Fall 2024 – Algebra Comprehensive Exam Name: _____

Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems				Total
Scores				

Part I: Groups (Choose at least two.)

- 1. Let (G,*) be a group with operation * and identity e. Let a be a fixed element of G. Define a binary operation \triangle on G as $g \triangle h = g * a * h$ for all $g,h \in G$.
 - (a) Prove that (G, Δ) is a group. In particular, make sure to identify the group identity under Δ .
 - (b) Show that $(G, *) \simeq (G, \triangle)$ by exhibiting a group isomorphism.
- 2. (a) Determine all finite groups that have no nontrivial proper subgroups. Justify your answer.
 - (b) Determine all finite groups that have <u>exactly</u> one nontrivial proper subgroup. Justify your answer.
 - (c) Give an example of a finite group G such that the number of subgroups of G is strictly greater than |G|, the order of G.
- 3. (a) Show that a group of order 28 must contain a normal subgroup of order 7.
 - (b) Show that a group of order 28 must contain a normal subgroup of order 14.
 - (c) Give an example of a group of order 28 that does not contain a normal subgroup of order 4. Justify your answer.
 - (d) How many isomorphism classes of abelian groups of order 700 are there? For each one give its invariant factor decomposition.
- 4. (a) Let G be a finite group with center Z(G). Prove that if G/Z(G) is cyclic, then G is abelian.
 - (b) Let p be a prime number, and let G be a finite \underline{p} -group; that is, a group of order p^n for some integer n.
 - i. Prove that Z(G) is non-trivial.
 - ii. Prove that if $|G| = p^2$, then G is abelian.
- 5. Show that if G is a group of order 135, then |Z(G)| > 1.

Part II: Rings and Linear Algebra (Choose at least two.)

- 6. Let R be an integral domain.
 - (a) Prove: If R is finite, then R is a field.
 - (b) Prove: If I is a prime ideal of R such that |R:I| is finite, then I is a maximal ideal.
 - (c) Give an example to show that part (b) is false without the assumption that |R:I| is finite.
- 7. Let $R = \mathbb{Z}\left[\sqrt{-5}\right]$, and let $I = (3, 2 + \sqrt{-5})$, the ideal of R generated by 3 and $2 + \sqrt{-5}$.
 - (a) Determine the units of R.
 - (b) Show that 3 is irreducible in R.
 - (c) Show that I is not a principal ideal.
 - (d) Determine a set of coset representatives for R/I.
- 8. Let R be a commutative ring with identity. An element $x \in R$ is <u>nilpotent</u> if $x^n = 0$ for some positive integer n.
 - (a) Prove that the set N(R) of nilpotent elements of R is an ideal of R. (You may use the Binomial Theorem without proof.)
 - (b) Prove that if $x \in R$ is nilpotent, then x is in every prime ideal of R.
 - (c) Determine the nilpotent elements of the ring $\mathbb{Z}/72\mathbb{Z}$.
- 9. Let $n \geq 2$ and consider the ring $\mathbb{M}_n(\mathbb{R})$ of all $n \times n$ matrices with real entries.
 - (a) Exhibit a proper nontrivial left ideal of $\mathbb{M}_n(\mathbb{R})$.
 - (b) Prove that $\mathbb{M}_n(\mathbb{R})$ has no proper nontrivial two-sided ideals.
- 10. Let n be a positive integer. Recall the standard inner product \cdot on \mathbb{R}^n ,

given as follows: If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$, then $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i$. A set of

vectors
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$$
 in \mathbb{R}^n is orthonormal if $\mathbf{u}_1 \cdot \mathbf{u}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$.

- (a) For fixed $\mathbf{y} \in \mathbb{R}^n$, prove that $\mathbf{x} \mapsto \mathbf{x} \cdot \mathbf{y}$ gives a linear transformation from \mathbb{R}^n to \mathbb{R} .
- (b) Prove that an orthonormal set in \mathbb{R}^n is linearly independent.
- (c) If m is another positive integer and M is an $m \times n$ matrix with orthonormal columns, prove that $(M\mathbf{x})\cdot(M\mathbf{y}) = \mathbf{x}\cdot\mathbf{y}$ for all $\mathbf{x},\mathbf{y} \in \mathbb{R}^n$.