California State University, Long Beach Department of Mathematics Complex Analysis Comprehensive Examination February 4, 2023

Do three problems from each part, for a total of six problems. Circle the problems you want to be graded.

PART A

Problem 1. (a). Compute

$$\int_C z^2 dz$$
,

where C is a smooth curve from $\sqrt[3]{3}e^{i\pi/6}$ to $\sqrt[3]{6}e^{i\pi/3}$.

(b). Compute

$$\int_C \frac{z}{z^2 - 1} dz,$$

where C is the triangle with vertices -2, -i and i, going counterclockwise.

Problem 2. (a). Find the Laurent series around z = 0 for $f(z) = \frac{z}{z-1}$ on $\{z : 0 < |z| < 1\}$.

(b). Find the Laurent series around z=0 for $f(z)=\frac{z}{z-1}$ on $\{z:1<|z|<\infty\}.$

Problem 3. Evaluate the integral

$$\int_0^\infty \frac{z^2}{z^4 + z^2 + 1} \, dz.$$

Problem 4. Recall a Möbius transformation is a function of the form

$$f(z) = \frac{az+b}{cz+d}$$

on the extended complex plane $\mathbb{C} \cup \{\infty\}$.

- (a). Show that every Möbius transformations has either one or two fixed points on $\mathbb{C} \cup \{\infty\}$ (p is a fixed point of f if f(p) = p).
- (b). Find all those Möbius transformations f such that 1 is its only fixed point.

Problem 5. (a). State Rouché's theorem.

(b). Prove that $2z^5-6z-1$ has one root in $\{z:|z|<1\}$ and four roots in $\{z:1\leq |z|\leq 2\}$.

PART B

Problem 6. Let f be analytic on a domain D, and suppose f(D) is a subset of a line. Prove that f is constant.

Problem 7. Let f be analytic on the unit disc $D = \{z : |z| \le 1$. Assume $|f(z)| = |e^z|$ for all z with |z| = 1. Find all such f.

Hint: the maximum modulus principle.

Problem 8. Assume f is entire (i.e. analytic on \mathbb{C}), and there is a nonempty disc such that f does not attain any values in the disc. Prove that f is constant.

Problem 9. Assume f is entire (i.e. analytic on \mathbb{C}), satisfying

$$\lim_{z \to \infty} \frac{f(z)}{z} = 0.$$

Prove that f is a constant.

Problem 10. Consider the polynomial

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0.$$

Let $D = \{z : |z| \le 1\}$ be the closed unit disc. Prove that

$$\sup_{z \in D} |f(z)| \ge |a_n|.$$

Hint: Rouché's theorem.