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State Spaces

The Set of Possible Assignments

Review. Given constraint model M = (V ,D,C ), A(V )
denotes the set of all possible assignments a over V .

Cartesian Product Representation:
A(V ) = D1 × D2 × · · · × Dn.

A(V ) is called the state space or solution space, since
elements of A(V ), i.e. assignments, are candidates for
providing a model solution.
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State Space Example: Finding a Hamilton Path
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Figure: Hamilton Path (green edges) for the Peterson Graph
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State Space Example: Finding a Hamilton Path

Problem Model for Graph G = ({1, . . . , n},E )

Variables. Boolean xij , for each (i , j) ∈ E .

Tree Constraint.
Tree({1, . . . , n}, {(i , j)|xij is assigned true}). In other words,
the graph whose vertices are {1, . . . , n}, and whose edges are
those edges (i , j) ∈ E for which xij is assigned true, must have
a tree structure.

Degree Bound Constraints. For each i = 1, . . . , n,∑
{j |(i ,j)∈E}

xij ≤ 2.

State Space. {0, 1}m, where m = |E |; i.e. the set of binary
strings of length m.
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State-Space Graphs

Graph Terminology for State Space S

Neighborhood function: ν : S → subset(S) maps each state
to a subset of neighboring states, called the neighborhood
of S .

State-space graph G (S): A graph whose vertex set is S and
whose edge set is {(s, t)|s ∈ S and t ∈ ν(s)}
Local path: a sequence of states s0, s1, . . . , sk ∈ S , where
si ∈ ν(si−1), for all i = 1, . . . , k . In other words, a directed
path of G (S).

Solution state: a state s ∈ S (when viewed as a variable
assignment) that satisfies all model constraints.

Local search: searching for solution states within S by
traversing G (S) along its edges.
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State-Space Graph Example

Problem Definition

Variables: Boolean x , y , z

Constraint: x ∧ y ∧ z

State Space: {0, 1}3

Neighborhood function: ν(s) is the set of strings that differ
in one bit place with s.

Solution state: s = (x = 1, y = 1, z = 1)
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State-Space Graph Example
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Figure: Local path (in red) leading from state 000 to solution state 111
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Transition Models

A transition model for a state-space graph is a means for
determining the next state of a local-search path given the current
state.

Markov-Chain Transition Models

Markov-Chain Transition Model. The next state only
depends on knowledge of the current state s according to
some fixed conditional probability distribution p(|s) over ν(s).
p(y |x): probability of transitioning to state y ∈ ν(x) on
condition current state is x .
p(x → y): weight assigned to state y ∈ ν(x) to reflect the
likelihood of transitioning from x to y . p(x →) not necessarily
a probability distribution.
π0: a probability distribution over S where π0(s) is the
probability that s will be chosen as the initial state of a
local-search path.
Time homogeneous (or stationary) Markov chain. The
transition probabilities stay constant over time.
Path probability. Given L = x0, x1, . . . , xn,
p(L) = π0(x0)p(x1|x0) · · · p(xn|xn−1).
Stochastic Search. The general term used to describe search
techniques where state changes are based on random factors.
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Transition Model Examples

Random Walk

For a random walk search, ν(x) is given the uniform distribution.
For example, if |ν(x)| = m, then p(y |x) = 1/m, for all y ∈ ν(x).

Hill Climbing

Let H : S → R a function such that H(s) ≥ 0 measures how close
s is to a solution state (the lower the measure, the closer to a
solution state). Then hill climbing local search assigns
p(y |x) = 1, where y = argmin

z∈ν(x)
(h(z)). In other words, then next

state is chosen as the one measured closest to a solution state.

Todd Ebert Local Search Algorithms
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Viewing Stochastic Local Search with Markov-Chains

Markov-Chain State Transition Model

Given a finite set of states {1, . . . , n}, a Markov-chain
state-transition model is an n × n matrix P, where entry Pij is
the probability of transitioning from state i to state j .

Markov-chain Example

States: {1 = no rain, 2 = rain}.
State Transition: moving from one day to the next.

State-Transition matrix.

P =

(
0.8 0.2
0.5 0.5

)

Todd Ebert Local Search Algorithms
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States: {1 = no rain, 2 = rain}.

State Transition: moving from one day to the next.

State-Transition matrix.

P =

(
0.8 0.2
0.5 0.5

)
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Markov-Chains Can Use Both Past and Present

Markov-chain Example

States:
{(no rain, no rain), (no rain, rain), (rain, no rain), (rain,rain)}.
State Interpretation. For example, (no rain, rain) means
“no rain yesterday, but rain today”.

State-Transition Matrix P

(nr, nr) (nr, r) (r, nr) (r,r)

(nr,nr) 0.85 0.15 0 0
(nr, r) 0 0 0.6 0.4
(r, nr) 0.65 0.35 0 0
(r, r) 0 0 0.7 0.3
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Predicting Further into the Future

t-Step Transition Matrix Pt

The t-step transition matrix Pt is defined so that Pt
ij represents

the probability of being in state j t steps after being in state i .

Proposition 1

Pt = P · P(t−1). In other words, the t-step transition matrix is
obtained by multiplying the one-step matrix with the (t − 1)-step
matrix.
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Proof of Proposition 1: t = 2 Basis Step

Let Si , i = 0, 1, 2, . . ., be the current state at time i . Then for
t = 2,

P2
ij = p(S2 = j |S0 = i) =

n∑
k=1

p(S2 = j |S1 = k ,S0 = i)p(S1 = k |S0 = i) =

n∑
k=1

p(S2 = j |S1 = k)p(S1 = k |S0 = i) =
n∑

k=1

PikPkj ,

which is obtained by taking the inner product of row i of P with
column j of P. Thus, P2 = P · P.



Proof of Proposition 1: Inductive Step

Now assume the result holds for some t ≥ 2. We show that it is
also true for t + 1.

P
(t+1)
ij = p(S(t+1) = j |S0 = i) =

n∑
k=1

p(S(t+1) = j |St = k ,S0 = i)p(St = k |S0 = i) =

n∑
k=1

p(S(t+1) = j |St = k)p(St = k |S0 = i) =
n∑

k=1

PikP
t
kj ,

which is obtained by taking the inner product of row i of P with
column j of Pt . Thus, P(t+1) = P · Pt , and the proposition is
proved by induction on t.
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t-Step Transition Weather Example

P2 =

(
0.8 0.2
0.5 0.5

)(
0.8 0.2
0.5 0.5

)
=

(
0.74 0.26
0.65 0.35

)

P4 =

(
0.74 0.26
0.65 0.35

)(
0.74 0.26
0.65 0.35

)
=

(
0.7166 0.2834
0.7085 0.2915

)

Interpretation of P4

If it is not raining today, then there is a 71.66% chance of no
rain in 4 days.

If it is raining today, then there is a 29.15% chance of rain in
4 days.
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Ergodic Markov-Chains

Some Convenient State Graph Properties for G (S)

Finite States. S is said to be a finite state space iff |S | <∞.

Undirected. G (S) is said to be undirected iff, for all states
s, t ∈ S , t ∈ ν(s) and p(t|s) > 0 iff s ∈ ν(t) and p(s|t) > 0.

Self Transitioning. G (S) is said to be self-transitioning iff,
for all s ∈ S , s ∈ ν(s) and p(s|s) > 0.

Irreducible. G (S) is connected iff there is a
(positive-probability) path from any one state to any other
state.
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Ergodic Markov-Chains

Ergodicity

A Markov-chain with the first three properties is said to be
ergodic, since, when transitioning from any state s ∈ S , the
expected time that will elapse before the system returns to s is
finite, and a return to s can occur after t steps, for any t ≥ 1

Todd Ebert Local Search Algorithms



Introduction
Markov-Chains

Simulated Annealing
Genetic Algorithms
WalkSAT Algorithm

Fundamental Theorem of Markov Chains

Stationary Distributions

Given a Markov-chain matrix P, a probability distribution π over S
is called stationary (or an equilibrium distribution) provided that
π = π · P, where π is viewed as a 1× n vector/matrix. Thus, the
probability of being in state i , i = 1, . . . , n, after t steps is
independent of t and is given by π(i).
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Fundamental Theorem of Markov Chains

Fundamental Theorem of Irreducible, Ergodic Markov Chains

Let P be the transition matrix for a finite, irreducible, ergodic
Markov chain. Then associated with P is a unique stationary
distribution π for which

πi = lim
t−>∞

Pt
ji = 1/si ,

for all j = 1, 2, . . . n, and where si is the expected number of steps
it takes for a random walk beginning at state i to return to state i .
Moreover, π satisfies the equation π = π · P. Conversely, if an
irreducible, ergodic Markov chain’s transition matrix satisfies such
an equation, for some distribution π, then π is the chain’s
stationary distribution.
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Stationary Distribution for the Weather Example

Let π = (x , y). Then

(x , y) = (x , y)

(
0.8 0.2
0.5 0.5

)
⇒ x = 0.8x + 0.5y ⇒ x = 5y/2

by equating the first components of both sides. Since x + y = 1,
This yields

5y/2 + y = 7y/2 = 1⇒ y = 2/7 and x = 5/7.

Stationary Distribution Interpretation

Regardless of today’s weather, the probability that it will be not be
raining in exactly one year from today (or some other day in the
distant future) is approximately 5/7.
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Markov Chain Master Equation

Master Equation Corollary for P with Stationary Distribution π

For every i ∈ S ,

π(i)
∑
j∈S

Pij =
∑
j∈S

π(j)Pji

Proof of Master Equation

Simply note that the left side is the i th component of π, while the
right side is the i th component of π · P.
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Markov Chain Master Equation

Interpretation: Conservation of State

For each i ∈ S , the Master Equation states that the probability of
the event that the system transitions into state i equals the
probability of the event that the system transitions out of state i .
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Markov Chain Detailed-Balance Equation

Detailed-Balance Equation Corollary for Markov Chain P

If for every i , j ∈ S ,
π(i)Pij = π(j)Pji ,

then π is the stationary distribution for P.

Proof of Detailed-Balance Corollary

By fixing i and summing both sides over j , one obtains the Master
Equation. Hence, the Master-Equation Corollary implies that π is
the stationary distribution.
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Markov Chain Detailed-Balance Equation

Interpretataion: Conservation of Inter-State Transitions

For each i , j ∈ S , probability that system is in state i and then
transitions to state j equals the probability that system is in state j
and transitions to state i .
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Hastings-Metropolis Algorithm

Eating the π that You Desire

Given Markov Chain P, desired state distribution π, and i , j ∈ S ,
define α(i , j) and α(j , i) so that

π(i)α(i , j)Pij = π(j)α(j , i)Pji ,

where, e.g. α(i , j) = 1 in the case that π(i)Pij ≤ π(j)Pji .
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Hastings-Metropolis Algorithm

Hastings-Metropolis Algorithm

When in state i , apply transition matrix P to generate
candidate next-state j .

Generate a random real number U from interval [0, 1].

If U ≤ α(i , j), transition to next state j . Otherwise, remain in
(next) state i .
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Hastings-Metropolis Example

P =

 0.4 0.2 0.4
0.25 0.5 0.25
0.8 0.2 0


Desired Distribution: π = (1/3, 1/3, 1/3).

(1/3)α(1, 2)(0.2) = (1/3)α(2, 1)(0.25)⇒ α(1, 2) = 1 , α(2, 1) = 4/5

(1/3)α(1, 3)(0.4) = (1/3)α(3, 1)(0.8)⇒ α(1, 3) = 1 , α(3, 1) = 1/2

(1/3)α(2, 3)(0.25) = (1/3)α(3, 2)(0.2)⇒ α(2, 3) = 4/5 , α(3, 2) = 1
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Hastings-Metropolis Example

Final α Matrix

P =

 0.4 0.2 0.4
0.25 0.5 0.25
0.8 0.2 0

 α =

 1 1 1
4/5 1 4/5
1/2 1 1



Example Uses of P and α

Current state: i = 3. Next-state candidtate: j = 1. Generate
random real: U = 0.631. U > α(3, 1)⇒ next state remains
i = 3.

Current state: i = 2. Next-state candidtate: j = 3. Generate
random real: U = 0.417. U ≤ α(2, 3)⇒ next state is 3.
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Choosing the Stationary Distribution

The General Problem

Given state space S , some states represent solution states.
Therefore, these states should be assigned higher stationary
probabilities.

Two Step Approach

1 Define a proximity function H : S → R, for which H(s) ≥ 0
measures how close s is to being a solution, with H(s) = 0 iff
s is a solution.

2 Define the stationary probability π(s) in terms of H(s), where
π(s) decreases as H(s) increases..
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s is a solution.

2 Define the stationary probability π(s) in terms of H(s), where
π(s) decreases as H(s) increases..
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Simulated Annealing Stationary Distribution

A Distribution Inspired from Physics

π(s) =
exp(−H(s)

T )∑
t∈S

H(t)
,

where T > 0 is a temperature parameter .

The Annealing Process

Annealing is a heating method for creating metals with
desirable physical properties.
Metal is heated to a temperature below its melting point, but
high enough so that the crystalline lattice structures within
the metal break apart.
The Crystalline structures re-form and grow larger the more
slowly the metal is cooled.
These structures correspond with a low-energy state.
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Crystalline Structures in Metals

Polonium Crystals

Figure: Polonium Metal Crystals
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Simulated Annealing Stationary Distribution

Notes on Using the Distribution

Symmetry of P. P is assumed symmetric; i.e. Pij = Pji .

Temperature parameter T is successively lowered according to
a cooling schedule.

Higher temperatures produce more uniform-looking
distributions. True since, if H(s) < H(t), then
π(s)/π(t) = exp((H(t)− H(s))/T )→ 1 as T →∞.

Lower temperatures produce distributions more concentrated
about low H(s) states. True since, if H(s) < H(t), then
π(s)/π(t) = exp((H(t)− H(s))/T )→∞ as T → 0.
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Simulated Annealing Algorithm

Generate an Initial State s0
Initialize T0 =∞

While a solution state has not been found at step k ≥ 0
Use P to generate a next state j from current state i .
If j is a solution state, then return j .
If H(j) ≤ H(i), then transition to next state j .
Otherwise

Generate random U ∈ [0, 1]
If U ≤ exp((H(i)− H(j))/Tk),

then transition to next state j
Otherwise remain in state i

Tk+1 = cooling function(k + 1)
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Cooling Techniques

Geman and Geman’s Theorem

A necessary and sufficience condition for a having a probability of
one of ending in a global optimum is that the temperature
decreases more slowly than

T =
a

b + log(t)
,

with a and b being problem-dependent constants, and t is the
number of steps.
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Cooling Techniques

Popular Cooling Schedules

Linear Cooling: T = a− bt, where a is the initial
temperature, and b is usually chosen within the range of
[0.01, 0.2].

Exponential Cooling: T = a · bt , where a is the initial
temperature, and b is usually chosen within the range of
[0.8, 0.99].
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Simulated Annealing and Finding Model Solutions

Proximity Function H

Given P = (V ,D,C ) and assignment (i.e. state) a ∈ A(V )

H(a) =
∑
c∈C

hc(a),

where hc(a) measures how close constraint c is to being satisfied
by a.

Todd Ebert Local Search Algorithms
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Example: Hamilton Path Problem for Graph G = (V ,E )

Defining the Proximity Functions

Let Ga = (V ,Ea) denote the graph whose edge set Ea consists of
those edges in e ∈ E for which a(xe) = 1.

Tree Constraint c. hc(a) = n(C − 1) + ||Ea| − n + 1|, where
C is the number of connected components of Ga, and n = |V |.
Degree Constraint c for each vertex v . Let dega(v) denote
the degree of v in Ga. Then hc(a) equals 0 if dega(v) ≤ 2.
Otherwise hc(a) = deg(v)− 2.
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Example: Hamilton Path Problem for Graph G = (V ,E )

Assignment a: Ea consists of all green edges.
Tree Constraint c: hc(a) = 10(2) + (9− 7) = 22.
Degree Constraint c: violated by vertex 6. hc(a) = (3− 2) = 1,
for vertex 6, and hc(a) = 0 for all other vertices.

1

2

34

5 6

7

89

10

Figure: H(a)=22+1 = 23Todd Ebert Local Search Algorithms
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Enhancements to Simulated Annealing

Escaping Local Minima and Speeding up Convergence

Tabu States. Tabu states are recently-visited states that
should are avoided in the near future so as to promote more
variation in the search path. For example, a tabu number of
five would prevent the return to a state that had beeen visited
in the past five steps.
Simulated Tempering. Rather than allowing the
temperature to continually decrease, simulated tempering
treats the temperature as a state space that can be navigated
via a Markov-chain model. This allows for gradual
temperature fluctuations, which can assist in the escaping of
local minima.
Swapping. Instead of a single state-graph path, r such paths
are generated in parallel, where the path temperatures are
uniformly distributed. State transitions of paths alternate with
swapping the states of two paths. This allows for states to be
subjected to different temperatures which can help escape
local minima.
Hybrid Tree Search. The root of the search tree r ∈ S is
chosen randomly. Given visited state x , its children are states
y ∈ ν(x) for which H(y) < H(x). If no such y exists, then x
is a leaf. Otherwise, with probabiliy px randomly choose a
child to visit next, and with probability 1− px backtrack to
the parent of x , where px increases as H(x) decreases.
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Assessment of Simulated Annealing

Advantages

Based on a well-developed mathematical theory.
Local state transitions allow one to zoom in on increasingly
improved states.

Disadvantages

Local state transitions means that one cannot immediately
“jump” to more promising regions of the state space.
There is a propensity under low temperatures to become
trapped in sub-optimal regions due to the lack of neighobors
who offer improvement to the objective functions.
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Finding the Tallest Peak in the Grand Canyon

Figure: Challenging Search Problem: Find the Tallest Peak!
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5 WalkSAT Algorithm
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The Genetic Algorithm

Overview

The Genetic Algorithm is a general optimization algorithm that
maintains an entire population of current states initially distributed
throughout the state space. State changes occur by combining
existing states to form new states via the use genetic operators.

Philosophy of the Genetic Algorithm

States that are closer to being solutions (according to proximity
function H) encode partial information about a solution to the
problem. By combining the information from two such states, one
can perhaps produce new states that are in closer proximity to a
solution.
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The Genetic Algorithm

Terminology

The constraint-model variables V is the set of genes. The
variable domain values are called alleles, and represent the set
of possible ways to realize a particular gene.

The state space S is now called the genotype space, and
represents the set of possible combinations of alleles. A
member of the genotype space is called an individual.

The proximity function H is now replaced by a fitness
function f : S → R, where f (s) indicates the degree to which
individual s is fit to being a solution.

At time t = 0, 1, . . . the genetic algorithm maintains a
population Pt of M individuals, where M is typically in the
tens or hundreds of individuals.

Todd Ebert Local Search Algorithms



Introduction
Markov-Chains

Simulated Annealing
Genetic Algorithms
WalkSAT Algorithm

The Genetic Algorithm

Terminology

The constraint-model variables V is the set of genes. The
variable domain values are called alleles, and represent the set
of possible ways to realize a particular gene.

The state space S is now called the genotype space, and
represents the set of possible combinations of alleles. A
member of the genotype space is called an individual.

The proximity function H is now replaced by a fitness
function f : S → R, where f (s) indicates the degree to which
individual s is fit to being a solution.

At time t = 0, 1, . . . the genetic algorithm maintains a
population Pt of M individuals, where M is typically in the
tens or hundreds of individuals.

Todd Ebert Local Search Algorithms



Introduction
Markov-Chains

Simulated Annealing
Genetic Algorithms
WalkSAT Algorithm

The Genetic Algorithm

Terminology

The constraint-model variables V is the set of genes. The
variable domain values are called alleles, and represent the set
of possible ways to realize a particular gene.

The state space S is now called the genotype space, and
represents the set of possible combinations of alleles. A
member of the genotype space is called an individual.

The proximity function H is now replaced by a fitness
function f : S → R, where f (s) indicates the degree to which
individual s is fit to being a solution.

At time t = 0, 1, . . . the genetic algorithm maintains a
population Pt of M individuals, where M is typically in the
tens or hundreds of individuals.

Todd Ebert Local Search Algorithms



Introduction
Markov-Chains

Simulated Annealing
Genetic Algorithms
WalkSAT Algorithm

The Genetic Algorithm

Terminology

The constraint-model variables V is the set of genes. The
variable domain values are called alleles, and represent the set
of possible ways to realize a particular gene.

The state space S is now called the genotype space, and
represents the set of possible combinations of alleles. A
member of the genotype space is called an individual.

The proximity function H is now replaced by a fitness
function f : S → R, where f (s) indicates the degree to which
individual s is fit to being a solution.

At time t = 0, 1, . . . the genetic algorithm maintains a
population Pt of M individuals, where M is typically in the
tens or hundreds of individuals.

Todd Ebert Local Search Algorithms



Introduction
Markov-Chains

Simulated Annealing
Genetic Algorithms
WalkSAT Algorithm

The Genetic Algorithm

Terminology

The constraint-model variables V is the set of genes. The
variable domain values are called alleles, and represent the set
of possible ways to realize a particular gene.

The state space S is now called the genotype space, and
represents the set of possible combinations of alleles. A
member of the genotype space is called an individual.

The proximity function H is now replaced by a fitness
function f : S → R, where f (s) indicates the degree to which
individual s is fit to being a solution.

At time t = 0, 1, . . . the genetic algorithm maintains a
population Pt of M individuals, where M is typically in the
tens or hundreds of individuals.
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Description of the Genetic Algorithm

Initializing P0

P0 is obtained by randomly selecting M individuals using some
(usually uniform) distribution π0.

Creating the Next Generation

Given Pt = {s1, . . . , sM}, choose M/2 pairs of individuals,
called parents, from Pt , using the distribution p1, . . . , pM ,
where pi is proportional to fitness f (si ).
With probability pc a set of parents will produce two
offspring individuals to place in Pt+1. With probability
(1− pc), the parents will not have offspring, and themselves
be admitted to Pt+1.
To complete the next generation, each Pt+1 individual is
mutated; meaning that zero or more of its alleles are
randomly changed.
The algorithm is terminated if either a model solution has
been found, or the rate of increase of average population
fitness has fallen below a pre-defined threhsold.
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Offspring Production: Genetic Crossover

Crossover Operator

The crossover operator with crossover point k, 1 ≤ k < n, acts
on two parents p1 and p2 to create two offspring o1 and o2, where
o1 (respectively, o2) is comprised of the first k alleles of p1
(respectively, p2), followed by the last n − k alleles of p2,
(repsectively, p1).

Crossover Example

Parent 1 0 1 0 1 1

Parent 2 1 1 0 0 0

Offspring 1 0 1 0 0 0

Offpring 2 1 1 0 1 1

Figure: Crossover with n = 5, k = 3, and Boolean Alleles
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Offspring Production: Gene Mutation

Mutation Operator

A mutation operator acts on a single individual by changing
zero or more of its alleles via some random process.
Example operator: change each allele independently and with
probability pm, where pm = 1/n.

Mutation Example

Individual 0 1 0 1 1

Mutated Individual 1 1 0 0 1

Figure: Mutated individual with genes 1 and 4 being mutated (in red)
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Genetic Algorithm Example

Genotype Space. Binary strings of length n = 5.

P1 member index si pi
1 00100 1/15
2 00101 2/15
3 11000 2/15
4 01110 1/5
5 10110 1/5
6 01111 4/15

Average fitness = 15/6 =

2.5

fitness function. f (s) = number of one bits of s.

Parent selection and crossover: parent pairs (4, 5), (2, 6), and
(3, 2). Assuming pc = 1, the three crossover points are 1,4, and 2.

Mutation. pm = 1/5; offspring 1,2,3, and 6 had mutations at
respective locations 3,5,1, and 4.
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Genetic Algorithm Example: Crossovers

Offspring of s4 and s5

s4 0 1 1 1 0

s5 1 0 1 1 0

ŝ1 0 0 1 1 0

ŝ2 1 1 1 1 0

Figure: Crossover s4 and s5 with crossover point k = 1.
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Genetic Algorithm Example: Crossovers

Offspring of s2 and s6

s2 0 0 1 0 1

s6 0 1 1 1 1

ŝ3 0 0 1 0 1

ŝ4 0 1 1 1 1

Figure: Crossover s2 and s6 with crossover point k = 4.
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Genetic Algorithm Example: Crossovers

Offspring of s3 and s2

s3 1 1 0 0 0

s2 0 0 1 0 1

ŝ5 1 1 1 0 1

ŝ6 0 0 0 0 0

Figure: Crossover s3 and s2 with crossover point k = 2.
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Genetic Algorithm Example: Mutations

Mutations of ŝ1, ŝ2, ŝ3, and ŝ6 at locations 3,5,1,4

Mutated ŝ1 0 0 0 1 0

Mutated ŝ2 1 1 1 1 1

Mutated ŝ3 1 0 1 0 1

Mutated ŝ6 0 0 0 1 0

Figure: Mutations of Population P1
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Genetic Algorithm Example

Population P1

P0 member index si pi
1 00010 1/18
2 11111 5/18
3 10101 1/6
4 01111 2/9
5 11101 2/9
6 00010 1/18

Average fitness = 18/6 = 3
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Schemata for Boolean Models

Schema Definitions

A schema for Boolean variables/genes x1, . . . , xn, is a string
u ∈ {0, 1, ∗}n. For example, 01 ∗ 1, ∗ ∗ ∗∗, and ∗01∗ are
schemata.
The order o(u) of a schema is the number of bit characters
that it possesses.
Schema length δ(u): distance between first and last bit
characters.
A bit string v ∈ {0, 1}n contains u (written u ⊆ v) provided
u and v agree at each place where u has a bit value.
Given fitness function f defined over {0, 1}n, the average
fitness of schema u, is

f (u) =
1

m(u)

∑
u⊆v

f (v),

where m(u) is the number of bit strings that contain u.
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Schema Example

Schema u = 01 ∗ 1∗

o(u) = 3.

δ(u) = 3.

v1 = 01110 contains u, but v2 = 00110 does not.

Given fitness function f (v) =
n
vi
i=1

, average fitness of u is

(2 + 3 + 3 + 4)/4 = 3.
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Fundamental Theorem of The Genetic Algorithm

Fundamental Theorem of the Genetic Algorithm

Above-average-fitness, low-order, and short schemata will be
contained by an exponentially increasing number of population
members. More specifically,letting m(u, t) denote the number of
population members that contain u at time t, and f denote the
average fitness of the entire population, then

m(u, t + 1) ≥ f (u)

f
[1− pc

δ(u)

(n − 1)
− o(u)pm]m(u, t).
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Proof of the Fundamental Theorem

Claim. The expected number of members who are selected to
reproduce at time t and that contain schema u is equal to
f (u)

f
m(u, t).

Proof of Claim. When randomly selecting a single member to
reproduce, the probability of selecting a member that contains u is
given by ∑

s∈m(u,t) f (s)∑
s∈Pt

f (s)
.

Thus, the expected number of members selected to reproduce is

M

∑
s∈m(u,t) f (s)∑
s∈Pt

f (s)
= M

m(u, t)
∑

s∈m(u,t) f (s)

m(u, t)
∑

s∈Pt
f (s)

=
f (u)

f
m(u, t),

which proves the claim.



Proof of the Fundamental Theorem Continued

Now for each member s that contains u and was chosen to
reproduce at time t, we must calculate the probability that s passes
u to one of its offspring. For this to not happen, it is necessary
that crossover is performed, and the crossover point divides u. The
likelihood of both these events occuring is pc

δ(u)
n−1 . Hence, with

probability 1− pc
δ(u)
n−1 , s will pass u to one of its offspring.

Finally, after s passes u to an offspring, u must survive mutation
within that offspring. The probability of surviving mutation is
(1− pm)o(u) ≥ 1− o(u)pm.

Therefore, the expected number of population members who will
possess u at time t + 1 is at least

f (u)

f
[1− pc

δ(u)

n − 1
][1− o(u)pm]m(u, t),

and the result follows via multiplication and dropping the lowest
order term.
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Applying Local Search to CNF-SAT

CNF-SAT Problem Definition

Variables. Boolean variables V = {x1, . . . , xn}.
Constraints. Each constraint c has the form
(l1 ∨ l2 ∨ · · · ∨ lk), where each li , 1 ≤ i ≤ k, is a literal, i.e.
either a variable or its negation.

WalkSAT Local-Search Algorithm

Introduced by B. Selman, H. Katz, and B. Cohen in 1994.
Local Neighborhoods. For each assignment a ∈ A(V ),
â ∈ ν(a) iff â(x) = a(x) for all but one variable x ∈ V .
Transition Rule. Randomly select c ∈ C violated by a. With
probability p, change a(x) for randomly chosen x ∈ var(c).
With probability (1− p), greedily change x ∈ c , where x
maximizes the number of constraints that become satisfied
due to changing x , minus those constraints that become
violated by changing x .
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due to changing x , minus those constraints that become
violated by changing x .
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Applying Local Search to CNF-SAT

CNF-SAT Problem Definition

Variables. Boolean variables V = {x1, . . . , xn}.
Constraints. Each constraint c has the form
(l1 ∨ l2 ∨ · · · ∨ lk), where each li , 1 ≤ i ≤ k, is a literal, i.e.
either a variable or its negation.

WalkSAT Local-Search Algorithm

Introduced by B. Selman, H. Katz, and B. Cohen in 1994.
Local Neighborhoods. For each assignment a ∈ A(V ),
â ∈ ν(a) iff â(x) = a(x) for all but one variable x ∈ V .
Transition Rule. Randomly select c ∈ C violated by a. With
probability p, change a(x) for randomly chosen x ∈ var(c).
With probability (1− p), greedily change x ∈ c , where x
maximizes the number of constraints that become satisfied
due to changing x , minus those constraints that become
violated by changing x .

Todd Ebert Local Search Algorithms


	Introduction
	Markov-Chains
	Simulated Annealing
	Genetic Algorithms
	WalkSAT Algorithm

