California State University, Long Beach Department of Mathematics and Statistics

Real Analysis Comprehensive Examination

Fall 2023

Choose six of the nine problems. On the first page of your work, please write the numbers of the problems you would like graded.

Notation:

- For a measurable subset $A \subseteq \mathbb{R}^d$, let $\lambda(A)$ denote the Lebesgue measure of A.
- For a function $f: E \to [-\infty, \infty]$, we say f is Lebesgue integrable on E provided $\int_{F} |f| < \infty$.
- 1. a. State the Monotone Convergence Theorem.
 - b. Use the Monotone Convergence Theorem to show that the function

$$f(x) = x^{-0.5} \chi_{(0,1)}(x)$$

is integrable, and evaluate $\int_{-\infty}^{\infty} f \, d\lambda$. Hint: Consider $f_n(x) = x^{-0.5} \chi_{\left[\frac{1}{n},1\right]}(x)$.

- c. Show that $f(x) = x^{-0.5} \chi_{(1,\infty)}(x)$ is not integrable.
- 2. Let $E \subseteq \mathbb{R}$ be measurable, and let $f: E \to [0, \infty)$ be integrable. Prove that

$$\lambda(\{x \in E | f(x) > \alpha\}) \le \frac{1}{\alpha} \int_{E} f \, d\lambda.$$

- 3. a. State Egorov's Theorem.
 - b. Let $\{f\}_n$ be a bounded sequence of Lebesgue measurable functions defined on a measurable set E of finite measure. Use Egorov's theorem to prove that if $f_n \to f$ a.e., then

$$\int_{E} f_n d\lambda \to \int_{E} f d\lambda.$$

- 4. Let \mathcal{B} denote the σ -algebra of Borel sets.
 - a. Let \mathcal{H} be the smallest σ -algebra containing all intervals of the form $[a, \infty)$, where $a \in \mathbb{R}$. Prove that \mathcal{H} is equal to the σ -algebra of Borel sets \mathcal{B} .
 - b. A function $f: \mathbb{R} \to \mathbb{R}$ is called *Borel measurable* if for all open sets $U \subset \mathbb{R}$, we have $f^{-1}(U) \in \mathcal{B}$. Prove that $f: \mathbb{R} \to \mathbb{R}$ is Borel measurable if and only if for all $a \in \mathbb{R}$, we have $f^{-1}([a, \infty)) \in \mathcal{B}$.
- 5. Let $E \subseteq \mathbb{R}$ be measurable, and let $f: E \to [0, \infty)$. Suppose $\int_E f d\lambda = 0$. Prove that f(x) = 0 for $a.e. x \in E$.

California State University, Long Beach Department of Mathematics and Statistics

6. Assume
$$f$$
 is Lebesgue integrable on \mathbb{R} . Define
$$f_n(x) = \begin{cases} f(x) & \text{if } |f(x)| > n \\ 0 & \text{if } |f(x)| \le n \end{cases}$$

Prove that

$$\lim_{n\to\infty}\int_{\mathbb{R}}|f_n|d\lambda=0$$

7. Assume that $A_1, A_2, ..., A_n$ are Lebesgue measurable subsets in [0,1]. Assume

$$\sum_{j=1}^{n} \lambda(A_j) > n-1.$$

Prove that $\lambda(\bigcap_{i=1}^n A_i) > 0$.

8. Suppose $g: \mathbb{R} \to [0, \infty]$ is Lebesgue measurable, and that $\int g \, d\lambda < \infty$. Prove that for all $\varepsilon > 0$, there exists $\delta > 0$ such that if B is a measurable set with $\lambda(B) < \delta$, then

$$\int_{B} g \, d\mu < \varepsilon.$$

9. Assume $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable on $[0, \infty)$. Suppose f(0) = 0, and f'(0) exists. Prove that $g(x) = \frac{f(x)}{x}$ is Lebesgue integrable on $[0, \infty)$.