Sampling Random Variables

Introduction

Sampling a random variable X means generating a domain value $x \in X$ in such a way that the probability of generating x is in accordance with $p(x)$ (respectively, $f(x)$), the probability distribution (respectively, probability density) function associated with X. In this lecture we show how being able to sample a continuous uniform random variable U over the interval $(0,1)$ allows one to sample any other distribution of interest. Moreover, an algorithm for sampling from a $U \sim \mathcal{U}(0,1)$ is referred to as a pseudorandom number generator (png). The development of good png's is both an art and science, and relies heavily on developing a sequence of operations on one or more binary words in order to produce the next random number between $(0,1)$ (actually, a positive integer x is generated, and then divided by a large constant $y \geq x$ to produce $x / y \in(0,1))$. These operations include arithmetic modulo a prime number, register shifts, register feedback techniques, and logical operations, such as and, or, and xor. Once a set of operations has been developed to form a png, the number sequences generated by the png are tested using several different statistical tests. The tests are used to confirm different properties that should be found in a sequence of numbers, had that sequence been drawn independently and uniformly over $(0,1)$.

In this lecture we assume that we have access to a good png for generating independent samples of random variable $U \in \mathcal{U}(0,1)$. Throughout the remaining lectures, assume that variable U represents a $\mathcal{U}(0,1)$ random variable.

Sampling Finite and Discrete Random Variables

Sampling a Bernoulli random variable

If

$$
X= \begin{cases}1 & \text { if } U \leq p \\ 0 & \text { otherwise }\end{cases}
$$

then $X \sim B e(p)$ since 1 will be sampled with probability p, and 0 will be sampled with probability $1-p$.

Discrete inverse transform technique

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a random variable with probability distribution p, and where $x_{1} \leq \cdots \leq x_{n}$. Define

$$
q_{i}=P\left(X \leq x_{i}\right)=\sum_{j=1}^{i} p\left(x_{j}\right)
$$

Then the following is a sampling formula for X.

$$
X= \begin{cases}x_{1} & \text { if } U<q_{1} \\ x_{2} & \text { if } q_{1} \leq U<q_{2} \\ \vdots & \vdots \\ x_{n-1} & \text { if } q_{n-2} \leq U<q_{n-1} \\ x_{n} & \text { otherwise }\end{cases}
$$

Indeed $X=x_{i}$ in the event that $q_{i-1} \leq U<q_{i}$, which has probability $p=q_{i}-q_{i-1}=p\left(x_{i}\right)$. This technique is referred to as the discrete inverse transform technique, since it involves computing $F^{-1}(U)$, where F is the CDF of X. Of course, since F is not one-to-one in the case that X is finite, here $F^{-1}(U)$ is defined as the least element $x \in X$ for which $U<F(x)$.

The Cutpoint method

This inverse-transform method has the advantage of having an optimal $O(n)$ setup time. However, the average number of steps required to sample X is not optimal, and if several samples of X are needed, then the cutpoint method offers an average number of two comparison steps needed to sample an observation, yet still has an $O(n)$ initial setup time.

Without loss of generality, we can assume that $X=[1, n]$. Also, let $q_{i}=P(X \leq i)$. Then the idea behind the cutpoint method is to choose $m \geq n$, and define sets Q_{1}, \ldots, Q_{m} for which

$$
Q_{i}=\left\{q_{j} \mid j=F^{-1}(U) \text { for some } U \in\left[\frac{i-1}{m}, \frac{i}{m}\right)\right\}
$$

for all $i=1, \ldots, m$. In words, the unit interval $[0,1]$ is partitioned into m equal sub-intervals of the form $\left[\frac{i-1}{m}, \frac{i}{m}\right), i=1, \ldots, m$. And when U falls into the i th sub-interval, then Q_{i} contains all the possible q_{j} values for which $F^{-1}(U)=j$. That way, instead of searching through all of the q values, we save time by only examining the q_{j} values in Q_{i}, since these are the only possible values for which $F^{-1}(U)=j$.

The algorithm is now described as follows. sample $U \sim U(0,1)$, and let $i=\lceil m U\rceil$. Then (assuming Q_{i} is sorted) find the first $q_{j} \in Q_{i}$ for which $U<q_{j}$. Return j.

Example 1. Given the distribution (.2,.05,.02,.03,. $3, .25, .1, .05$) and using $m=8$, compute the sets Q_{1}, \ldots, Q_{8}.

Theorem 1. Assuming $m \geq n$, the expected number of q values that must be compared with U during the cutpoint algorithm is bounded by two. Therefore, sampling X can be performed in $\mathrm{O}(1)$ steps.

Proof of Theorem 1. Upon sampling U, let $E_{i}, i=1, \ldots, m$ denote the event that $U \in\left[\frac{i-1}{m}, \frac{i}{m}\right)$. Also, denote by r the number of Q sets for which $|Q| \geq 2$. Moreover, if R denotes the set of indices i for which $\left|Q_{i}\right| \geq 2$, then we claim that

$$
\sum_{i \in R}\left|Q_{i}\right| \leq n+r
$$

To see this, first notice that each such Q_{i} must contain at least one q value for which $q \notin Q_{j}$, for all $j=1, \ldots, i-1$. Moreover, there can be at most r instances where an element of $Q_{i}, i \in R$, also appears in $Q_{i+1}, i+1 \in R$. In other words, in the worst case all n elements are contained in some $Q_{i}, i \in R$, and there can be at most r elements that are double counted.

Now, let C be a random variable that counts the number of comparisons of U with a q value. Then,

$$
\begin{gathered}
E[C]=\sum_{i=1}^{n} E\left[C \mid E_{i}\right] P\left(E_{i}\right) \leq \frac{1}{m} \sum_{i=1}^{m}\left|Q_{i}\right|=\frac{1}{m}\left(\sum_{i \in R}\left|Q_{i}\right|+\sum_{i \in \bar{R}}\left|Q_{i}\right|\right) \\
\leq \frac{1}{m}[(n+r)+(m-r)]=\frac{1}{m}(n+m) \leq \frac{2 m}{m}=2
\end{gathered}
$$

Here we are using the facts that i) $|\bar{R}|=m-r$ and ii) $\left|Q_{i}\right|=1$ for all $i \in \bar{R}$.

Theorem 2: Geometric Random Variables. If $U \sim U(0,1)$, then

$$
X=\left\lfloor\frac{\ln U}{\ln q}\right\rfloor+1 .
$$

has a geometric distribution with parameter $p=1-q$; i.e. $X \sim G(p)$.

Proof. First sample $U \sim U(0,1)$. Then return k, where

$$
\begin{equation*}
\sum_{n=1}^{k-1}(1-p)^{n-1} p \leq U<\sum_{n=1}^{k}(1-p)^{n-1} p \tag{1}
\end{equation*}
$$

Then using the formula for geometric series

$$
\sum_{n=1}^{k} a r^{n-1}=a \frac{r^{k}-1}{r-1}
$$

some algebra shows that Equation 1 implies

$$
\begin{gathered}
1-(1-p)^{k-1} \leq U<1-(1-p)^{k} \Rightarrow \\
(1-p)^{k}<1-U \leq(1-p)^{k-1}
\end{gathered}
$$

Taking logs of all sides and dividing by the negative number $\ln (1-p)$ then yields

$$
\begin{gathered}
k-1 \leq \frac{\ln (1-U)}{\ln (1-p)}<k \Rightarrow \\
k=\left\lfloor\frac{\ln (1-U)}{\ln (1-p)}\right\rfloor+1
\end{gathered}
$$

Finally, letting $q=1-p$, and noting that $1-U$ is also uniformly distributed over $[0,1]$, we have

$$
k=\left\lfloor\frac{\ln U}{\ln q}\right\rfloor+1 .
$$

QED

Binomial $B(n, p)$. If $X \sim B(n, p)$ then an observation of X can be sampled by summing n indepenent Bernoulli random variables X_{1}, \ldots, X_{n}. Note that the generating cost is $O(n)$. Also, the cutpoint method may also be used. Or if $q=\min (p, 1-p)$ is very small, then one can use a sum of geometric random variables with the expected number of steps equal to $O(q n)$.

Poisson $P(\lambda)$. Similar to a binomial random variable, an observation for a Poisson random variable can be sampled by simulating the arrival of customers over a unit time interval for which their interarrival distribution is $E(\lambda)$. The sampled value equals the number of arrivals. Also, a modified version of the cutpoint method may be used in which the cumulative probabilities q_{i} are computed so long as $q_{i} \leq 1-1 / n$, where n is large and equal to the number of desired samples. Then, should $U>1-1 / n$ occur, one may compute additional q_{i} values as needed.

Negative Binomial $N B(r, p)$. If $X \sim N B(r, p)$ then an observation of X can be sampled by summing r geometric random variables X_{1}, \ldots, X_{r}.

Hypergeometric $H G(m, n, r) . X \sim H G(m, n, r)$ can be sampled by creating an array a_{0} of length $m+n$ in which m cells are marked as blue, and the remaining cells are marked as red. Then array $a_{i}, i=1, \ldots, r$, is obtained by considering a_{i-1} and swapping the marking of cell i with the marking of a randomly selected cell from $i, i+1, \ldots, m+n$. Then X equals the number of the first r cells of a_{r} that are marked as blue.

Inverse Transform Technique

Theorem 3. Let X be a continuous random variable with cdf $F(x)$ which possesses an inverse F^{-1}. Let $U \sim U(0,1)$ and $Y=F^{-1}(U)$, then $F(x)$ is the cdf for Y. In other words, Y has the same distribution as X.

Proof. It suffices to show that Y has the same cdf as X. Letting F and F_{Y} denote the respective cdf's of X and Y respectively.Then

$$
\begin{gathered}
F_{Y}(x)=P(Y \leq x)=P\left(F^{-1}(U) \leq x\right)=P\left(F\left(F^{-1}(U)\right) \leq F(x)\right)= \\
P(U \leq F(x))=F(x)
\end{gathered}
$$

where the last equality follows from the fact that $U \sim U(0,1)$, and the third-to-last equality follows from the fact that F is strictly increasing.

Corollary. Let $U \sim \mathcal{U}(0,1)$ be a uniform random variable. Then the following random-variables have the indicated distributions.

Uniform $X \sim U(a, b) \quad X=a+U(b-a)$
Exponential $X \sim E(\lambda) \quad X=-\ln (U) / \lambda$
Weibull $X \sim W e(\alpha, \beta, \nu) \quad X=\nu+\alpha[-\ln (U)]^{1 / \beta}$
Triangular $X \sim T(a, b, c)$

$$
X= \begin{cases}a+\sqrt{U(b-a)(c-a)} & \text { if } U \leq \frac{b-a}{c-a} \\ c-\sqrt{(1-U)(c-a)(c-b)} & \text { otherwise }\end{cases}
$$

Cauchy $X \sim C\left(\mu, \sigma^{2}\right) X=\mu+\sigma \tan \pi\left(U-\frac{1}{2}\right)$

Example 2. Prove the corollary for the uniform, exponential, and Cauchy cases.

Example 2 Continued.

Empirical Cumulative Distribution Functions With Linear Interpolation

Empirical cdf's are used to model continuous distributions. Let $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ be a sorted collection of n data points where each $x_{i} \in[a, \infty)$ for some real number a. Then the empirical cdf $F(x)$ with linear interpolation is defined in the following steps.

1. Given $x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, let i be the largest index for which $x=x_{i}$ then $F(x)=\frac{i}{n}$
2. $F(x)=0$ for all $x \leq a$
3. $F(x)=1$ for all $x \geq x_{n}$
4. if $x \in\left(a, x_{1}\right)$, then $F(x)=\frac{F\left(x_{1}\right)}{x_{1}-a}(x-a)$
5. if $x \in\left(x_{i}, x_{i+1}\right)$, then $F(x)=F\left(x_{i}\right)+\frac{\left(x-x_{i}\right)\left[F\left(x_{i+1}\right)-F\left(x_{i}\right)\right]}{\left(x_{i+1}-x_{i}\right)}$

Example 3. Let $a=0$ and suppose $1,1,2,5,7$ are 5 data points. Sketch a graph of the empirical cdf $F(x)$ with linear interpolation with respect to this data. Compute the following: $F(-1), F(.3)$, $F(2), F(4), F(8)$.

Sampling an empirical cdfs with linear interpolation. Let $F(x)$ be an empirical cdf with linear interpolation with respect to data $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, where each $x_{i} \in[a, \infty)$. Then the following procedure can be used sample a value for random variable X, where X has cdf $F(x)$.

1. sample random U where $U \sim U(0,1)$
2. if $U=0$ return a.
3. else if $U=F\left(x_{i}\right)$ for some $1 \leq i \leq n$, then return x_{i}
4. else if $U<F\left(x_{1}\right)$ then return

$$
a+\left(x_{1}-a\right) \frac{U}{F\left(x_{1}\right)}
$$

5. else $F\left(x_{i}\right)<U<F\left(x_{i+1}\right)$, and return

$$
x_{i}+\left(x_{i+1}-x_{i}\right) \frac{\left(U-F\left(x_{i}\right)\right)}{\left(F\left(x_{i+1}\right)-F\left(x_{i}\right)\right)}
$$

Example 4. For the cdf of Example 3, what values for X get sampled for values of $U=.1, .5, .8$?

Acceptance-Rejection Method

Theorem 4: Acceptance-Rejection (AR) Method. Let f and η be density functions over set $S \subseteq \mathcal{R}$ with property that

$$
\kappa(f, \eta)=\max _{x \in S} \frac{f(x)}{\eta(x)}
$$

is finite. Then if one repeatedly samples a value $x \in S$ using density η, followed by sampling $U \sim \mathcal{U}(0,1)$, until it is true that

$$
U \leq \frac{f(x)}{\kappa(f, \eta) \eta(x)}
$$

(in which case we say that x has been accepted), Then the accepted value has density function $f(x)$.

Proof. Let A denote the event $U \leq \frac{f(x)}{\kappa(f, \eta) \eta(x)}$, and $k(x \mid A)$ denote the conditional density of x given A. Then using Baye's rule,

$$
\begin{equation*}
k(x \mid A)=\frac{P(A \mid x) \eta(x)}{P(A)} \tag{2}
\end{equation*}
$$

But

$$
P(A \mid x)=\frac{f(x)}{\kappa(f, \eta) \eta(x)}
$$

Moreover,

$$
P(A)=\int_{S} P(A \mid x) \eta(x) d x=\int_{S} \frac{f(x)}{\kappa(f, \eta) \eta(x)} \eta(x) d x=\int_{S} \frac{f(x)}{\kappa(f, \eta)} d x=\frac{1}{\kappa(f, \eta)},
$$

where the last equality follows from the fact that $f(x)$ is a density function. Substituting for $P(A \mid x)$ and $P(A)$ in Equation 2 yields the desired result.

Example 5. Random variable X having density $f(x)=\sqrt{\frac{2}{\pi}} e^{-x^{2} / 2}$ is said to have the half normal distribution, since the density function represents the positive half of the standard normal density. Using $\eta(x)=e^{-x}$, determine the average number of U samples that are needed in order to sample a value of X using the AR method.

Example 6. Recall that the gamma distribution $\mathrm{Ga}(1, \alpha)$, for $0<\alpha<1$ has density function $e^{-x} x^{\alpha-1} / \Gamma(\alpha)$. Using $\eta(x)$ defined by

$$
\eta(x)= \begin{cases}\frac{e \alpha x^{\alpha-1}}{\alpha+e} & \text { if } 0 \leq x \leq 1 \\ \frac{\alpha e^{-x+1}}{\alpha+e} & \text { if } x>1\end{cases}
$$

can be used to sample an observation for $X \sim \mathrm{Ga}(1, \alpha)$ using the AR method. Determine the average number of U samples that are needed in order to sample a value of X.

Sampling a Standard Normal Variable

Random variable transformations

Henceforth we use the notation \bar{x} to denote the vector $\left(x_{1}, \ldots, x_{n}\right)$. Let $T(\bar{x})=\left(T_{1}(\bar{x}), \ldots, T_{n}(\bar{x})\right)$ be a smooth (i.e. differentiable) transformation from R^{n} to R^{n}, then the Jacobian of the transformation, denoted $J_{T}(\bar{x})$ is defined as the determinant of the matrix whose (i, j) entry is $\frac{\partial T_{i}}{\partial x_{j}}(\bar{x})$.

Example 7. Consider the smooth transformation $T(r, \theta)$ defined by the equations $x=r \cos \theta$ and $y=r \sin \theta$. Compute $J_{T}(r, \theta)$.

Now suppose smooth transformation $\bar{y}=T(\bar{x})$ has an inverse $T^{-1}(\bar{y})$. Then it can be proved that

$$
J_{T^{-1}}(\bar{y})=1 / J_{T}\left(T^{-1}(\bar{y})\right) .
$$

More generally, the matrix of partial derivatives with entries $\frac{\partial T_{i}}{\partial x_{j}}(\bar{x})$ is invertible, and its inverse is the matrix of partial derivatives whose entries are $\frac{\partial T_{i}^{-1}}{\partial x_{j}}(\bar{y})$.

Example 8. For the transformation from Example 7, compute $J_{T^{-1}}(x, y)$ and verify that

$$
J_{T^{-1}}(\bar{y})=1 / J_{T}\left(T^{-1}(\bar{y})\right) .
$$

The following result is stated without proof.

Change of Variables Formula for Integration. Let $\bar{y}=T(\bar{x}), x \in S \subset \mathcal{R}^{n}$, be a smooth one-to-one transformation from S to $T(S)$. Then for Riemann integrable $f(\bar{x})$,

$$
\int_{S} f(\bar{x}) d \bar{x}=\int_{T^{-1}(S)} f\left(T^{-1}(\bar{y})\right) J_{T^{-1}}(\bar{y}) d \bar{y} .
$$

Example 9. Use a change of variables to compute

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

Example 10. Use a change of variables to show that $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ is in fact a density function (i.e. $\int_{-\infty}^{\infty} f(x)=1$). Hint: work with the joint density $f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}$.

Sampling a standard normal via transformation

Now let X and Y be independent standard normal variables and consider the vector $(X, Y) \in \mathcal{R}^{2}$. Introduce random variables $D \geq 0$ and $\Theta \in\left[-\frac{\pi}{2} \frac{\pi}{2}\right]$ that are defined by the transformation T whose equations are $D=X^{2}+Y^{2}$ and $\Theta=\tan ^{-1}\left(\frac{Y}{X}\right)$. Now, since X and Y are independent, they have joint distribution

$$
f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

Moreover, since $d=x^{2}+y^{2}$, and $J_{T}(x, y)=2$, it follows from the change-of-variables formula that D and Θ have the joint distribution

$$
f(d, \theta)=\frac{1}{2 \pi} \cdot \frac{1}{2} e^{-d / 2}
$$

which implies that D has the exponential distribution with $\lambda=1 / 2$, and Θ has the uniform distribution over $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Moreover, when sampling from these two distributions, one can recover standard normal Y using the equation

$$
Y=\sqrt{d} \sin \Theta
$$

and hence Y may be sampled using $U_{1}, U_{2} \sim \mathcal{U}(0,1)$ in the equation

$$
Y=\sqrt{-2 \ln U_{1}} \cos \pi U_{2}
$$

Miscellaneous Results

Theorem 5. For $\alpha>1$ the following algorithm can be used to sample from $\mathrm{Ga}(1, \alpha)$ with constant mean evaluation time.

Input α
$a=\alpha-1, b=(\alpha-1) /(6 a \alpha), m=2 / a, d=m+2, c=\sqrt{\alpha}$
Repeat forever
$X \leftarrow \infty$
While $X \notin(0,1)$
Sample $X, Y \sim U(0,1)$

$$
X \leftarrow Y+(1-1.857764 X) / c
$$

$V \leftarrow b Y / X$
If $m X-d+V+V^{-1} \leq 0$, then return $a V$
If $m \ln X-\ln V+V-1 \leq 0$, then return $a V$

Theorem 6.

1. If $X \sim \operatorname{Ga}(1, \alpha)$, then $\frac{X}{\lambda} \sim \operatorname{Ga}(\lambda, \alpha)$.
2. If $X_{1} \sim \operatorname{Ga}(1, \alpha), X_{2} \sim \operatorname{Ga}(1, \beta)$, and X_{1}, X_{2} are independent, then $\frac{X_{1}}{X_{1}+X_{2}} \sim \operatorname{Be}(\alpha, \beta)$.
3. If $X \sim N(0,1)$, then $\mu+\sigma X \sim N\left(\mu, \sigma^{2}\right)$.
4. If $X \sim N\left(\mu, \sigma^{2}\right)$, then $e^{X} \sim \operatorname{LN}\left(\mu, \sigma^{2}\right)$.

Exercises

1. If X is a random variable with $\operatorname{dom}(X)=\{1,2,3,4\}$ and $p(1)=0.5, p(2)=0.125=p(4)$, and $p(3)=0.25$, then use the discrete inverse transform method for providing a method of sampling X.
2. Use the discrete inverse transform method for providing a method of sampling $X \sim B(5,0.25)$. Approximate all quantiles to three decimal places.
3. For the random variable X of Exercise 1, provide the Q sets if using the cutpoint method to sample X with $m=4$.
4. For the random variable X of Exercise 2, provide the Q sets if using the cutpoint method to sample X with $m=6$.
5. If $X \sim B(105,0.1)$, then how many samples of a geometric random variable $Y \sim G(0.1)$ are expected to be taken in order to sample X ? Explain.
6. Provide pseudocode for using a geometric random variable to sample $X \sim \mathrm{NB}(r, p)$
7. Given a probability distribution $p_{1}, \ldots, p_{n}, n \geq 2$, prove that there is at least one i for which $p_{i}<1 /(n-1)$. For this i prove that there is at least one j for which $p_{i}+p_{j} \geq 1 /(n-1)$. Hint: use proof by contradiction.
8. Let random variable X have domain $\{1,2, \ldots\}$, and suppose $p_{n}=P(X=n), n=1,2, \ldots$. Define the hazard rate λ_{n} as

$$
\lambda_{n}=P(X=n \mid X>n-1)=\frac{p_{n}}{1-\sum_{i=1}^{n-1} p_{i}} .
$$

For example, if X represents the month that a device will stop working, then λ_{n} gives the probability that the device will break during month n, on condition that it has been working for the first $n-1$ months. Prove that $p_{1}=\lambda_{1}$ and

$$
p_{n}=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n-1}\right) \lambda_{n},
$$

for all $n \geq 2$.
9. Let random variable X have domain $\{1,2, \ldots\}$, and hazard rates (see previous exercise) $\lambda_{1}, \lambda_{2}, \ldots$. Moreover, suppose $\lambda_{n} \leq \lambda$, for all $n \geq 1$. Consider the following algorithm for sampling X.

Step 1: $S=0$.
Step 2: sample $Y \sim G(\lambda)$.
Step 3: $S=S+Y$.
Step 4: sample $U \sim \mathcal{U}(0,1)$
Step 5: if $U \leq \lambda_{S} / \lambda$, then return $X=S$. Otherwise go to Step 2.
Prove that this algorithm is correct. In other words, prove that the probability of sampling $X=n$ is equal to

$$
p_{n}=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n-1}\right) \lambda_{n} .
$$

10. Suppose p_{0}, p_{1}, \ldots and r_{0}, r_{1}, \ldots are probability distributions for which no probability from either distribution is equal to zero. Moreover, suppose that $p_{i} / p_{j}=r_{i} / r_{j}$ for all $i, j \geq 0$. Prove that the distributions are identical, i.e. $p_{i}=r_{i}$, for all $i \geq 0$. Note: an analagous result holds for continuous density functions.
11. Suppose X, Y, and W are discrete random variables with the property that, for some fixed j,

$$
P(W=i)=P(X=i \mid Y=j)
$$

for all $i=1,2, \ldots$. Assume an algorithm exists for sampling X. Prove that the following algorithm may be used to sample W.

Step 1: sample X to obtain value i.
Step 2: sample $U \sim \mathcal{U}(0,1)$.
Step 3: if $U \leq P(Y=j \mid X=i)$, return i.
Step 4: go to Step 1.
12. Provide a method for sampling random variable X with density function $f(x)=e^{x} /(e-1)$, for $0 \leq x \leq 1$.
13. Provide a method for sampling random variable X with density function

$$
f(x)= \begin{cases}\frac{x-2}{2} & \text { if } 2 \leq x \leq 3 \\ \frac{2-x / 3}{2} & \text { if } 3 \leq x \leq 6\end{cases}
$$

14. Use the inverse transform method for providing a method for sampling random variable X with $\operatorname{CDF} F(x)=\frac{x^{2}+x}{2}, 0 \leq x \leq 1$.
15. The following data is to be used for the creation of an empirical CDF $F(x)$ with linear interpolation:

$$
1.58,1.83,0.71,0.10,0.88,0.70,1.36,0.65,3.37,0.42
$$

Assuming $a=0$, compute $F(1.58), F(0.5)$, and $F(0.025)$.
16. For the emprical CDF $F(x)$ from the previous exercise, compute $F^{-1}(0.75), F^{-1}(0.34)$, and $F^{-1}(0.01)$.
17. Suppose X has CDF

$$
F(x)=\sum_{i=1}^{n} p_{i} F_{i}(x)
$$

where $p_{1}+\cdots+p_{n}=1$ and F_{i} is a CDF with a well-defined inverse F_{i}^{-1}, for all $i=1, \ldots, n$. Consider the following method for sampling X. First sample finite random variable I, where $\operatorname{dom}(I)=\{1, \ldots, n\}$, and $p(i)=p_{i}$, for all $i=1, \ldots, n$. Let i be the sampled value. Next, sample $U \sim U(0,1)$, and return $Y=F_{i}^{-1}(U)$. Prove that Y has a CDF equal to $F(x)$.
18. Use the result from the previous exercise to provide a method for sampling random variable X with CDF

$$
F(x)=\left\{\begin{array}{ll}
\frac{1-e^{-2 x}+2 x}{-3 x} & \text { if } 0<x<1 \\
\frac{3-e^{2 x}}{3} & \text { if } x \geq 1
\end{array} .\right.
$$

19. If $F_{1}(x), \ldots, F_{n}(x)$ are CDFs, prove that

$$
F(x)=\prod_{i=1}^{n} F_{i}(x)
$$

is a CDF. Provide an algorithm for sampling from $F(x)$, assuming algorithms for sampling each of the $F_{i}(x)$.
20. Given random variable X having density function $f(x)=1 / 4+2 x^{3}+5 / 4 x^{4}, 0<x<1$, find an appropriate $\eta(x)$ so that X can be sampled using acceptance-rejection method. Determine $\kappa(f, \eta)$.
21. For transformation $T(x, y)=\left(x y-3 x^{2}, 2 x y-y^{2}\right)$, compute $J_{T}(x, y)$.
22. Let C denote the circular region defined by the equation $x^{2}+y^{2}=16$. Use a change of variables to evaluate

$$
\int_{C} 100-x^{2}-y^{2} d x d y
$$

Exercise Solutions

1. For $U \sim U(0,1)$,

$$
X= \begin{cases}1 & \text { if } U<0.5 \\ 2 & \text { if } 0.5 \leq U<0.625 \\ 3 & \text { if } 0.625 \leq U<0.875 \\ 4 & \text { otherwise }\end{cases}
$$

2. For $U \sim U(0,1)$,

$$
X= \begin{cases}0 & \text { if } U<0.237 \\ 1 & \text { if } 0.237 \leq U<0.633 \\ 2 & \text { if } 0.633 \leq U<0.896 \\ 3 & \text { if } 0.896 \leq U<0.984 \\ 4 & \text { if } 0.984 \leq U<0.999 \\ 5 & \text { otherwise }\end{cases}
$$

3. $Q_{1}=\left\{q_{1}\right\}, Q_{2}=\left\{q_{1}\right\}, Q_{3}=\left\{q_{2}, q_{3}\right\}, Q_{4}=\left\{q_{3}, q_{4}\right\}$.
4. $Q_{1}=\left\{q_{0}\right\}, Q_{2}=\left\{q_{0}, q_{1}\right\}, Q_{3}=\left\{q_{1}\right\}, Q_{4}=\left\{q_{1}, q_{2}\right\} ., Q_{5}=\left\{q_{2}\right\}, Q_{6}=\left\{q_{2}, q_{3}, q_{4}, q_{5}\right\}$
5. The expected number of Y samples is $\lceil 105 / 10\rceil=11$ since the expected value of each Y sample is 10 .
6. The code assumes the existence of function sample_geo which returns a geometric sample on input probability p.
```
int sample_negative_binomial(int r, double p)
{
    int count = 0; //count additional trials beyond r
    int i;
        for(i = 0; i < r; i++)
        //subtract one (i.e. the success) from the sample
        //and add to count
        count += sample_geo(p)-1;
        return count;
}
```

7. Assume $p_{i} \geq 1 /(n-1)$ for all $i=1, \ldots, n$. Then

$$
\sum_{i=1}^{n} p_{i}=1 \geq n /(n-1)>1
$$

is a contradiction.
Now suppose $p_{i}<1 /(n-1)$, and, for $j \neq i, p_{i}+p_{j}<1 /(n-1)$. Then

$$
\sum_{j \neq i}\left(p_{i}+p_{j}\right)<(n-1) /(n-1)=1 .
$$

But on the other hand,

$$
\sum_{j \neq i}\left(p_{i}+p_{j}\right)=(n-1) p_{i}+\left(1-p_{i}\right)=1+(n-2) p_{i} \geq 1,
$$

a contradiction.
8. By definition,

$$
\lambda_{1}=P(X=1 \mid X>0)=\frac{p_{1}}{1-\sum_{i=1}^{0} p_{i}}=p_{1} .
$$

Hence, $p_{1}=\lambda_{1}$ and $P(X>1)=1-\lambda_{1}$. Now assume that

$$
P(X>n)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right),
$$

is true for some $n \geq 1$ (it is certainly true for $n=1$). Then

$$
\begin{gathered}
P(X>n+1)=P(X>n+1 \mid X>n) P(X>n)+P(X>n+1 \mid X \leq n) P(X \leq n)= \\
\left(1-\lambda_{n+1}\right)\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)+0=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)\left(1-\lambda_{n+1}\right) .
\end{gathered}
$$

Hence, by induction,

$$
P(X>n)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)
$$

for all $n \geq 1$. Therefore,

$$
p_{n}=P(X=n \mid X>n-1) P(X>n-1)=\lambda_{n}\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n-1}\right) .
$$

9. Let $p_{n}=P(X=n)$. The key idea is that the geometric random variable Y may be replaced by a sequence of independent Bernoulli random variables B_{1}, B_{2}, \ldots, where $P\left(B_{n}=1\right)=\lambda$, for all $n \geq 1$. Now suppose stage $n \geq 1$ has been reached, if $B_{n}=0$, then proceed to stage $n+1$. Otherwise, sample U and return n if $U \leq \lambda_{n} / \lambda$. Otherwise, proceed to stage $n+1$.
Notice how the above algorithm is identical to the one described in the exercise, since sampling a geometric with success probability λ is equivalent to continually sampling independent Bernoulli random variables until the value 1 has been observed. Notice also that $p_{1}=(\lambda)\left(\lambda_{1} / \lambda\right)=\lambda_{1}$, and thus $P(X>1)=1-\lambda_{1}$.

Now assume that

$$
P(X>n)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right),
$$

is true for some $n \geq 1$ (it is certainly true for $n=1$). Then, as in the previous exercise,

$$
P(X>n+1)=P(X>n+1 \mid X>n) P(X>n)=P(X>n+1 \mid X>n)\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right) .
$$

Now, the probability of moving past stage $n+1$ given that stage $n+1$ was reached, is equal to

$$
(1-\lambda)+(\lambda)\left(1-\frac{\lambda_{n+1}}{\lambda}\right)=1-\lambda_{n+1} .
$$

Hence,

$$
P(X>n+1)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)\left(1-\lambda_{n+1}\right) .
$$

and so, by induction,

$$
P(X>n)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)
$$

for all $n \geq 1$. And a consequence of this is that

$$
\begin{gathered}
p_{n}=P(X=n)=P(X=n \mid X>n-1) P(X>n-1)=\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n-1}\right)(\lambda)\left(\lambda_{n} / \lambda\right)= \\
\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n-1}\right) \lambda_{n} .
\end{gathered}
$$

10. For fixed and arbitrary j, it follows that the sequence of numbers $p_{0} / p_{j}, p_{1} / p_{j}, \ldots$ and $r_{0} / r_{j}, r_{1} / r_{j}, \ldots$ are identical. Hence,

$$
\sum_{i=0}^{\infty} p_{i} / p_{j}=\sum_{i=0}^{\infty} r_{i} / r_{j}
$$

But

$$
\sum_{i=0}^{\infty} p_{i} / p_{j}=\frac{1}{p_{j}} \sum_{i=1}^{\infty} p_{i}=\left(\frac{1}{p_{j}}\right)(1)=\frac{1}{p_{j}} .
$$

Similarly,

$$
\sum_{i=0}^{\infty} r_{i} / r_{j}=\frac{1}{r_{j}}
$$

Thus, $1 / p_{j}=1 / r_{j}$, i.e. $p_{j}=r_{j}$ and, since j was arbitrary, the two distributions are equal.
11. Notice that

$$
P(W=i)=P(X=i \mid Y=j)=\frac{P(Y=j \mid X=i) P(X=i)}{P(Y=j)}
$$

Moreover, in a single pass through Steps 1-3 of the algorithm, i will be sampled/returned with probability $p_{i}=P(Y=j \mid X=i) P(X=i)$. Hence, the probability that the algorithm returns i equals p_{i} / c, where

$$
c=\sum_{r=1}^{\infty} p_{r}
$$

Hence, for arbitrary i and k,

$$
p_{i} / p_{k}=P(Y=j \mid X=i) P(X=i) /(P(Y=j \mid X=k) P(X=k))=P(W=i) / P(W=k) .
$$

Therefore, by the previous exercise, the algorithm samples a random variable that has the same probability distribution as W.
12. Using the inverse transform method, $X=\ln (U(e-1)+1)$ has the desired distribution.
13. Using the inverse transform method,

$$
X= \begin{cases}2+2 \sqrt{U} & \text { if } 0 \leq U \leq 1 / 4 \\ 6-2 \sqrt{3-3 U} & \text { if } 1 / 4 \leq U \leq 1\end{cases}
$$

14. Using the inverse transform method, $X=\frac{-1+\sqrt{1+8 U}}{2}$ has the desired distribution.
15. $F(1.62)=0.8+\frac{(0.1)(0.04)}{1.83-1.58}=0.816, F(0.5)=0.71$, and $F(0.025)=0.1(0.025) /(0.1)=0.025$.
16. $F^{-1}(0.75)=(1.36+1.58) / 2=1.47, F^{-1}(0.34)=0.65+(0.4)(0.05)=0.67$, and $F^{-1}(0.01)=$ 0.01.
17. Let $I=i$ denote the event that i was sampled in the first step of the algorithm, and let U denote the uniform random variable that is sampled in the algorithm.

$$
\begin{gathered}
P(Y \leq x)=\sum_{i=1}^{n} P(Y \leq x \mid I=i) P(I=i)=\sum_{i=1}^{n} P\left(F_{i}^{-1}(U) \leq x\right) p_{i}= \\
\sum_{i=1}^{n} P\left(F_{i}\left(F_{i}^{-1}(U)\right) \leq F_{i}(x)\right) p_{i}=\sum_{i=1}^{n} P\left(U \leq F_{i}(x)\right) p_{i}=\sum_{i=1}^{n} F_{i}(x) p_{i}=F(x) .
\end{gathered}
$$

Therefore, Y has CDF equal to F and has the same distribution as X.
18. $F(x)$ can be written as

$$
F(x)=1 / 3\left(1-e^{-2 x}\right)+2 / 3 F_{2}(x),
$$

where

$$
F_{2}(x)=\left\{\begin{array}{ll}
x & \text { if } 0<x<1 \\
1 & \text { if } x \geq 1
\end{array} .\right.
$$

Thus, $F_{2}(x)$ is the CDF for $U(0,1)$. Therefore, the algorithm is to first sample $U \sim U(0,1)$. If $U \leq 1 / 3$, then return a sample with exponential distribution $E(2)$. Otherwise, return a sample from $U(0,1)$.

