
Sampling Random Variables

Introduction

Sampling a random variable X means generating a domain value x ∈ X in such a way that the
probability of generating x is in accordance with p(x) (respectively, f(x)), the probability distribution
(respectively, probability density) function associated with X. In this lecture we show how being
able to sample a continuous uniform random variable U over the interval (0, 1) allows one to sample
any other distribution of interest. Moreover, an algorithm for sampling from a U ∼ U(0, 1) is referred
to as a pseudorandom number generator (png). The development of good png’s is both an
art and science, and relies heavily on developing a sequence of operations on one or more binary
words in order to produce the next random number between (0, 1) (actually, a positive integer x is
generated, and then divided by a large constant y ≥ x to produce x/y ∈ (0, 1)). These operations
include arithmetic modulo a prime number, register shifts, register feedback techniques, and logical
operations, such as and, or, and xor. Once a set of operations has been developed to form a png,
the number sequences generated by the png are tested using several different statistical tests. The
tests are used to confirm different properties that should be found in a sequence of numbers, had
that sequence been drawn independently and uniformly over (0, 1).

In this lecture we assume that we have access to a good png for generating independent samples of
random variable U ∈ U(0, 1). Throughout the remaining lectures, assume that variable U represents
a U(0, 1) random variable.

Sampling Finite and Discrete Random Variables

Sampling a Bernoulli random variable

If

X =

{
1 if U ≤ p
0 otherwise

.

then X ∼ Be(p) since 1 will be sampled with probability p, and 0 will be sampled with probability
1− p.
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Discrete inverse transform technique

Let X = {x1, . . . , xn} be a random variable with probability distribution p, and where x1 ≤ · · · ≤ xn.
Define

qi = P (X ≤ xi) =
i∑

j=1

p(xj).

Then the following is a sampling formula for X.

X =



x1 if U < q1
x2 if q1 ≤ U < q2
...

...
xn−1 if qn−2 ≤ U < qn−1
xn otherwise

.

Indeed X = xi in the event that qi−1 ≤ U < qi, which has probability p = qi − qi−1 = p(xi). This
technique is referred to as the discrete inverse transform technique, since it involves computing
F−1(U), where F is the CDF of X. Of course, since F is not one-to-one in the case that X is finite,
here F−1(U) is defined as the least element x ∈ X for which U < F (x).

The Cutpoint method

This inverse-transform method has the advantage of having an optimal O(n) setup time. However,
the average number of steps required to sample X is not optimal, and if several samples of X are
needed, then the cutpoint method offers an average number of two comparison steps needed to
sample an observation, yet still has an O(n) initial setup time.

Without loss of generality, we can assume that X = [1, n]. Also, let qi = P (X ≤ i). Then the idea
behind the cutpoint method is to choose m ≥ n, and define sets Q1, . . . , Qm for which

Qi = {qj|j = F−1(U) for some U ∈ [
i− 1

m
,
i

m
)},

for all i = 1, . . . ,m. In words, the unit interval [0, 1] is partitioned into m equal sub-intervals of the
form [ i−1

m
, i
m

), i = 1, . . . ,m. And when U falls into the i th sub-interval, then Qi contains all the
possible qj values for which F−1(U) = j. That way, instead of searching through all of the q values,
we save time by only examining the qj values in Qi, since these are the only possible values for which
F−1(U) = j.

The algorithm is now described as follows. sample U ∼ U(0, 1), and let i = dmUe. Then (assuming
Qi is sorted) find the first qj ∈ Qi for which U < qj. Return j.
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Example 1. Given the distribution (.2, .05, .02, .03, .3, .25, .1, .05) and using m = 8, compute the
sets Q1, . . . , Q8.

Theorem 1. Assuming m ≥ n, the expected number of q values that must be compared with U
during the cutpoint algorithm is bounded by two. Therefore, sampling X can be performed in O(1)
steps.

Proof of Theorem 1. Upon sampling U , let Ei, i = 1, . . . ,m denote the event that U ∈ [ i−1
m
, i
m

).
Also, denote by r the number of Q sets for which |Q| ≥ 2. Moreover, if R denotes the set of indices
i for which |Qi| ≥ 2, then we claim that ∑

i∈R

|Qi| ≤ n+ r.

To see this, first notice that each such Qi must contain at least one q value for which q 6∈ Qj, for
all j = 1, . . . , i− 1. Moreover, there can be at most r instances where an element of Qi, i ∈ R, also
appears in Qi+1, i + 1 ∈ R. In other words, in the worst case all n elements are contained in some
Qi, i ∈ R, and there can be at most r elements that are double counted.

Now, let C be a random variable that counts the number of comparisons of U with a q value. Then,

E[C] =
n∑
i=1

E[C|Ei]P (Ei) ≤
1

m

m∑
i=1

|Qi| =
1

m

∑
i∈R

|Qi|+
∑
i∈R

|Qi|


≤ 1

m
[(n+ r) + (m− r)] =

1

m
(n+m) ≤ 2m

m
= 2.

Here we are using the facts that i) |R| = m− r and ii) |Qi| = 1 for all i ∈ R.
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Theorem 2: Geometric Random Variables. If U ∼ U(0, 1), then

X = b lnU
ln q
c+ 1.

has a geometric distribution with parameter p = 1− q; i.e. X ∼ G(p).

Proof. First sample U ∼ U(0, 1). Then return k, where

k−1∑
n=1

(1− p)n−1p ≤ U <
k∑

n=1

(1− p)n−1p. (1)

Then using the formula for geometric series

k∑
n=1

arn−1 = a
rk − 1

r − 1
,

some algebra shows that Equation 1 implies

1− (1− p)k−1 ≤ U < 1− (1− p)k ⇒

(1− p)k < 1− U ≤ (1− p)k−1.

Taking logs of all sides and dividing by the negative number ln(1− p) then yields

k − 1 ≤ ln(1− U)

ln(1− p)
< k ⇒

k = b ln(1− U)

ln(1− p)
c+ 1.

Finally, letting q = 1− p, and noting that 1− U is also uniformly distributed over [0, 1], we have

k = b lnU
ln q
c+ 1.

QED
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Binomial B(n, p). If X ∼ B(n, p) then an observation of X can be sampled by summing n in-
depenent Bernoulli random variables X1, . . . , Xn. Note that the generating cost is O(n). Also, the
cutpoint method may also be used. Or if q = min(p, 1− p) is very small, then one can use a sum of
geometric random variables with the expected number of steps equal to O(qn).

Poisson P (λ). Similar to a binomial random variable, an observation for a Poisson random variable
can be sampled by simulating the arrival of customers over a unit time interval for which their
interarrival distribution is E(λ). The sampled value equals the number of arrivals. Also, a modified
version of the cutpoint method may be used in which the cumulative probabilities qi are computed
so long as qi ≤ 1− 1/n, where n is large and equal to the number of desired samples. Then, should
U > 1− 1/n occur, one may compute additional qi values as needed.

Negative Binomial NB(r, p). If X ∼ NB(r, p) then an observation of X can be sampled by
summing r geometric random variables X1, . . . , Xr.

Hypergeometric HG(m,n, r). X ∼ HG(m,n, r) can be sampled by creating an array a0 of length
m+ n in which m cells are marked as blue, and the remaining cells are marked as red. Then array
ai, i = 1, . . . , r, is obtained by considering ai−1 and swapping the marking of cell i with the marking
of a randomly selected cell from i, i+ 1, . . . ,m+ n. Then X equals the number of the first r cells of
ar that are marked as blue.
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Inverse Transform Technique

Theorem 3. Let X be a continuous random variable with cdf F (x) which possesses an inverse F−1.
Let U ∼ U(0, 1) and Y = F−1(U), then F (x) is the cdf for Y . In other words, Y has the same
distribution as X.

Proof. It suffices to show that Y has the same cdf as X. Letting F and FY denote the respective
cdf’s of X and Y respectively.Then

FY (x) = P (Y ≤ x) = P (F−1(U) ≤ x) = P (F (F−1(U)) ≤ F (x)) =

P (U ≤ F (x)) = F (x),

where the last equality follows from the fact that U ∼ U(0, 1), and the third-to-last equality follows
from the fact that F is strictly increasing.

Corollary. Let U ∼ U(0, 1) be a uniform random variable. Then the following random-variables
have the indicated distributions.

Uniform X ∼ U(a, b) X = a+ U(b− a)

Exponential X ∼ E(λ) X = − ln(U)/λ

Weibull X ∼ We(α, β, ν) X = ν + α[− ln(U)]1/β

Triangular X ∼ T (a, b, c)

X =

{
a+

√
U(b− a)(c− a) if U ≤ b−a

c−a
c−

√
(1− U)(c− a)(c− b) otherwise

Cauchy X ∼ C(µ, σ2) X = µ+ σ tanπ(U − 1
2
)
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Example 2. Prove the corollary for the uniform, exponential, and Cauchy cases.
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Example 2 Continued.
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Empirical Cumulative Distribution Functions With Linear

Interpolation

Empirical cdf’s are used to model continuous distributions. Let x1 ≤ x2 ≤ . . . ≤ xn be a sorted
collection of n data points where each xi ∈ [a,∞) for some real number a. Then the empirical cdf
F (x) with linear interpolation is defined in the following steps.

1. Given x ∈ {x1, x2, . . . , xn}, let i be the largest index for which x = xi then F (x) = i
n

2. F (x) = 0 for all x ≤ a

3. F (x) = 1 for all x ≥ xn

4. if x ∈ (a, x1), then F (x) = F (x1)
x1−a (x− a)

5. if x ∈ (xi, xi+1), then F (x) = F (xi) + (x−xi)[F (xi+1)−F (xi)]
(xi+1−xi)

Example 3. Let a = 0 and suppose 1, 1, 2, 5, 7 are 5 data points. Sketch a graph of the empirical
cdf F (x) with linear interpolation with respect to this data. Compute the following: F (−1), F (.3),
F (2), F (4), F (8).
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Sampling an empirical cdfs with linear interpolation. Let F (x) be an empirical cdf with linear
interpolation with respect to data x1 ≤ x2 ≤ . . . ≤ xn, where each xi ∈ [a,∞). Then the following
procedure can be used sample a value for random variable X, where X has cdf F (x).

1. sample random U where U ∼ U(0, 1)

2. if U = 0 return a.

3. else if U = F (xi) for some 1 ≤ i ≤ n, then return xi

4. else if U < F (x1) then return

a+ (x1 − a)
U

F (x1)

5. else F (xi) < U < F (xi+1), and return

xi + (xi+1 − xi)
(U − F (xi))

(F (xi+1)− F (xi))

Example 4. For the cdf of Example 3, what values for X get sampled for values of U = .1, .5, .8?
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Acceptance-Rejection Method

Theorem 4: Acceptance-Rejection (AR) Method. Let f and η be density functions over set
S ⊆ R with property that

κ(f, η) = max
x∈S

f(x)

η(x)

is finite. Then if one repeatedly samples a value x ∈ S using density η, followed by sampling
U ∼ U(0, 1), until it is true that

U ≤ f(x)

κ(f, η)η(x)

(in which case we say that x has been accepted), Then the accepted value has density function f(x).

Proof. Let A denote the event U ≤ f(x)
κ(f,η)η(x)

, and k(x|A) denote the conditional density of x given
A. Then using Baye’s rule,

k(x|A) =
P (A|x)η(x)

P (A)
. (2)

But

P (A|x) =
f(x)

κ(f, η)η(x)
.

Moreover,

P (A) =

∫
S

P (A|x)η(x)dx =

∫
S

f(x)

κ(f, η)η(x)
η(x)dx =

∫
S

f(x)

κ(f, η)
dx =

1

κ(f, η)
,

where the last equality follows from the fact that f(x) is a density function. Substituting for P (A|x)
and P (A) in Equation 2 yields the desired result.
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Example 5. Random variable X having density f(x) =
√

2
π
e−x

2/2 is said to have the half normal

distribution, since the density function represents the positive half of the standard normal density.
Using η(x) = e−x, determine the average number of U samples that are needed in order to sample a
value of X using the AR method.

Example 6. Recall that the gamma distribution Ga(1, α), for 0 < α < 1 has density function
e−xxα−1/Γ(α). Using η(x) defined by

η(x) =

{
eαxα−1

α+e
if 0 ≤ x ≤ 1

αe−x+1

α+e
if x > 1

can be used to sample an observation for X ∼ Ga(1, α) using the AR method. Determine the average
number of U samples that are needed in order to sample a value of X.
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Sampling a Standard Normal Variable

Random variable transformations

Henceforth we use the notation x to denote the vector (x1, . . . , xn). Let T (x) = (T1(x), . . . , Tn(x)) be a
smooth (i.e. differentiable) transformation from Rn to Rn, then the Jacobian of the transformation,
denoted JT (x) is defined as the determinant of the matrix whose (i, j) entry is ∂Ti

∂xj
(x).

Example 7. Consider the smooth transformation T (r, θ) defined by the equations x = r cos θ and
y = r sin θ. Compute JT (r, θ).

Now suppose smooth transformation y = T (x) has an inverse T−1(y). Then it can be proved that

JT−1(y) = 1/JT (T−1(y)).

More generally, the matrix of partial derivatives with entries ∂Ti
∂xj

(x) is invertible, and its inverse is

the matrix of partial derivatives whose entries are
∂T−1

i

∂xj
(y).

Example 8. For the transformation from Example 7, compute JT−1(x, y) and verify that

JT−1(y) = 1/JT (T−1(y)).
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The following result is stated without proof.

Change of Variables Formula for Integration. Let y = T (x), x ∈ S ⊂ Rn, be a smooth
one-to-one transformation from S to T (S). Then for Riemann integrable f(x),∫

S

f(x)dx =

∫
T−1(S)

f(T−1(y))JT−1(y)dy.

Example 9. Use a change of variables to compute∫ 1

0

√
1− x2 dx.

Example 10. Use a change of variables to show that f(x) = 1√
2π
e−x

2/2 is in fact a density function

(i.e.
∫∞
−∞ f(x) = 1). Hint: work with the joint density f(x, y) = 1

2π
e−(x

2+y2)/2.
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Sampling a standard normal via transformation

Now let X and Y be independent standard normal variables and consider the vector (X, Y ) ∈ R2.
Introduce random variables D ≥ 0 and Θ ∈ [−π

2
π
2
] that are defined by the transformation T whose

equations are D = X2 + Y 2 and Θ = tan−1( Y
X

). Now, since X and Y are independent, they have
joint distribution

f(x, y) =
1

2π
e−(x

2+y2)/2.

Moreover, since d = x2 + y2, and JT (x, y) = 2, it follows from the change-of-variables formula that
D and Θ have the joint distribution

f(d, θ) =
1

2π
· 1

2
e−d/2,

which implies that D has the exponential distribution with λ = 1/2, and Θ has the uniform distribu-
tion over [−π

2
, π
2
]. Moreover, when sampling from these two distributions, one can recover standard

normal Y using the equation
Y =

√
d sin Θ,

and hence Y may be sampled using U1, U2 ∼ U(0, 1) in the equation

Y =
√
−2 lnU1 cos πU2.

Miscellaneous Results

Theorem 5. For α > 1 the following algorithm can be used to sample from Ga(1, α) with constant
mean evaluation time.

Input α

a = α− 1, b = (α− 1)/(6aα), m = 2/a, d = m+ 2, c =
√
α

Repeat forever

X ←∞
While X 6∈ (0, 1)

Sample X, Y ∼ U(0, 1)

X ← Y + (1− 1.857764X)/c

V ← bY/X

If mX − d+ V + V −1 ≤ 0, then return aV

If m lnX − lnV + V − 1 ≤ 0, then return aV
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Theorem 6.

1. If X ∼ Ga(1, α), then X
λ
∼ Ga(λ, α).

2. If X1 ∼ Ga(1, α), X2 ∼ Ga(1, β), and X1, X2 are independent, then X1

X1+X2
∼ Be(α, β).

3. If X ∼ N(0, 1), then µ+ σX ∼ N(µ, σ2).

4. If X ∼ N(µ, σ2), then eX ∼ LN(µ, σ2).

Exercises

1. If X is a random variable with dom(X) = {1, 2, 3, 4} and p(1) = 0.5, p(2) = 0.125 = p(4), and
p(3) = 0.25, then use the discrete inverse transform method for providing a method of sampling
X.

2. Use the discrete inverse transform method for providing a method of sampling X ∼ B(5, 0.25).
Approximate all quantiles to three decimal places.

3. For the random variable X of Exercise 1, provide the Q sets if using the cutpoint method to
sample X with m = 4.

4. For the random variable X of Exercise 2, provide the Q sets if using the cutpoint method to
sample X with m = 6.

5. If X ∼ B(105, 0.1), then how many samples of a geometric random variable Y ∼ G(0.1) are
expected to be taken in order to sample X? Explain.

6. Provide pseudocode for using a geometric random variable to sample X ∼ NB(r, p)

7. Given a probability distribution p1, . . . , pn, n ≥ 2, prove that there is at least one i for which
pi < 1/(n− 1). For this i prove that there is at least one j for which pi + pj ≥ 1/(n− 1). Hint:
use proof by contradiction.

8. Let random variable X have domain {1, 2, . . .}, and suppose pn = P (X = n), n = 1, 2, . . ..
Define the hazard rate λn as

λn = P (X = n|X > n− 1) =
pn

1−
∑n−1

i=1 pi
.

For example, if X represents the month that a device will stop working, then λn gives the
probability that the device will break during month n, on condition that it has been working
for the first n− 1 months. Prove that p1 = λ1 and

pn = (1− λ1) · · · (1− λn−1)λn,

for all n ≥ 2.
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9. Let random variableX have domain {1, 2, . . .}, and hazard rates (see previous exercise) λ1, λ2, . . ..
Moreover, suppose λn ≤ λ, for all n ≥ 1. Consider the following algorithm for sampling X.

Step 1: S = 0.

Step 2: sample Y ∼ G(λ).

Step 3: S = S + Y .

Step 4: sample U ∼ U(0, 1)

Step 5: if U ≤ λS/λ, then return X = S. Otherwise go to Step 2.

Prove that this algorithm is correct. In other words, prove that the probability of sampling
X = n is equal to

pn = (1− λ1) · · · (1− λn−1)λn.

10. Suppose p0, p1, . . . and r0, r1, . . . are probability distributions for which no probability from
either distribution is equal to zero. Moreover, suppose that pi/pj = ri/rj for all i, j ≥ 0. Prove
that the distributions are identical, i.e. pi = ri, for all i ≥ 0. Note: an analagous result holds
for continuous density functions.

11. Suppose X, Y , and W are discrete random variables with the property that, for some fixed j,

P (W = i) = P (X = i|Y = j),

for all i = 1, 2, . . .. Assume an algorithm exists for sampling X. Prove that the following
algorithm may be used to sample W .

Step 1: sample X to obtain value i.

Step 2: sample U ∼ U(0, 1).

Step 3: if U ≤ P (Y = j|X = i), return i.

Step 4: go to Step 1.

12. Provide a method for sampling random variable X with density function f(x) = ex/(e− 1), for
0 ≤ x ≤ 1.

13. Provide a method for sampling random variable X with density function

f(x) =

{
x−2
2

if 2 ≤ x ≤ 3
2−x/3

2
if 3 ≤ x ≤ 6

14. Use the inverse transform method for providing a method for sampling random variable X with
CDF F (x) = x2+x

2
, 0 ≤ x ≤ 1.

15. The following data is to be used for the creation of an empirical CDF F (x) with linear inter-
polation:

1.58, 1.83, 0.71, 0.10, 0.88, 0.70, 1.36, 0.65, 3.37, 0.42.

Assuming a = 0, compute F (1.58), F (0.5), and F (0.025).

16. For the emprical CDF F (x) from the previous exercise, compute F−1(0.75), F−1(0.34), and
F−1(0.01).
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17. Suppose X has CDF

F (x) =
n∑
i=1

piFi(x)

where p1 + · · · + pn = 1 and Fi is a CDF with a well-defined inverse F−1i , for all i = 1, . . . , n.
Consider the following method for sampling X. First sample finite random variable I, where
dom(I) = {1, . . . , n}, and p(i) = pi, for all i = 1, . . . , n. Let i be the sampled value. Next,
sample U ∼ U(0, 1), and return Y = F−1i (U). Prove that Y has a CDF equal to F (x).

18. Use the result from the previous exercise to provide a method for sampling random variable X
with CDF

F (x) =

{
1−e−2x+2x

3
if 0 < x < 1

3−e−2x

3
if x ≥ 1

.

19. If F1(x), . . . , Fn(x) are CDFs, prove that

F (x) =
n∏
i=1

Fi(x)

is a CDF. Provide an algorithm for sampling from F (x), assuming algorithms for sampling each
of the Fi(x).

20. Given random variable X having density function f(x) = 1/4 + 2x3 + 5/4x4, 0 < x < 1, find
an appropriate η(x) so that X can be sampled using acceptance-rejection method. Determine
κ(f, η).

21. For transformation T (x, y) = (xy − 3x2, 2xy − y2), compute JT (x, y).

22. Let C denote the circular region defined by the equation x2+y2 = 16. Use a change of variables
to evaluate ∫

C

100− x2 − y2dxdy.

Exercise Solutions

1. For U ∼ U(0, 1),

X =


1 if U < 0.5
2 if 0.5 ≤ U < 0.625
3 if 0.625 ≤ U < 0.875
4 otherwise

2. For U ∼ U(0, 1),

X =



0 if U < 0.237
1 if 0.237 ≤ U < 0.633
2 if 0.633 ≤ U < 0.896
3 if 0.896 ≤ U < 0.984
4 if 0.984 ≤ U < 0.999
5 otherwise
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3. Q1 = {q1}, Q2 = {q1}, Q3 = {q2, q3}, Q4 = {q3, q4}.

4. Q1 = {q0}, Q2 = {q0, q1}, Q3 = {q1}, Q4 = {q1, q2}., Q5 = {q2}, Q6 = {q2, q3, q4, q5}

5. The expected number of Y samples is d105/10e = 11 since the expected value of each Y sample
is 10.

6. The code assumes the existence of function sample geo which returns a geometric sample on
input probability p.

int sample_negative_binomial(int r, double p)

{

int count = 0; //count additional trials beyond r

int i;

for(i = 0; i < r; i++)

//subtract one (i.e. the success) from the sample

//and add to count

count += sample_geo(p)-1;

return count;

}

7. Assume pi ≥ 1/(n− 1) for all i = 1, . . . , n. Then

n∑
i=1

pi = 1 ≥ n/(n− 1) > 1,

is a contradiction.

Now suppose pi < 1/(n− 1), and, for j 6= i, pi + pj < 1/(n− 1). Then∑
j 6=i

(pi + pj) < (n− 1)/(n− 1) = 1.

But on the other hand,∑
j 6=i

(pi + pj) = (n− 1)pi + (1− pi) = 1 + (n− 2)pi ≥ 1,

a contradiction.

8. By definition,

λ1 = P (X = 1|X > 0) =
p1

1−
∑0

i=1 pi
= p1.

Hence, p1 = λ1 and P (X > 1) = 1− λ1. Now assume that

P (X > n) = (1− λ1) · · · (1− λn),
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is true for some n ≥ 1 (it is certainly true for n = 1). Then

P (X > n+ 1) = P (X > n+ 1|X > n)P (X > n) + P (X > n+ 1|X ≤ n)P (X ≤ n) =

(1− λn+1)(1− λ1) · · · (1− λn) + 0 = (1− λ1) · · · (1− λn)(1− λn+1).

Hence, by induction,
P (X > n) = (1− λ1) · · · (1− λn)

for all n ≥ 1. Therefore,

pn = P (X = n|X > n− 1)P (X > n− 1) = λn(1− λ1) · · · (1− λn−1).

9. Let pn = P (X = n). The key idea is that the geometric random variable Y may be replaced
by a sequence of independent Bernoulli random variables B1, B2, . . ., where P (Bn = 1) = λ, for
all n ≥ 1. Now suppose stage n ≥ 1 has been reached, if Bn = 0, then proceed to stage n+ 1.
Otherwise, sample U and return n if U ≤ λn/λ. Otherwise, proceed to stage n+ 1.

Notice how the above algorithm is identical to the one described in the exercise, since sampling a
geometric with success probability λ is equivalent to continually sampling independent Bernoulli
random variables until the value 1 has been observed. Notice also that p1 = (λ)(λ1/λ) = λ1,
and thus P (X > 1) = 1− λ1.
Now assume that

P (X > n) = (1− λ1) · · · (1− λn),

is true for some n ≥ 1 (it is certainly true for n = 1). Then, as in the previous exercise,

P (X > n+ 1) = P (X > n+ 1|X > n)P (X > n) = P (X > n+ 1|X > n)(1− λ1) · · · (1− λn).

Now, the probability of moving past stage n+ 1 given that stage n+ 1 was reached, is equal to

(1− λ) + (λ)(1− λn+1

λ
) = 1− λn+1.

Hence,
P (X > n+ 1) = (1− λ1) · · · (1− λn)(1− λn+1).

and so, by induction,
P (X > n) = (1− λ1) · · · (1− λn)

for all n ≥ 1. And a consequence of this is that

pn = P (X = n) = P (X = n|X > n− 1)P (X > n− 1) = (1− λ1) · · · (1− λn−1)(λ)(λn/λ) =

(1− λ1) · · · (1− λn−1)λn.

10. For fixed and arbitrary j, it follows that the sequence of numbers p0/pj, p1/pj, . . . and r0/rj, r1/rj, . . .
are identical. Hence,

∞∑
i=0

pi/pj =
∞∑
i=0

ri/rj.

But
∞∑
i=0

pi/pj =
1

pj

∞∑
i=1

pi = (
1

pj
)(1) =

1

pj
.

20



Similarly,
∞∑
i=0

ri/rj =
1

rj
.

Thus, 1/pj = 1/rj, i.e. pj = rj and, since j was arbitrary, the two distributions are equal.

11. Notice that

P (W = i) = P (X = i|Y = j) =
P (Y = j|X = i)P (X = i)

P (Y = j)
.

Moreover, in a single pass through Steps 1-3 of the algorithm, i will be sampled/returned with
probability pi = P (Y = j|X = i)P (X = i). Hence, the probability that the algorithm returns
i equals pi/c, where

c =
∞∑
r=1

pr.

Hence, for arbitrary i and k,

pi/pk = P (Y = j|X = i)P (X = i)/(P (Y = j|X = k)P (X = k)) = P (W = i)/P (W = k).

Therefore, by the previous exercise, the algorithm samples a random variable that has the same
probability distribution as W .

12. Using the inverse transform method, X = ln(U(e− 1) + 1) has the desired distribution.

13. Using the inverse transform method,

X =

{
2 + 2

√
U if 0 ≤ U ≤ 1/4

6− 2
√

3− 3U if 1/4 ≤ U ≤ 1

14. Using the inverse transform method, X = −1+
√
1+8U
2

has the desired distribution.

15. F (1.62) = 0.8 + (0.1)(0.04)
1.83−1.58 = 0.816, F (0.5) = 0.71, and F (0.025) = 0.1(0.025)/(0.1) = 0.025.

16. F−1(0.75) = (1.36 + 1.58)/2 = 1.47, F−1(0.34) = 0.65 + (0.4)(0.05) = 0.67, and F−1(0.01) =
0.01.

17. Let I = i denote the event that i was sampled in the first step of the algorithm, and let U
denote the uniform random variable that is sampled in the algorithm.

P (Y ≤ x) =
n∑
i=1

P (Y ≤ x|I = i)P (I = i) =
n∑
i=1

P (F−1i (U) ≤ x)pi =

n∑
i=1

P (Fi(F
−1
i (U)) ≤ Fi(x))pi =

n∑
i=1

P (U ≤ Fi(x))pi =
n∑
i=1

Fi(x)pi = F (x).

Therefore, Y has CDF equal to F and has the same distribution as X.
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18. F (x) can be written as
F (x) = 1/3(1− e−2x) + 2/3F2(x),

where

F2(x) =

{
x if 0 < x < 1
1 if x ≥ 1

.

Thus, F2(x) is the CDF for U(0, 1). Therefore, the algorithm is to first sample U ∼ U(0, 1). If
U ≤ 1/3, then return a sample with exponential distribution E(2). Otherwise, return a sample
from U(0, 1).
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