling solves using matrix methods.

We first use desolve, which doesn't require any matrix considerations.

Dowling19Afit.wxmx 29 / 47

(eqn1)
d

d t
y1 ()t =−2.5

d

d t
y2 ()t +1.5 y2 ()t −3 y1 ()t +2.4

(eqn2)
d

d t
y2 ()t =−5 y2 ()t +2 y1 ()t +16

(soln) [y1 ()t =18 %e− t −7 %e− 12 t +3 ,y2 ()t =9 %e− t +2 %e− 12 t +
22

5
]

atvalue (y1(t), t = 0, 14)$
atvalue (y2(t), t = 0, 15.4)$
eqn1 : diff (y1(t), t) = - 3*y1(t) + 1.5*y2(t) - 2.5*diff (y2(t), t) + 2.4;
eqn2 : diff (y2(t), t) = 2*y1(t) - 5*y2(t) + 16;
soln : desolve ([eqn1, eqn2], [y1(t), y2(t)]);

(%i120)

(%o121) [18 %e− t −7 %e− 12 t +3 ,9 %e− t +2 %e− 12 t +
22

5
]

[y1, y2] : map ('rhs, %);(%i121)

It is clear from the exponential damping in the above solutions, that in the long run,
y1 ~ 3 and y2 ~ 22.5 = 4.4.

(%t123)

(%o123)

tmax : 2$
wxdraw2d (xlabel = "t", yrange = [0, 20],
 key = "y1",
 explicit (y1, t, 0, tmax), color = red, key = "y2",
 explicit (y2, t, 0, tmax));

(%i123)

(t1max) 0.14004

t1max : find_root (diff (y1, t), t, 0.01, 0.25);(%i124)

Dowling19Afit.wxmx 30 / 47

(y1max) 17.344

y1max : at (y1, t = t1max);(%i125)

Noting that 22/5 = 4.4, this is the solution Dowling gets for Ex. 3 on pages 432-434 by hand
using matrix methods.

Solutions for A1 . dY/dt = A2 . Y(t) + B Using rk Methods 9

We consider Dowling's example, Sec. 19.2, Ex. 3, page 432,
 dy1/dt = - 3 y1 + 1.5 y2- 2.5 dy2/dt + 2.4,

 dy2/dt = 2 y1 - 5 y2 + 16,

with initial conditions y1(0) = 14, y2(0) = 15.4, which Dowling solves using matrix methods.

By substituting the rhs of dy2/dt (line two) for dy2/dt in line one, we get the pair of first order
ODE's
 dy1/dt = - 8 y1 + 14 y2 - 37.6,

 dy2/dt = 2 y1 - 5 y2 + 16,
and use the rk Maxima numerical Runge_Kutta integration routine:

kill (y1, y2)$
results : rk ([- 8*y1 + 14*y2 - 37.6, 2*y1 - 5*y2 + 16], [y1, y2], [14, 15.4], [t, 0, 2, 0.01])$

(%i127)

For long lists, it is convenient to use fll(L), defined in Econ2.mac, which shows you the first
element of the list, the last element of the list, and the length of the list.

(%o128) [[0.0 ,14.0 ,15.4] , [2.0 ,5.436 ,5.618] ,201]

fll (results);(%i128)

ty1_pts : makelist ([results[j][1], results[j][2]], j, 1, length (results))$(%i129)

(%o130) [[0.0 ,14.0] , [2.0 ,5.436] ,201]

fll (ty1_pts);(%i130)

ty2_pts : makelist ([results[j][1], results[j][3]], j, 1, length (results))$(%i131)

(%o132) [[0.0 ,15.4] , [2.0 ,5.618] ,201]

fll (ty2_pts);(%i132)

Dowling19Afit.wxmx 31 / 47

(%t133)

wxdraw2d (xlabel = "t", yrange = [0, 20],
 title = "Runge-Kutta Points", key = "y1",
 point_size = 0.3, points (ty1_pts), color = red, key = "y2",
 points (ty2_pts))$

(%i133)

Solutions for A1 . dY/dt = A2 . Y(t) + B Using Matrix Methods 10

We use the same example used above with desolve and rk, but define the 2 x 2 matrices A1 and
A2, and the matrix 2 element column vector B, with Y = cvec ([y1, y2]) the unknown solution, to
conform to the matrix equation A1 . dY/dt = A2 . Y(t) + B.

We then call the Maxima function ODE2S (A1, A2, B, Y0), defined in Econ2.mac, which uses
the matrix inverse to reduce the given pair of ode's to the form dY/dt = D . Y + E.

Dowling19Afit.wxmx 32 / 47

(A1)
1

0

2.5

1

(A2)
− 3

2

1.5

− 5

(B)
2.4

16

(Y0)
14

15.4

(Ye)
3.0

4.4

A1 : matrix ([1, 2.5], [0, 1]);
A2 : matrix ([-3, 1.5], [2, -5]);
B : cvec ([2.4, 16]);
Y0 : cvec ([14, 15.4]);
Ye : - invert(A2) . B;

(%i138)

(Ys)
18 %e− t − 7 %e− 12 t + 3.0

9 %e− t + 2 %e− 12 t + 4.4

Ys : ODE2S(A1, A2, B, Y0);(%i139)

lme is our alias for list_matrix_entries (defined in Econ2.mac).

(%o140) [18 %e− t −7 %e− 12 t +3.0 ,9 %e− t +2 %e− 12 t +4.4]

[y1, y2] : lme (Ys);(%i140)

These solutions agree with our previous results with this problem.

Dowling19Afit.wxmx 33 / 47

(%t142)

(%o142)

tmax : 2$
wxdraw2d (xlabel = "t", yrange = [0, 20],
 key = "y1",
 explicit (y1, t, 0, tmax), color = red, key = "y2",
 explicit (y2, t, 0, tmax));

(%i142)

Dowling Prob 19.4: Example of using ODE2S (A1, A2, B,Y0) 10.1

Solve the following system of nonlinear, autonomous, first-order differential equations in which
one or more derivative is a function of another derivative.

 dy1/dt = 4 y1 + y2 + 6,
 dy2/dt = 8 y1 + 5 y2 - dy1/dt - 6,
with
 y1(0) = 9, y2(0) = 10.

Define matrices A1, A2, and B, such that in matrix form we have
 A1 . dY/dt = A2 . Y(t) + B.

Dowling19Afit.wxmx 34 / 47

(A1)
1

1

0

1

(A2)
4

8

1

5

(B)
6

− 6

(Y0)
9

10

(Ye)
− 3

6

(Ys)
7 %e6 t + 5 %e2 t − 3

14 %e6 t − 10 %e2 t + 6

A1 : matrix ([1, 0], [1, 1]);
A2 : matrix ([4, 1], [8, 5]);
B : cvec ([6, -6]);
Y0 : cvec ([9, 10]);
Ye : - invert (A2) . B;
Ys : ODE2S (A1, A2, B, Y0);

(%i148)

(%o149) [7 %e6 t +5 %e2 t −3 ,14 %e6 t −10 %e2 t +6]

[y1, y2] : lme (Ys);(%i149)

Dowling19Afit.wxmx 35 / 47

(%t151)

(%o151)

tmax : 0.5$
wxdraw2d (xlabel = "t", yrange = [0, 100],
key_pos = top_left, key = "y1",
 explicit (y1, t, 0, tmax), color = red, key = "y2",
 explicit (y2, t, 0, tmax));

(%i151)

Dowling Prob 19.5 10.2

Solve the following system of nonlinear, autonomous, first-order differential equations in which
one or more derivative is a function of another derivative.

 dy1/dt = - y1 + 4 y2 - 0.5 dy2/dt - 1,
 dy2/dt = 4 y1 - 2 y2 - 10,
with
 y1(0) = 4.5, y2(0) = 16.

Dowling19Afit.wxmx 36 / 47

(A1)
1

0

0.5

1

(A2)
− 1

4

4

− 2

(B)
− 1

− 10

(Y0)
4.5

16

(Ye)
3

1

(Ys)
9 %e2 t −

15 %e− 7 t

2
+ 3.0

9 %e2 t + 6 %e− 7 t + 1.0

A1 : matrix ([1, 0.5], [0, 1]);
A2 : matrix ([-1, 4], [4, -2]);
B : cvec ([- 1, - 10]);
Y0 : cvec ([4.5, 16]);
Ye : - invert (A2) . B;
Ys : ODE2S (A1, A2, B, Y0);

(%i157)

(%o158) [9 %e2 t −
15 %e− 7 t

2
+3.0 ,9 %e2 t +6 %e− 7 t +1.0]

[y1, y2] : lme (Ys);(%i158)

Dowling19Afit.wxmx 37 / 47

(%t160)

(%o160)

tmax : 1$
wxdraw2d (xlabel = "t", yrange = [0, 100],
key_pos = top_left, key = "y1",
 explicit (y1, t, 0, tmax), color = red, key = "y2",
 explicit (y2, t, 0, tmax));

(%i160)

Inflation - Unemployment Model as a Set of ODE's 11

In our Dowling18C.wxmx work we considered both the continuous time and discrete time models
of the interaction between inflation and unemployment. The continuous time treatment was based
on Chiang and Wainwright's Ch. 16, Sec. 5, which combined a set of three equations (including
two ode's) into one second order ode in order to get a solution. The process of arriving at a
soluble second order ode was somewhat painful.

Here we follow Chiang and Wainwright's Ch. 19, Sec. 4, "The Inflation-Unemployment Model
Once More", in a relatively painless method.

With T the constant labor productivity, our equation relating the rate of inflation p,
unemployment U, and inflation expectation π is:
 p(t) = α - T - β*U(t) + g*π(t), (0 < g <= 1), (α, β > 0). (1)

The "adaptive expectations hypothesis" is the equation
 dπ/dt = j*(p - π), (0 < j <= 1), (2)
which simply says that if the present rate of inflation is greater than the present expected
rate of inflation, the expected rate of inflation should increase with time. Likewise, if p falls
short of π, then π is revised in the downward direction. The driving force is the difference
between the actual and the expected rate of inflation.

Dowling19Afit.wxmx 38 / 47

Let M(t) be the nominal money balance (the amount of money in the economy) and
let μ(t) = (1/M)*dM/dt be the "rate of growth of the money balance". A simple model which
relates unemployment U, inflation p, and μ is:
 dU/dt = -k*(μ - p), (k > 0). (3)
This relation says that if the money growth rate is larger than the inflation rate, then
unemployment will decrease with time, and conversely, if the inflation rate is greater than
the money growth rate, unemployment will tend to increase. In Dowling 18C we used m instead of
μ to represent the rate of growth of the money balance.

The difference (μ - p) is the rate of growth of "real money". Eqn. (3) asserts an "interaction"
between the rate of inflation p and the "time path of unemployment U(t)", dU/dt.

If we substitute (1) into (2) and (3), the latter become the pair of equations:

 dπ/dt = - j*(1- g)*π(t) - j*β*U(t) + j*(α - T), (4)

 dU/dt = k*g*π(t) - k*β*U(t) + k*(α - T - μ). (5)

which we write in our standard matrix form
 dY/dt = A . Y + B, (6)
in which Y = cvec ([π, U]) is a matrix column vector whose first element is the expected inflation π
and whose second element is the unemployment U. Once we have solutions for π(t) and U(t), we
can use the solutions in Eqn (1) and obtain a solution for the actual rate of inflation p(t).

Numerical Example 1: Complex Roots 11.1

A word of warning about our use of the Maxima symbol π in our equations. Inside the wxMaxima
graphical user interface (notebook) the Greek symbol π (accessed by first pressing the excape
key and then typing the two letters 'pi') is interpreted by the Maxima engine as %pi, which
represents the ratio of the perimeter of a circle to its diameter, and is a transcendental number
with the approximate value 3.14159...

The use of the symbol π in calculus equations should be avoided because Maxima interprets it
as a constant number.

%pi$
(%o162) 0
(%o164) 3.141592653589793

grind (π)$
diff (π, t);
fpprintprec : 0$
float (π);
fpprintprec : 5$

(%i165)

Dowling19Afit.wxmx 39 / 47

We consider a numerical example of the above model of inflation-unemployment, using the
parameter values β = 3, g = 1, j = 3/4, k = 1/2, μ = 2, α - T = 1/6.
We assume initial values: π(0) = 3 and U(0) = 1.

(A)
− ()1 − g j

g k

− j β

− k β

(B)
j ()α − T

k ()− μ + α − T

A : matrix([-j*(1-g), - j*β], [k*g, -k*β]);
B : cvec ([j*(α - T), k*(α - T - μ)]);

(%i167)

In the list case1 we include all the parameter values except for α - T. We use ratsubst to handle
that substitution.

(case1) [β=3 ,g =1 , j =
3

4
,k =

1

2
,μ=2]

case1 : [β = 3, g = 1, j = 3/4, k = 1/2, μ = 2];(%i168)

(A)

0

1

2

−
9

4

−
3

2

(B)

3 ()α − T

4

α − T − 2

2

A : at (A, case1);
B : at (B, case1);

(%i170)

(B)

1

8

−
11

12

B : ratsubst (1/6, α - T, B);(%i171)

(Ye)

2

1

18

Ye : - invert(A) . B;(%i172)

Dowling19Afit.wxmx 40 / 47

(%o173) [[−
3 %i

4
−

3

4
,

3 %i

4
−

3

4
] , [1 ,1]]

eigenvalues (A), expand;(%i173)

We have complex eigenvalues, and the real parts are negative, hence convergence.

(Y0)
3

1

Y0 : cvec ([3, 1]);(%i174)

(Ys)

−
()11 %i − 6 %e

−
()3 %i + 3 t

4

12
+

()11 %i + 6 %e

()3 %i − 3 t

4

12
+ 2

−
()%i + 1 ()11 %i − 6 %e

−
()3 %i + 3 t

4

36
−

()%i − 1 ()11 %i + 6 %e

()3 %i − 3 t

4

36
+

1

18

Ys : ODE1S (A, B, Y0);(%i175)

We know πs and Us are real numbers, so don't worry about the messy look of these
expressions. They could be made to look simpler, as
 exp(-3*t/4)*(A1*cos(3*t/4) + A2*sin(3*t/4))
by using the Maxima function demoivre, but we just want to make a plot.

lme is our alias for list_matrix_entries, defined in Econ2.mac.

(%o176) [−
()11 %i−6 %e

−
()3 %i + 3 t

4

12
+

()11 %i+6 %e

()3 %i − 3 t

4

12
+2 ,−

()%i+1 ()11 %i−6 %e
−

()3 %i + 3 t

4

36
−

()%i−1 ()11 %i+6 %e

()3 %i − 3 t

4

36
+

1

18
]

[πs, Us] : lme (Ys);(%i176)

With our parameter choices, p(t) = 1/6 - 3*U(t) + π(t).

Dowling19Afit.wxmx 41 / 47

(ps) −3 (−
()%i+1 ()11 %i−6 %e

−
()3 %i + 3 t

4

36
−

()%i−1 ()11 %i+6 %e

()3 %i − 3 t

4

36
+

1

18
) −

()11 %i−6 %e
−

()3 %i + 3 t

4

12
+

()11 %i+6 %e

()3 %i − 3 t

4

12
+

13

6

ps : 1/6 - 3*Us + πs;(%i177)

(%o178) [3 ,1 ,
1

6
]

at ([πs, Us, ps], t = 0), expand;(%i178)

(%o179) 2

limit(πs, t, inf);(%i179)

(%o180) 2

limit(ps, t, inf);(%i180)

(%o181)
1

18

limit(Us, t, inf);(%i181)

Dowling19Afit.wxmx 42 / 47

(%t183)

tmax : 4$
wxdraw2d (xlabel = "t", yrange = [-1, 4],
 title = "expected inflation pi, unemployment U, actual inflation p",
 key = "pi(t)", explicit (πs, t, 0, tmax),
 color = red, key = "U(t)", explicit (Us, t, 0, tmax),
 color = dark_turquoise, key = "p(t)", explicit (ps, t, 0, tmax),
 key = "", color = black, line_width = 1, explicit (0, t, 0, tmax),
 color = brown, key = "pie = 2", explicit (2, t, 0, tmax),
 color = magenta, key = "Ue = 1/18", explicit (1/18, t, 0, tmax))$

(%i183)

Numerical Example 2: Real Roots 11.2

As a second numerical example of our same inflation-unemployment model, we take the allowed
parameter values: (α - T) = 1/6, β = 2, g = 1/3, j = 1/4, k = 1/2 and μ = 2.

We then have the three starting equations

 p(t) = 1/6 - 2*U(t) + π/3, (7)

 dπ/dt = (1/4)*(p(t) - π(t)), (8)

 dU/dt = -(1/2)*(2 - p(t)). (9)

Replacing p(t) from (7) in (8) and (9) results in the pair of first order ode's:

 dπ/dt = -π/6 - U/2 + 1/24 (10)

 dU/dt = π/6 - U - 11/12. (11)

Dowling19Afit.wxmx 43 / 47

With Y(t) the matrix column vector cvec ([π(t), U(t)]), the pair of equations (10) and (11) can be
written as one matrix equation in the form
 dY/dt = A . Y + B.

(A)

−
1

6

1

6

−
1

2

− 1

(B)

1

24

−
11

12

(Ye)

2

−
7

12

A : matrix ([-1/6, -1/2], [1/6, -1]);
B : cvec ([1/24, - 11/12]);
Ye : - invert (A) . B;

(%i186)

A little sideshow here:

(Y)
_pi

U

(%o189)

d

d t
_pi

d

d t
U

=

−
_pi

6
−

U

2
+

1

24

_pi

6
− U −

11

12

depends ([_pi, U], t)$
Y : cvec ([_pi, U]);
diff (Y, t) = A . Y + B;
kill (Y, _pi, U)$

(%i190)

Back to the main event.

(%o191) [[−0.8838 ,−0.28287] , [1 ,1]]

eigenvalues (A), numer;(%i191)

We have two real distinct eigenvalues of A, hence a convergent model.

We assume π(0) = 3 and U(0) = 1 as initial conditions.

Dowling19Afit.wxmx 44 / 47

(Y0)
3

1

Y0 : cvec ([3, 1]);(%i192)

(Ys)

()9 13 + 26 %e
−

()13 + 7 t

12

52
−

()9 13 − 26 %e

()13 − 7 t

12

52
+ 2

()13 + 5 ()9 13 + 26 %e
−

()13 + 7 t

12

312
+

()13 − 5 ()9 13 − 26 %e

()13 − 7 t

12

312
−

7

12

Ys : ODE1S (A, B, Y0);(%i193)

The symbol πs is safe to use in an assignment statement.

πs$

kill(πs, Us, ps)$
grind (πs)$

(%i195)

lme is our alias for list_matrix_entries, defined in Econ2.mac.

Dowling19Afit.wxmx 45 / 47

(%o196) [
()9 13 +26 %e

−
()13 + 7 t

12

52
−

()9 13 −26 %e

()13 − 7 t

12

52
+2 ,

()13 +5 ()9 13 +26 %e
−

()13 + 7 t

12

312
+

()13 −5 ()9 13 −26 %e

()13 − 7 t

12

312
−

7

12
]

(ps) −2 (
()13 +5 ()9 13 +26 %e

−
()13 + 7 t

12

312
+

()13 −5 ()9 13 −26 %e

()13 − 7 t

12

312
−

7

12
) +

()9 13 + 26 %e
−

()13 + 7 t

12

52
−

()9 13 − 26 %e

()13 − 7 t

12

52
+2

3
+

1

6

[πs, Us] : lme (Ys);
ps : 1/6 - 2*Us + πs/3;

(%i197)

Since we are only going to use these numerical solutions to make a plot, we will not attempt any
simplifications in πs, Us, or ps. But we can look at values at t = 0 and t --> ∞.

(%o198) [3 ,1 ,−
5

6
]

at ([πs, Us, ps], t = 0), expand;(%i198)

(%o199) 2

limit (πs, t, inf);(%i199)

(%o200) −
7

12

limit (Us, t, inf);(%i200)

(%o201) 2

limit (ps, t, inf);(%i201)

Both the expected rate of inflation π(t) and the actual rate of inflation p(t) approach μ = 2% in the
long run. The unemployment rate U(t) approaches -7/12% ~ - 0.58% in the long run.

Dowling19Afit.wxmx 46 / 47

(%t203)

tmax : 4$
wxdraw2d (xlabel = "t", yrange = [-1, 4],
 title = "expected inflation pi, unemployment U, actual inflation p",
 key = "pi(t)", explicit (πs, t, 0, tmax),
 color = red, key = "U(t)", explicit (Us, t, 0, tmax),
 color = dark_turquoise, key = "p(t)", explicit (ps, t, 0, tmax),
 key = "", color = black, line_width = 1, explicit (0, t, 0, tmax),
 color = brown, key = "pie = 2", explicit (2, t, 0, tmax),
 color = magenta, key = "Ue = - 7/12", explicit (-7/12, t, 0, tmax))$

(%i203)

With real negative roots the convergence is steady rather than oscillatory.

General Proof of Convergence of Inflation-Unemployment Model 11.3

(A)
− ()1 − g j

g k

− j β

− k β

A : matrix([-j*(1-g), - j*β], [k*g, -k*β]);(%i204)

(ev) [[−
k2 β2 + ()−2 g −2 j k β + ()g2 −2 g +1 j 2 +k β + ()1−g j

2
,

k2 β2 + ()−2 g −2 j k β + ()g2 −2 g +1 j 2 −k β + ()g −1 j

2
] , [1 ,1]]

ev : eigenvalues (A);(%i205)

Dowling19Afit.wxmx 47 / 47

(%o206) [−
k2 β2 + ()−2 g −2 j k β + ()g2 −2 g +1 j 2 +k β + ()1−g j

2
,

k2 β2 + ()−2 g −2 j k β + ()g2 −2 g +1 j 2 −k β + ()g −1 j

2
]

[r1, r2] : [ev[1][1], ev[1][2]];(%i206)

First look at the sum of the roots: r1 + r2, call it r1pr2.

(r1pr2) ()g −1 j −k β

r1pr2 : r1 + r2, ratsimp;(%i207)

Recall our assumptions about the model parameters:

 0 < g <= 1, α, β > 0, 0 < j <= 1, k > 0.

This means k*β > 0, and j*(1 - g) >= 0, so (r1 + r2) < 0 always.

The sum (r1 + r2) must then always be negative.

With the eigenvalue equation taking the form
 r^2 + a1*r + a2 = 0,
if we have a case in which a1^2 < 4*a2, r1 and r2 are complex. This means they are complex
conjugates of each other, and each has the same real part but their complex parts are opposite in
sign. So r1 + r2 = 2*real(r1) < 0, hence the real part is negative, which implies convergence of
the complementary solution.

Next look at the product of the roots, call it r1r2.

(r1r2) j k β

r1r2 : r1*r2, ratsimp;(%i208)

Given our restrictions on the model parameters j, k, and β, r1* r2 is always a positive number.

Assume we have a case in which a1^2 > 4*a2, so that we have two distinct real roots. Since the
product of the roots must be positive, they must both have the same sign. Since their sum must
always be negative, the two real roots of the same sign must both be negative, and we again have
convergence of the complementary solution in the case of distinct real roots.

