CALIFORNIA STATE UNIVERSITY, LONG BEACH DEPARTMENT OF MATHEMATICS AND STATISTICS

FALL 2022 COMPLEX ANALYSIS COMPREHENSIVE EXAMINATION (September 17, 2022)

Complete three problems from each part for a total of six problems. Circle the problems you want to be graded.

PART A

- 1. a. Prove that the function $f(z) = \overline{z}$ is not analytic.
 - b. Assume f is analytic. Prove $g(z) = \overline{f(\overline{z})}$ is analytic.
- 2. a. Prove that all roots of $z^8 + 2x^7 + 5z + 1$ satisfy |z| < 3.
 - b. Let γ be the circle of radius 3 about 0 traversed once in the counterclockwise direction. Compute

$$\int_{\gamma} \frac{8z^7 + 14z^6 + 5}{z^8 + 2z^7 + 5z + 1} dz.$$

c. Again, let γ be the circle of radius 3 about 0 traversed once in the counterclockwise direction. Compute

$$\int_{\gamma} \frac{8z^8 + 14z^7 + 5z}{z^8 + 2z^7 + 5z + 1} dz.$$

- 3. Let $f(z) = \frac{1}{z(z-1)(z-2)}$. Find the Laurent expansion of f in the annulus $\{z \in \mathbb{C} | a < |z| < 2\}$.
- 4. Compute $\int_0^\infty \frac{1}{1+x^4} dx$.
- 5. a. Find a conformal map that maps the first quadrant $\{x + iy | x > 0 \text{ and } y > 0\}$ to the unit disc $B_1(0) = \{x + iy | x^2 + y^2 < 1\}$.
 - b. Find a conformal map that maps $\{x + iy | 0 < x < 1\}$ to the unit disc.

PART B

- 6. Let $\langle z_n \rangle$ be a nonzero sequence contained in the unit disk $B_1(0) = \{x + iy | x^2 + y^2 < 1\}$, and suppose $\lim_{n \to \infty} z_n = 0$. Prove that if *f* is analytic on $B_1(0)$, and $f(z_n) = 0$ for all $n \in \mathbb{N}$, then *f* is constant on $B_1(0)$.
- Let f and g be entire functions such that, for all z ∈ C for which Re f(z) ≤ kRe g(z), for some real constant k > 0. Prove there exists a, b ∈ C such that f(z) = ag(z) + b. [Hint: consider e^{h(z)} for some function h(z), and use Liouville's Theorem.]

CALIFORNIA STATE UNIVERSITY, LONG BEACH DEPARTMENT OF MATHEMATICS AND STATISTICS

FALL 2022 COMPLEX ANALYSIS COMPREHENSIVE EXAMINATION (September 17, 2022)

- 8. a. State and prove Morera's Theorem.
 - b. Give the statement of a claim or theorem whose proof relies on Morera's Theorem (you need not provide the proof).
- 9. Let R be the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k z^k$. Prove the Cauchy-Hadamard formula:

$$R = \frac{1}{\lim_{k \to \infty} \sqrt[k]{a_k}}$$

assuming this limit exists.

- 10. a. Evaluate $\int_{\gamma} e^{1/z} dz$, where γ is the unit circle traversed once in the counterclockwise direction.
 - b. Prove there is no sequence of polynomials that converges uniformly to $e^{1/z}$ on the unit circle.