Fall 2022 - Algebra Comprehensive Exam Name: \qquad
Choose six problems total, including at least two from Part I and two from Part II. Enter the numbers of the problems you want graded here:

Problems							Total
Scores							

Part I: Groups (Choose at least two.)

1. For each of the following statements, either prove it or give a counterexample.
(a) If G and G^{\prime} are groups, then any subgroup of $G \times G^{\prime}$ is of the form $H \times H^{\prime}$, where H is a subgroup of G and H^{\prime} is a subgroup of G^{\prime}.
(b) If H is a subgroup of a group G with $|G: H|=2$, then H is normal in G.
(c) If every proper subgroup of a group G is cyclic, then G is cyclic.
(d) If a group G is cyclic, then all of its subgroups are cyclic.
2. Let G be a group, and let $\operatorname{Bij}(G)$ be the group of bijections of G to itself (1.e., the group of permutations of G). For each $g \in G$, define $L_{g}: G \rightarrow G$ by $L_{g}(x)=g x$ for every $x \in G$.
(a) Show that $\Phi: g \mapsto L_{g}$ is a homomorphism from G into $\operatorname{Bij}(G)$.
(b) For each of the following, either find an example of a group G where the property is satisfied, or explain why there are no such examples:
i. Φ is not one-to-one;
ii. Φ is not onto.
(c) For each $g \in G$, define $\gamma_{g}: G \rightarrow G$ by $\gamma_{g}(x)=g x g^{-1}$ for all $x \in G$.
i. Show that $\Gamma: g \mapsto \gamma_{g}$ is a homomorphism from G into $\operatorname{Bij}(G)$.
ii. Use the First Isomorphism Theorem with Γ to produce an isomorphism of a quotient of G with a subgroup of $\operatorname{Bij}(G)$.
3. Let G be a group acting on a set A.
(a) Prove that for any $a \in A$, the orbit of a has order $\left|G: G_{a}\right|$, where G_{a} is the stabilizer of a in G.
(b) Use this to prove that for any $g \in G$, the order of the conjugacy class of g is $\left|G: C_{G}(g)\right|$, where $C_{G}(g)$ is the centralizer of g in G.
(c) Let $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 1 & 2 & 3 & 7 & 6\end{array}\right) \in S_{7}$. Determine the sizes of the conjugacy class of σ and the centralizer $C_{S_{7}}(\sigma)$.
4. (a) Show that a group of order 380 contains a normal subgroup of order 95.
(b) List all the isomorphism classes of abelian groups of order 360 (not 380). For each one, give its invariant factor decomposition.
5. Let G be a finite group, let p be a prime dividing $|G|$, and let H be the intersection of all the Sylow p-subgroups of G.
(a) Show that H is a normal subgroup of G of order p^{n} for some integer $n \geq 0$.
(b) Prove that if K is any normal subgroup of G of order p^{m} for some integer $m \geq 0$, then $K \subseteq H$.

Part II: Rings and Linear Algebra (Choose at least two.)
6 . Let $R=M_{2}(\mathbb{Z})$ be the ring of 2×2 matrices with integer entries.
(a) For any $n \in \mathbb{Z}$, prove that the set

$$
I=\left\{\left.\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) \right\rvert\, x, y, z, w \text { are all divisible by } n\right\}
$$

is a (two-sided) ideal of R.
(b) Prove that every two-sided ideal of R is of this form for some integer n.
(c) Give an example of a left ideal of R that is not of this form.
7. Let R be a commutative ring with identity. Define the Jacobson radical Jac R of R to be the intersection of all of the maximal ideals of R.
(a) Find $\operatorname{Jac}(\mathbb{Z} / 600 \mathbb{Z})$.
(b) Prove that if $x \in R$ is nilpotent, that is, if $x^{m}=0$ for some positive integer m, then $x \in \mathrm{Jac} R$.
(c) Prove that if $r \in \operatorname{Jac} R$, then $1+r$ is a unit of R.
8. Let $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that $1+\sqrt{-5}$ is irreducible but not prime in R.
(b) Prove that the ideal $(2,1+\sqrt{-5}) \subseteq R$ is not principal but that I^{2} is principal.
9. (a) Let R be a commutative ring with identity. Prove that R is a field if and only if the only ideals of R are $\{0\}$ and R.
(b) Give an example of a ring that has exactly three ideals.
(c) Let R be a UFD. Prove that if $a \in R$ is irreducible, then a is a prime element of R.
10. Let T be an $n \times n$ matrix over the real numbers with the property that $T^{2}=T$.
(a) Show that for each vector $\mathbf{v} \in \mathbb{R}^{n}$, there is a vector a in the column space of T and a vector \mathbf{b} in the null space of T such that $\mathbf{v}=\mathbf{a}+\mathbf{b}$.
(b) Prove that the vectors \mathbf{a} and \mathbf{b} in part (a) are unique.
(c) Show that T is diagonalizable, and give a diagonal matrix similar to T.

