Spring 2023 – Algebra Comprehensive Exam

Name: _

Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems				Total
Scores				

Part I: Groups (Choose at least two.)

- 1. Let G be a finite group with identity element e.
 - (a) Prove that if $a^2 = e$ for all $a \in G$, then G is abelian.
 - (b) Give an example of a nonabelian group G such that $a^4 = e$ for all $a \in G$.
 - (c) Prove that if |G| > 1 and $a^4 = e$ for all $a \in G$, then |Z(G)| > 1.
- 2. (a) Show that if $\sigma \in S_n$ has odd order, then $\sigma \in A_n$.
 - (b) Show that if a subgroup H of S_n contains an odd permutation, then |H| is even and exactly half the permutations of H are odd permutations.
- 3. (a) Find the conjugacy classes of D_8 , the dihedral group of order 8 given by $\langle r, s | r^4 = s^2 = e, rs = sr^{-1} \rangle$.
 - (b) Let G be a nonabelian finite group with center Z(G). Show that if [G: Z(G)] = n, then every conjugacy class of G has strictly fewer than n elements.
 - (c) Let G be a group of order p^m where p is a prime. Prove that if $H \trianglelefteq G$ with |H| = p, then $H \leq Z(G)$.
- 4. (a) Let p and q be odd prime numbers with p < q such that $p \nmid (q-1)$. Prove that any group of order pq is cyclic.
 - (b) How many isomorphism classes of abelian groups of order 200 are there? For each one, give its invariant factor decomposition.
- 5. A subgroup H of a group G is characteristic if every automorphism of G maps H to H.
 - (a) Prove that if H is a characteristic subgroup of G, then it is a normal subgroup of G.
 - (b) Give an example of a group G with a normal subgroup H that is not characteristic.
 - (c) Prove that every subgroup of a cyclic group is characteristic.

Part II: Rings and Linear Algebra (Choose at least two.)

- 6. Let R be a commutative ring with identity.
 - (a) Let P be a prime ideal of R. Let I and J be ideals of R. Prove that if $I \cap J \subseteq P$, then $I \subseteq P$ or $J \subseteq P$.
 - (b) Let M be a maximal ideal of R. Prove that R/M is a field.
 - (c) Let I and J be ideals of R with I+J = R. Prove that $R/(I \cap J) \simeq R/I \times R/J$.
- 7. Prove the following statements.
 - (a) Every Euclidean domain is a PID.
 - (b) Every irreducible element of a PID is a prime element.
 - (c) If r is an irreducible element of a PID, then (r) is a maximal ideal.
- 8. Let R and S be commutative rings with identity. Label each of the following statements as true or false. If true, give a proof. If false, give a counterexample.
 - (a) Every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.
 - (b) If M is a prime ideal of R and N is a prime ideal of S, then $M \times N$ is a prime ideal of $R \times S$.
- 9. An element e of a ring R is called *idempotent* if $e^2 = e$. Let R be a commutative ring with identity, and suppose that $e \in R$ is an idempotent different from 0 and 1.
 - (a) Prove that 1 e is also idempotent.
 - (b) Prove that R is not an integral domain.
 - (c) Prove that the ideals (e) and (1 e) are rings with identity.
 - (d) Prove that every element of R can be written as the sum of an element of (e) and an element of (1 e) in a unique way.
- 10. Let $M_3(\mathbb{R})$ be the set of all 3×3 matrices with entries from the real numbers \mathbb{R} . $M_3(\mathbb{R})$ is a vector space over \mathbb{R} under the usual addition and scalar multiplication. Below are listed five subsets of $M_3(\mathbb{R})$. For each one, determine whether or not the set is a subspace of $M_3(\mathbb{R})$. Justify your answers.
 - (a) The matrices with 0 determinant.
 - (b) The symmetric matrices.
 - (c) The invertible matrices.
 - (d) The matrices having 1 as an eigenvalue.
 - (e) The matrices having $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ as an eigenvector.