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Complete three problems from each part for a total of six problems. Circle the problems you 
want to be graded. 

PART A 
 

1. a. Prove that the function 𝑓(𝑧) = 𝑧 ̅is not analytic. 
b. Assume 𝑓 is analytic. Prove 𝑔(𝑧) = 𝑓(𝑧̅)(((((( is analytic. 

 
2. a. Prove that all roots of 𝑧! + 2𝑥" + 5𝑧 + 1 satisfy |𝑧| < 3. 

b. Let 𝛾 be the circle of radius 3 about 0 traversed once in the counterclockwise direction. 
Compute  

2
8𝑧" + 14𝑧# + 5
𝑧! + 2𝑧" + 5𝑧 + 1𝑑𝑧$

. 

c. Again, let 𝛾 be the circle of radius 3 about 0 traversed once in the counterclockwise 
direction. Compute  

2
8𝑧! + 14𝑧" + 5𝑧
𝑧! + 2𝑧" + 5𝑧 + 1𝑑𝑧$

. 

 
3. Let 𝑓(𝑧) = %

&(&(%)(&(*)
.  Find the Laurent expansion of 𝑓 in the annulus {𝑧 ∈ ℂ|𝑎 < |𝑧| < 2}. 

 
4. Compute ∫ %

%+,!
𝑑𝑥-

. . 
 
5. a. Find a conformal map that maps the first quadrant {𝑥 + 𝑖𝑦|	𝑥 > 0	and	𝑦 > 0} to the unit 

disc 𝐵%(0) = {𝑥 + 𝑖𝑦|	𝑥* + 𝑦* < 1}. 
b. Find a conformal map that maps {𝑥 + 𝑖𝑦|	0 < 𝑥 < 1} to the unit disc. 

 
PART B 

 
6. Let 〈𝑧/〉 be a nonzero sequence contained in the unit disk 𝐵%(0) = {𝑥 + 𝑖𝑦|	𝑥* + 𝑦* < 1}, 

and suppose lim
/→-

𝑧/ = 0.  Prove that if 𝑓 is analytic on 𝐵%(0), and 𝑓(𝑧/) = 0 for all 𝑛 ∈ ℕ, 
then 𝑓 is constant on 𝐵%(0). 

 
7. Let 𝑓 and 𝑔 be entire functions such that, for all 𝑧 ∈ ℂ for which 𝑅𝑒	𝑓(𝑧) ≤ 𝑘𝑅𝑒	𝑔(𝑧), for 

some real constant 𝑘 > 0.  Prove there exists 𝑎, 𝑏 ∈ ℂ such that 𝑓(𝑧) = 𝑎𝑔(𝑧) + 𝑏.  [Hint: 
consider 𝑒1(&) for some function ℎ(𝑧), and use Liouville’s Theorem.] 
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8. a. State and prove Morera’s Theorem. 
b. Give the statement of a claim or theorem whose proof relies on Morera’s Theorem (you 

need not provide the proof). 
 
9. Let R be the radius of convergence of the power series ∑ 𝑎2𝑧2-

23. .  Prove the Cauchy-
Hadamard formula: 

𝑅 =
1

lim
2→-

U𝑎2"  

assuming this limit exists. 
 
10. a. Evaluate ∫ 𝑒%/&𝑑𝑧$ , where 𝛾 is the unit circle traversed once in the counterclockwise 

direction. 
b. Prove there is no sequence of polynomials that converges uniformly to 𝑒%/& on the unit 

circle. 


