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Choose six of the nine problems. On the first page of your work, please write the numbers of the 
problems you would like graded. 
 
Notation:  

• For a measurable subset 𝑨𝑨 ⊆ ℝ𝒅𝒅, let 𝝀𝝀(𝑨𝑨) denote the Lebesgue measure of 𝑨𝑨.  
• For a function 𝒇𝒇:𝑬𝑬 → [−∞,∞], we say 𝒇𝒇 is Lebesgue integrable on E provided 

∫ |𝒇𝒇| < ∞𝑬𝑬 . 
 

1. a. State the Monotone Convergence Theorem. 
b. Use the Monotone Convergence Theorem to show that the function  

𝑓𝑓(𝑥𝑥) = 𝑥𝑥−0.5χ(0,1)(𝑥𝑥) 
is integrable, and evaluate ∫ 𝑓𝑓∞

−∞ 𝑑𝑑𝑑𝑑.  Hint: Consider 𝑓𝑓𝑛𝑛(𝑥𝑥) = 𝑥𝑥−0.5𝜒𝜒�1𝑛𝑛,1�(𝑥𝑥). 

c. Show that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−0.5χ(1,∞)(𝑥𝑥) is not integrable. 
 
 

2. Let 𝐸𝐸 ⊆ ℝ be measurable, and let 𝑓𝑓:𝐸𝐸 → [0,∞) be integrable.  Prove that  

𝑑𝑑({𝑥𝑥 ∈ 𝐸𝐸|𝑓𝑓(𝑥𝑥) > 𝛼𝛼}) ≤
1
𝛼𝛼
� 𝑓𝑓
𝐸𝐸

𝑑𝑑𝑑𝑑. 

 
 
3. a. State Egorov’s Theorem. 

b. Let {𝑓𝑓}𝑛𝑛 be a bounded sequence of Lebesgue measurable functions defined on a 
measurable set 𝐸𝐸 of finite measure. Use Egorov’s theorem to prove that if 𝑓𝑓𝑛𝑛 → 𝑓𝑓 a.e., 
then  

�𝑓𝑓𝑛𝑛𝑑𝑑𝑑𝑑
𝐸𝐸

→ �𝑓𝑓𝑑𝑑𝑑𝑑
𝐸𝐸

. 

 
 

4. Let ℬ denote the 𝜎𝜎-algebra of Borel sets. 
a. Let ℋ be the smallest 𝜎𝜎-algebra containing all intervals of the form [𝑎𝑎,∞), where 

𝑎𝑎 ∈ ℝ.  Prove that ℋ is equal to the 𝜎𝜎-algebra of Borel sets ℬ. 
b. A function 𝑓𝑓:ℝ → ℝ is called Borel measurable if for all open sets 𝑈𝑈 ⊂ ℝ, we 

have 𝑓𝑓−1(𝑈𝑈) ∈ ℬ.  Prove that 𝑓𝑓:ℝ → ℝ is Borel measurable if and only if for all 
𝑎𝑎 ∈ ℝ, we have 𝑓𝑓−1�[𝑎𝑎,∞)� ∈ ℬ. 

 
 

5. Let 𝐸𝐸 ⊆ ℝ be measurable, and let 𝑓𝑓:𝐸𝐸 → [0,∞).  Suppose ∫ 𝑓𝑓𝐸𝐸 𝑑𝑑𝑑𝑑 = 0. Prove that 
𝑓𝑓(𝑥𝑥) = 0 for 𝑎𝑎. 𝑒𝑒. 𝑥𝑥 ∈ 𝐸𝐸. 
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6. Assume 𝑓𝑓 is Lebesgue integrable on ℝ.  Define  

𝑓𝑓𝑛𝑛(𝑥𝑥) = �𝑓𝑓(𝑥𝑥) if |𝑓𝑓(𝑥𝑥)| > 𝑛𝑛
0 if |𝑓𝑓(𝑥𝑥)| ≤ 𝑛𝑛 

Prove that  

lim
𝑛𝑛→∞

� |𝑓𝑓𝑛𝑛|𝑑𝑑𝑑𝑑
ℝ

= 0 

 
 

7. Assume that 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛 are Lebesgue measurable subsets in [0,1]. Assume  

�𝑑𝑑�𝐴𝐴𝑗𝑗� > 𝑛𝑛 − 1
𝑛𝑛

𝑗𝑗=1

. 

 Prove that 𝑑𝑑�⋂ 𝐴𝐴𝑗𝑗𝑛𝑛
𝑗𝑗=1 � > 0. 

 
 

8. Suppose 𝑔𝑔:ℝ → [0,∞] is Lebesgue measurable, and that ∫𝑔𝑔 𝑑𝑑𝑑𝑑 < ∞.  Prove that for all 
𝜀𝜀 > 0, there exists 𝛿𝛿 > 0 such that if 𝐵𝐵 is a measurable set with 𝑑𝑑(𝐵𝐵) < 𝛿𝛿, then 

� 𝑔𝑔
𝐵𝐵

𝑑𝑑𝑑𝑑 < 𝜀𝜀. 

 
 

 
9. Assume 𝑓𝑓:ℝ → ℝ is Lebesgue integrable on [0,∞). Suppose 𝑓𝑓(0) = 0, and 𝑓𝑓′(0) exists.  

Prove that 𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)
𝑥𝑥

 is Lebesgue integrable on [0,∞). 
 


