California State University, Long Beach Department of Mathematics and Statistics

Real Analysis Comprehensive Examination

Spring 2024

Choose **six** of the nine problems. On the first page of your work, please write the numbers of the problems you would like graded.

Notation: For a measurable subset $A \subseteq \mathbb{R}^d$, let $\lambda(A)$ denote the Lebesgue measure of A.

1. Definition: Let $|I|$ denote the length of the nonempty open interval I . The outer measure of a set $E \subseteq \mathbb{R}$, denoted $m^*(E)$, is defined to be

 $m^*(E) = \inf\{\sum_{k=1}^{\infty} |I_k| : I_1, I_2, \dots$ is a sequence of open intervals with $E \subseteq \bigcup_{k=1}^{\infty} I_k\}.$

- a. Prove that m^* is subadditive, directly from the definition. In other words, prove that if $A, B \subseteq \mathbb{R}$, then $m^*(A \cup B) \leq m^*(A) + m^*(B)$.
- b. Prove that m^* is monotonic, directly from the definition. In other words, prove that if $A, B \subseteq \mathbb{R}$ with $A \subseteq B$, then $m^*(A) \leq m^*(B)$.
- 2. a. State Egorov's Theorem.
	- b. Let ${f}_n$ be a uniformly bounded sequence of Lebesgue measurable functions defined on a measurable set E of finite measure. Use Egorov's theorem to prove that if $f_n \rightarrow f$ a.e., then

$$
\int_E f_n d\lambda \to \int_E f d\lambda.
$$

- 3. a. State the Monotone Convergence Theorem.
	- b. Give an example to show that the following statement is FALSE: Let $f_1 \ge f_2 \ge \cdots$ be a decreasing sequence of non-negative measurable real-valued functions defined on ℝ. Let $f : \mathbb{R} \to [-\infty, \infty]$ be the limit function $f(x) = \lim_{k \to \infty} f_k(x)$. Then

$$
\lim_{k\to\infty}\int_{\mathbb{R}}\,f_k\,d\lambda=\int_{\mathbb{R}}\,f\,d\lambda.
$$

(That is, if the increasing sequence in the Monotone Convergence Theorem were replaced by a decreasing sequence, the statement would be false.)

c. Give an example to show that the following statement is FALSE: Let $f_1 \ge f_2 \ge \cdots$ be an increasing sequence of measurable functions defined on ℝ. Let $f : \mathbb{R} \to [-\infty, \infty]$ be the limit function $f(x) = \lim_{k \to \infty} f_k(x)$. Then

$$
\lim_{k\to\infty}\int_{\mathbb{R}}\,f_k\,d\lambda=\int_{\mathbb{R}}\,f\,d\lambda.
$$

That is, if the hypothesis that the functions in the sequence are non-negative were dropped from the Monotone Convergence Theorem, the statement would be false.) 4. Assume $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and that

$$
\int_{\mathbb{R}} |f|^2 d\lambda \leq 1.
$$

Prove that for any $n > 0$, the Lebesgue measure of $\{x \in \mathbb{R}: f(x) \ge n\}$ is at most $\frac{1}{n^2}$.

- 5. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function. For $k \in \mathbb{Z}$, let $G_k := \{ x \in \mathbb{R} : \exists \delta > 0 \text{ such that } |f(b) - f(c)| < \delta \}$ 1 $\frac{f}{k}$ for all b, $c \in (x - \delta, x + \delta)$ a. Prove that G_k is an open subset of ℝ for each $k \in \mathbb{Z}^+$.
	- b. Prove that the set of points at which f is continuous equals $\bigcap_{k=1}^{\infty} G_k$.
	- c. Conclude that the set of points at which f is continuous is a Borel set.
- 6. Let T be the smallest σ -algebra that contains the collection $\{(-\infty, r] : r \in \mathbb{Q}\}$. Prove that $\mathcal T$ is equal to the Borel σ-algebra.
- 7. Let $F_k \subset [0,1], k \in \mathbb{N}$ be measureable sets, and assume there exists $\delta > 0$ such that $\lambda(F_k) \ge \delta$ for all k. Also assume there is a nonnegative sequence $a_k \ge 0$ which satisfies:

$$
\sum_{k=1}^{\infty} a_k \chi_{F_k(x)} < \infty \text{ for } x \in [0,1].
$$

Show that

$$
\sum\nolimits_{k=1}^\infty a_k < \infty.
$$

- 8. Suppose that a measurable set $E \subset (0,1)$ is such that $\lambda(E \cap (r,s)) \geq \frac{s-r}{4}$ for all rational $0 < r < s < 1$. Prove $\lambda(E) \geq 1/4$.
- 9. True or False: If A is measure 0, then A is countable. If the statement is true, prove it. If the statement is false, construct a counterexample.