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Choose six of the nine problems, and circle the numbers of the problems that you want graded.

Notation: For a Lebesgue measurable subset A ⊆ R, let λ(A) denote the Lebesgue measure of A. For any subset
C ⊆ R, we let m∗(C) be the outer measure of C.
For any set D, let χD denote the characteristic function on D, i.e. χD(x) = 1 if x ∈ D and χD(x) = 0 otherwise.

1. Prove directly from the definition of outer measure that the Lebesgue outer measure of the unit interval [0, 1]
is one. That is, prove m∗([0, 1]) = 1

2. Let X be a set.

(a) Define what it means for S to be a σ-algebra on X.

(b) Let B be the Borel σ-algebra on R. Show that B is closed under constant multiples, i.e. if r ∈ R and
B ∈ B, then rB ∈ B.

3. True or False? Let (X,S, µ) be a measure space and E1 ⊇ E2 ⊇ · · · be a decreasing sequence of sets in S.
Then

µ

( ∞⋂
k=1

Ek

)
= lim

k→∞
µ(Ek).

If it is true, prove it. If it is false, give a counterexample.

4. Suppose g : R → [0,∞] is Lebesgue measurable, and that
∫
g dλ < ∞. Prove that for all ε > 0, there exists

δ > 0 such that if B is a measurable set with λ(B) < δ, then∫
B

g dλ < ε

5. Let E ⊆ R be a Lebesgue measurable set. Recall that a sequence fn : E → R is said to converge in measure to
a function f : E → R provided that lim

n→∞
λ({x ∈ E : |fn(x)− f(x)| ≥ 0}) = 0.

Consider the sequence of intervals En such that

E1 =

[
0,

1

2

)
, E2 =

[
1

2
, 1

]
,

E3 =

[
0,

1

3

)
, E4 =

[
1

3
,

2

3

)
, E5 =

[
2

3
, 1

]
,

E6 =

[
0,

1

4

)
, E7 =

[
1

4
,

1

2

)
, . . .

and so on. Let fn : [0, 1]→ R be given by fn(x) =

{
0 if x ∈ En

1 otherwise
.

(a) Prove that fn converges in measure to χ[0,1].

(b) Prove that fn does not converge to χ[0,1] pointwise almost everywhere.

6. (a) State the Monotone Convergence Theorem.

(b) Prove the Monotone Convergence Theorem.
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7. Fatou’s lemma is the following theorem: Let (X,S, µ) be a measure space and f1, f2, . . . be a sequence of
nonnegative S-measurable functions on X. Define a function f : X → [0,∞] by f(x) = lim inf

k→∞
fk(x). Then f

is S-measurable and

∫
f dµ ≤ lim inf

k→∞

∫
fk dµ. Below we will use Fatou’s lemma to give a proof of a version

of the bounded convergence theorem.

Let (X,S, µ) be a measure space with µ(X) < ∞. Let fk : X → R be a sequence of S-measurable functions
such that fk → f pointwise to some function f : X → R. Suppose there exists a C ∈ (0,∞) such that

sup
k∈N,x∈X

|fk(x)| ≤ C.

(a) Define the function Fk = C − fk. Explain why we can apply Fatou’s lemma and show that

−
∫
f dµ ≤ lim inf

k→∞

∫
−fk dµ

Then explain why we may conclude lim sup
k→∞

∫
fk dµ ≤

∫
f dµ.

(b) Define the function F ′k = C + fk, and use it to show that∫
f dµ ≤ lim inf

k→∞

∫
fk dµ

Then explain why we may conclude ∫
f dµ = lim

k→∞

∫
fk dµ

8. Guess what the following limit is:

lim
n→∞

∫
[6,n]

n∑
k=0

xke−2x

k!
dx

Then prove your conjecture.

9. Let f : [0, 1]→ R be given by

f(x) =


3− x2 if x is irrational

3/x2 if x 6= 0 and x is rational

42 if x = 0

(a) For what x ∈ [0, 1] is f continuous?

(b) Is f Lebesgue integrable? If so, what is its integral on [0, 1]?
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