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On the first page of your work, please write the numbers of the problems that you
want graded.

Do three problems from each part, for a total of six problems.

PART A

1. (a) Let u : D 7→ R, where D denotes the unit disk. Define what it means
for u to be harmonic, and define what it means for u to have a harmonic
conjugate, v : D 7→ R.

(b) Let u(x, y) = xex cos y − yex sin y + x3 − 3xy2 + y + 1 for (x, y) ∈ D. If
they exist, find all harmonic conjugates of u.

2. (a) Classify the singularity of the function f(z) = e1/z at z = 0.

(b) Evaluate
∫

Γ
e1/zdz, where Γ is the unit circle |z| = 1 traversed once coun-

terclockwise.

3. Let n be a positive integer and ω = ei2π/n = cos(2π/n) + i sin(2π/n).

(a) Show that 1 + ωk + ω2k + · · ·+ ω(n−1)k = 0 for any integer k which is not
a multiple of n.

(b) Define an n × n matrix A = (apq) by apq = ωpq = ei2πpq/n, 1 ≤ p, q ≤ n.
Find A−1.

4. Consider the inversion f(z) = 1/z and denote its real and imaginary parts by
u and v.

(a) Find the families of level curves of u(x, y) = α and v(x, y) = β where
α, β ∈ R. Prove that at a point of intersection two level curves meet
orthogonally.

(b) Determine the image under f of the circle |z − z0| = r where z0 ∈ C and
r > 0.

5. Compute the integral

∫ ∞
0

dx

x4 + 1
.



PART B

6. Suppose f(z) is analytic on {z : 0 < |z| < 1} and |f(z)| ≤ e|z| log2(1/|z|).

(a) Show that f has a removable singularity at 0.

(b) Show that f is identically 0.

7. Let f(z) = z6+6z−1. Prove that f has two real roots on the interval−2 < x < 2
and four (non-real) complex roots in the annulus 1 < |z| < 2.

8. Let h be analytic on the closed unit disk {z : |z| ≤ 1}, and suppose the image
of the unit circle {z : |z| = 1} is contained in the open unit disk. Prove that h
has exactly one fixed point in the open unit disk {z : |z| < 1}. A fixed point z0

of h is by definition a point which satisfies z0 = h(z0).

9. (a) Let f(z) = u(x, y) + iv(x, y) be an entire function satisfying u(x, y) ≤ x
for all z = x+ iy. Show that f(z) is a polynomial of degree at most one.

(b) Prove that if f is entire and |f(z)| → ∞ as |z| → ∞, then f must have at
least one zero.

10. Let p(z) =
∑n

k=0 akz
k, an 6= 0, be a polynomial of degree n such that |p(z)| ≤M

for |z| ≤ R. Show that |p(z)| ≤M(|z|/R)n for |z| ≥ R.
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