Fall 2022 – Algebra Comprehensive Exam Nam

Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems				Total
Scores				

Part I: Groups (Choose at least two.)

- 1. For each of the following statements, either prove it or give a counterexample.
 - (a) If G and G' are groups, then any subgroup of $G \times G'$ is of the form $H \times H'$, where H is a subgroup of G and H' is a subgroup of G'.
 - (b) If H is a subgroup of a group G with |G:H| = 2, then H is normal in G.
 - (c) If every proper subgroup of a group G is cyclic, then G is cyclic.
 - (d) If a group G is cyclic, then all of its subgroups are cyclic.
- 2. Let G be a group, and let $\operatorname{Bij}(G)$ be the group of bijections of G to itself (i.e., the group of permutations of G). For each $g \in G$, define $L_g : G \to G$ by $L_g(x) = gx$ for every $x \in G$.
 - (a) Show that $\Phi: g \mapsto L_q$ is a homomorphism from G into Bij(G).
 - (b) For each of the following, either find an example of a group G where the property is satisfied, or explain why there are no such examples:
 - i. Φ is not one-to-one;
 - ii. Φ is not onto.
 - (c) For each $g \in G$, define $\gamma_g : G \to G$ by $\gamma_g(x) = gxg^{-1}$ for all $x \in G$.
 - i. Show that $\Gamma: g \mapsto \gamma_g$ is a homomorphism from G into $\operatorname{Bij}(G)$.
 - ii. Use the First Isomorphism Theorem with Γ to produce an isomorphism of a quotient of G with a subgroup of Bij(G).
- 3. Let G be a group acting on a set A.
 - (a) Prove that for any $a \in A$, the orbit of a has order $|G : G_a|$, where G_a is the stabilizer of a in G.
 - (b) Use this to prove that for any $g \in G$, the order of the conjugacy class of g is $|G: C_G(g)|$, where $C_G(g)$ is the centralizer of g in G.
 - (c) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 1 & 2 & 3 & 7 & 6 \end{pmatrix} \in S_7$. Determine the sizes of the conjugacy class of σ and the centralizer $C_{S_7}(\sigma)$.
- 4. (a) Show that a group of order 380 contains a normal subgroup of order 95.
 - (b) List all the isomorphism classes of abelian groups of order 360 (not 380). For each one, give its invariant factor decomposition.
- 5. Let G be a finite group, let p be a prime dividing |G|, and let H be the intersection of all the Sylow p-subgroups of G.
 - (a) Show that H is a normal subgroup of G of order p^n for some integer $n \ge 0$.
 - (b) Prove that if K is any normal subgroup of G of order p^m for some integer $m \ge 0$, then $K \subseteq H$.

Name: ____

Part II: Rings and Linear Algebra (Choose at least two.)

- 6. Let $R = M_2(\mathbb{Z})$ be the ring of 2×2 matrices with integer entries.
 - (a) For any $n \in \mathbb{Z}$, prove that the set

$$I = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \mid x, y, z, w \text{ are all divisible by } n \right\}$$

is a (two-sided) ideal of R.

- (b) Prove that every two-sided ideal of R is of this form for some integer n.
- (c) Give an example of a left ideal of R that is not of this form.
- 7. Let R be a commutative ring with identity. Define the <u>Jacobson radical</u> Jac R of R to be the intersection of all of the maximal ideals of R.
 - (a) Find $\operatorname{Jac}(\mathbb{Z}/600\mathbb{Z})$.
 - (b) Prove that if $x \in R$ is <u>nilpotent</u>, that is, if $x^m = 0$ for some positive integer m, then $x \in \text{Jac } R$.
 - (c) Prove that if $r \in \text{Jac } R$, then 1 + r is a unit of R.
- 8. Let $R = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Prove that $1 + \sqrt{-5}$ is irreducible but not prime in R.
 - (b) Prove that the ideal $(2, 1 + \sqrt{-5}) \subseteq R$ is not principal but that I^2 is principal.
- 9. (a) Let R be a commutative ring with identity. Prove that R is a field if and only if the only ideals of R are $\{0\}$ and R.
 - (b) Give an example of a ring that has exactly three ideals.
 - (c) Let R be a UFD. Prove that if $a \in R$ is irreducible, then a is a prime element of R.
- 10. Let T be an $n \times n$ matrix over the real numbers with the property that $T^2 = T$.
 - (a) Show that for each vector $\mathbf{v} \in \mathbb{R}^n$, there is a vector \mathbf{a} in the column space of T and a vector \mathbf{b} in the null space of T such that $\mathbf{v} = \mathbf{a} + \mathbf{b}$.
 - (b) Prove that the vectors **a** and **b** in part (a) are unique.
 - (c) Show that T is diagonalizable, and give a diagonal matrix similar to T.