Spring 2022 – Algebra Comprehensive Exam Name: _

Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems				Total
Scores				

Part I: Groups (Choose at least two.)

- 1. Let G be a group and H and K be subgroups of G. Define $HK = \{hk \mid h \in H, k \in K\}$.
 - (a) Prove that if H is normal, then HK is a subgroup of G.
 - (b) Prove that if H and K are both normal, then HK is normal.
 - (c) Give an example for which neither H nor K is normal and HK is not a subgroup of G.
- 2. For a group G, let Z(G) be the center of G and let Aut(G) be the group of automorphisms of G.
 - (a) Prove that if G/Z(G) is cyclic, then G is abelian.
 - (b) Prove that G/Z(G) is isomorphic to a subgroup of Aut(G).
- 3. (a) Find the conjugacy classes in A_4 . Use these to find all proper normal subgroups of A_4 .
 - (b) Show that A_4 is the only subgroup of S_4 of order 12.
 - (c) Let G be a nonabelian finite group with center Z(G). Show that if [G : Z(G)] = n, then every conjugacy class of G has strictly fewer than n elements.
- 4. (a) Show that any group of order 132 is not simple.
 - (b) Explain why D_{12} , the dihedral group of order 12, is not simple and does not have a normal Sylow 2-subgroup.
 - (c) Show that there is a group of order 132 that does not have a normal Sylow 2-subgroup.
- 5. (a) Show that a group of order 700 has a normal subgroup of order 175.
 - (b) How many isomorphism classes of abelian groups of order 700 are there? For each one give both its invariant factor decomposition and its elementary divisor decomposition.

Part II: Rings and Linear Algebra (Choose at least two.)

- 6. Let R be a commutative ring with identity. An element $e \in R$ is called idempotent if $e^2 = e$. An idempotent element e is called trivial if e = 0or e = 1; otherwise it is called nontrivial. An element $r \in R$ is called nilpotent if $r^n = 0$ for some positive integer n.
 - (a) Prove that if e is idempotent, then so is 1 e.
 - (b) Prove that a nontrivial idempotent element cannot be a unit.
 - (c) Prove that if R has a unique maximal ideal, then R has no nontrivial idempotent elements.
 - (d) Identify the units, zero divisors, idempotent elements, and nilpotent elements in the ring $\mathbb{Z}/12\mathbb{Z}$.
- 7. Let R and S be commutative rings with identity. Let $\phi : R \to S$ be a nontrivial homomorphism. For each statement below, either prove it or give a counterexample.
 - (a) $\phi(R)$, the image of ϕ , is a subring of S.
 - (b) If I is an ideal of R, then $\phi(I)$ is an ideal of S.
 - (c) If ker ϕ is a prime ideal of R, then $\phi(R)$ is an integral domain.
 - (d) If R is a field, then ϕ is injective.
- 8. Let R be an integral domain.
 - (a) Prove that if every proper ideal of R is prime, then R is a field. (Hint: For $0 \neq r \in R$, consider the ideal generated by r^2 .)
 - (b) Prove that if R is a principal ideal domain, then every nonzero prime ideal of R is maximal.
 - (c) Prove that if R is a unique factorization domain, then every nonzero prime ideal of R contains a nonzero principal ideal that is prime.
- 9. (a) Show that $R = \mathbb{Z}\left[\sqrt{-2}\right]$ is a Euclidean domain under the usual norm, $N\left(x+y\sqrt{-2}\right) = x^2 + 2y^2$. In other words, show that given $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that a = bq + r and N(r) < N(b). (You may use without proof the fact that N(ab) = N(a)N(b).)
 - (b) The result in (a) is not true if -2 is replaced by -3. Circle the line of your work for (a) that would fail if we replaced -2 by -3.
 - (c) Show carefully that $3 + \sqrt{2}$ is irreducible in $R = \mathbb{Z}\left[\sqrt{2}\right]$.

10. Construct a 3×3 matrix having an eigenvalue 1 with corresponding eigen-Construct a 3×3 matrix matrix $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, an eigenvalue of -1 with corresponding eigenvector $\begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$, and an eigenvalue of 2 with corresponding eigenvector $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Is this matrix

unique, or could there be others with this property? Justify your answer.