Spring 2024 – Algebra Comprehensive Exam Name:

Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems				Total
Scores				

Part I: Groups (Choose at least two.)

- 1. Let H and K be finite groups. Let $G = H \times K$.
 - (a) If $h \in H$ has order m and $k \in K$ has order n, what is the order of (h, k) in G? Justify your answer.
 - (b) How many elements of order 20 are there in the group $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/10\mathbb{Z})?$
- 2. In each item below you are given a group G with a subgroup H. Determine if H is a normal subgroup of G. Justify your answers.
 - (a) G is a finite group with a unique element b of order 2; $H = \langle b \rangle$.
 - (b) $G = S_4; H = \langle (123) \rangle.$
 - (c) $G = D_{12}$, the dihedral group of order 12; H is a Sylow 2-subgroup of G.
- 3. (a) Let p < q < r be prime numbers. Prove that there are no simple groups of order pqr.
 - (b) How many isomorphism classes of abelian groups of order 360 are there? For each one give both its invariant factor decomposition and its elementary divisor decomposition.
- 4. Let G be a group. Prove or disprove each of the following statements.
 - (a) If every finitely generated subgroup of G is abelian, then G is abelian.
 - (b) If every subgroup of G is normal, then G is abelian.
 - (c) If A and B are normal subgroups of G with G/A and G/B abelian, then $G/(A \cap B)$ is abelian.
 - (d) If every element of G has finite order, then G is finite.
- 5. If $A = \{a_1, a_2, \dots, a_n\}$ is a set, let S_A denote the permutations of $\{a_1, a_2, \dots, a_n\}$ and let S_n denote $S_{\{1,2,\dots,n\}}$.
 - (a) Let φ be an automorphism of S_3 . Show that φ will map any transposition $\tau \in S_3$ to another transposition.
 - (b) Show that if φ fixes each transposition, then φ is the identity automorphism.
 - (c) Show that $\operatorname{Aut}(S_3) \simeq S_A$, where A is the set of transpositions in S_3 .

Part II: Rings and Linear Algebra (Choose at least two.)

- 6. Let R and S be commutative rings with identity and let $\phi : R \to S$ be a ring homomorphism such that $\phi(1_R) = 1_S$. For each part below, prove it or give a counterexample.
 - (a) If I is an ideal of S, then $\phi^{-1}(I) = \{r \in R \mid \phi(r) \in I\}$ is an ideal of R.
 - (b) If J is an ideal of R, then $\phi(J)$ is an ideal of S.
 - (c) If P is a prime ideal of S, then $\phi^{-1}(P)$ is a prime ideal of R.
 - (d) If M is a maximal ideal of S, then $\phi^{-1}(M)$ is a maximal ideal of R.
- 7. Let R be a noncommutative ring with identity. Define

$$Z(R) = \{ r \in R \mid rs = sr \forall s \in R \}.$$

- (a) Prove that Z(R) is a subring of R.
- (b) Is Z(R) always, sometimes, or never a two-sided ideal of R? Prove your answer.
- (c) Now suppose that R is a division ring. Prove that Z(R) is a field.
- 8. (a) Let R be an integral domain, $p \in R$. Prove that if p is prime, then p is irreducible.
 - (b) Now let R be a UFD. Prove that if $p \in R$ is irreducible, then p is prime.
 - (c) Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
- 9. (a) State carefully the division algorithm for $\mathbb{R}[x]$, where \mathbb{R} is the real numbers.
 - (b) Using the division algorithm, prove directly (without citing theorems about Euclidean domains) that $\mathbb{R}[x]$ is a principal ideal domain.
 - (c) Find all maximal ideals of $\mathbb{R}[x]$ that contain $x^8 1$.
 - (d) Find a polynomial that generates the ideal generated by $x^{12} 1$ and $x^8 1$ in $\mathbb{R}[x]$.
- 10. Let A and B be 2×2 matrices with entries from the real numbers. Label each of the following statements as true or false. Justify each answer with a proof or a counterexample.
 - (a) If λ is an eigenvalue of both A and B, then λ is also an eigenvalue of AB.
 - (b) If **v** is an eigenvector of both A and B, then **v** is also an eigenvector of AB.
 - (c) If 0 is an eigenvalue of AB, then 0 is also an eigenvalue of BA.
 - (d) If λ is a nonzero eigenvalue of AB, then λ is also an eigenvalue of BA.