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Choose six of the nine problems. On the first page of your work, please write the numbers of the 
problems you would like graded. 
 
Notation: For a measurable subset 𝐴𝐴 ⊆ ℝ𝑑𝑑, let 𝜆𝜆(𝐴𝐴) denote the Lebesgue measure of 𝐴𝐴. 
 

1. Definition: Let |𝐼𝐼| denote the length of the nonempty open interval 𝐼𝐼. The outer measure 
of a set 𝐸𝐸 ⊆ ℝ, denoted 𝑚𝑚∗(𝐸𝐸), is defined to be  

𝑚𝑚∗(𝐸𝐸) = inf{∑ |𝐼𝐼𝑘𝑘|∞
𝑘𝑘=1 : 𝐼𝐼1, 𝐼𝐼2, …  is a sequence of open intervals with 𝐸𝐸 ⊆ ⋃ 𝐼𝐼𝑘𝑘∞

𝑘𝑘=1 }. 

a. Prove that 𝑚𝑚∗ is subadditive, directly from the definition. In other words, prove that if 
𝐴𝐴,𝐵𝐵 ⊆ ℝ, then 𝑚𝑚∗(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚∗(𝐴𝐴) + 𝑚𝑚∗(𝐵𝐵). 

b. Prove that 𝑚𝑚∗ is monotonic, directly from the definition. In other words, prove that if 
𝐴𝐴,𝐵𝐵 ⊆ ℝ with 𝐴𝐴 ⊆ 𝐵𝐵, then 𝑚𝑚∗(𝐴𝐴) ≤ 𝑚𝑚∗(𝐵𝐵). 

 
2. a. State Egorov’s Theorem. 

b. Let {𝑓𝑓}𝑛𝑛 be a uniformly bounded sequence of Lebesgue measurable functions defined 
on a measurable set 𝐸𝐸 of finite measure. Use Egorov’s theorem to prove that if  
𝑓𝑓𝑛𝑛 → 𝑓𝑓 a.e., then  

�𝑓𝑓𝑛𝑛𝑑𝑑𝑑𝑑
𝐸𝐸

→ �𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸

. 

 
3. a. State the Monotone Convergence Theorem. 

b. Give an example to show that the following statement is FALSE:  
Let 𝑓𝑓1  ≥  𝑓𝑓2  ≥ ⋯ be a decreasing sequence of non-negative measurable real-valued 
functions defined on ℝ. Let 𝑓𝑓 ∶ ℝ → [−∞,∞] be the limit function  
𝑓𝑓(𝑥𝑥) = lim

𝑘𝑘→∞
𝑓𝑓𝑘𝑘(𝑥𝑥). Then  

lim
𝑘𝑘→∞

� 𝑓𝑓𝑘𝑘
ℝ

𝑑𝑑𝑑𝑑 = � 𝑓𝑓
ℝ

𝑑𝑑𝑑𝑑. 

 
(That is, if the increasing sequence in the Monotone Convergence Theorem were 
replaced by a decreasing sequence, the statement would be false.) 

 
c. Give an example to show that the following statement is FALSE:  

Let 𝑓𝑓1  ≥  𝑓𝑓2  ≥ ⋯ be an increasing sequence of measurable functions defined on ℝ. 
Let 𝑓𝑓 ∶ ℝ → [−∞,∞] be the limit function 𝑓𝑓(𝑥𝑥)  = lim

𝑘𝑘→∞
𝑓𝑓𝑘𝑘(𝑥𝑥).  Then 

lim
𝑘𝑘→∞

� 𝑓𝑓𝑘𝑘
ℝ

𝑑𝑑𝑑𝑑 = � 𝑓𝑓
ℝ

𝑑𝑑𝑑𝑑. 

(That is, if the hypothesis that the functions in the sequence are non-negative were 
dropped from the Monotone Convergence Theorem, the statement would be false.) 
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4. Assume 𝑓𝑓:ℝ → ℝ is Lebesgue measurable and that 

� |𝑓𝑓|2𝑑𝑑𝑑𝑑
ℝ

≤ 1. 

Prove that for any 𝑛𝑛 > 0, the Lebesgue measure of {𝑥𝑥 ∈ ℝ: 𝑓𝑓(𝑥𝑥) ≥ 𝑛𝑛} is at most 1
𝑛𝑛2

. 
 

5. Suppose 𝑓𝑓:ℝ → ℝ is a function. For 𝑘𝑘 ∈ ℤ, let  

𝐺𝐺𝑘𝑘: = � 𝑥𝑥 ∈ ℝ ∶ ∃𝛿𝛿 > 0 such that |𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑐𝑐)| <
1
𝑘𝑘

 for all 𝑏𝑏, 𝑐𝑐 ∈  (𝑥𝑥 − 𝛿𝛿, 𝑥𝑥 + 𝛿𝛿)� 
a. Prove that 𝐺𝐺𝑘𝑘 is an open subset of ℝ for each 𝑘𝑘 ∈ ℤ+. 
b. Prove that the set of points at which 𝑓𝑓 is continuous equals ⋂ 𝐺𝐺𝑘𝑘∞

𝑘𝑘=1 . 
c. Conclude that the set of points at which 𝑓𝑓 is continuous is a Borel set. 

 
6. Let 𝒯𝒯 be the smallest σ-algebra that contains the collection {(−∞, 𝑟𝑟]: 𝑟𝑟 ∈ ℚ}. Prove that 

𝒯𝒯 is equal to the Borel σ-algebra.   
 

7. Let 𝐹𝐹𝑘𝑘 ⊂ [0,1],𝑘𝑘 ∈ ℕ be measureable sets, and assume there exists 𝛿𝛿 > 0 such that 
𝜆𝜆(𝐹𝐹𝑘𝑘) ≥ 𝛿𝛿 for all 𝑘𝑘. Also assume there is a nonnegative sequence 𝑎𝑎𝑘𝑘 ≥ 0 which satisfies: 

� 𝑎𝑎𝑘𝑘𝜒𝜒𝐹𝐹𝑘𝑘(𝑥𝑥)
∞

𝑘𝑘=1
< ∞ for 𝑥𝑥 ∈ [0,1]. 

 Show that  

� 𝑎𝑎𝑘𝑘
∞

𝑘𝑘=1
 < ∞. 

 
8. Suppose that a measurable set 𝐸𝐸 ⊂ (0,1) is such that 𝜆𝜆�𝐸𝐸 ∩ (𝑟𝑟, 𝑠𝑠)� ≥ 𝑠𝑠−𝑟𝑟

4
 for all rational 

0 < r < s < 1. Prove 𝜆𝜆(𝐸𝐸) ≥ 1/4.  
 

9. True or False:  If 𝐴𝐴 is measure 0, then 𝐴𝐴 is countable.  If the statement is true, prove it. If 
the statement is false, construct a counterexample. 

 


