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Finding Optimial Model Solutions

Constraint Optimization Problem

A constraint optimization problem is a quadruple
P = (V ,D,C , f ), where f : A(V )→ R is called the
objective function.

An optimal solution s for P is an assignment over V that
satisfies all constraints in C , and for which f (s) is optimal (is
either a maximum or minimum) over all such assignments.
f (s) is called the optimal objective value.

In this lecture we assume the objective is to maximize f .
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The Iteration Method for Optimizing P = (V ,D,C , f )

Let s0 be an initial solution for P = (V ,D,C ).
Let L = f (s0).
Let U be an upperbound for f .
Let M = (L + U)/2 be the midpoint for L and U.

//Add the constraint that f (a) must be at least as great as M
Let Ĉ = C ∪ {f (a) ≥ M}.

While there is still time to search
Find a solution s for (V ,D, Ĉ ).
If no solution is found, then set U = M and

M = (L + M)/2.
Otherwise,

Set L = f (s).
Set M = (L + U)/2.
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Shortcomings of the Iteration Method

Compound Objective Functions

An objective function can have a complex structure, and be
comprised of several sub-functions. We call such an objective
function a compound function. An optimization algorithm should
take advantage of this structure.

Example: Finding a Maximum Clique for G = (V ,E )

Variables. Boolean variables xv , for each v ∈ V .

Constraints. For all u, v ∈ V , if xu and xv are both set to
true, then (u, v) ∈ E .

Objective Function. f (a) =
∑
v∈V

a(xv ), is the sum of the

assignments to all the model variables.
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Soft and Hard Constraints

Terminology

Hard constraint: any constraint that must be satisfied by a
model solution.
Soft constraint: any constraint that need not be satisfied by
a model solution, but whose satisfaction improves the overall
quality of the soluton.
Soft constraints as functions. A soft constraint may be
viewed as a function f : A(var(f ))→ R, where f (a) indicates
the degree to which f is contributing to the quality of a
solution that assigns a to the variables of f .
Soft Constraint Model/Problem. P = (V ,D,C ,F ), where
F is the set of soft constraints.
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Examples of Soft Constraints

Academic Scheduling

Two-day Teaching Schedule. An instructor prefers to have
a two-day teaching schedule.
Curriculum Availability. A curriculum is a set of courses
that a student of some level (e.g. first-semester Junior)
should take together. Some courses are offered in multiple
sections that allow for different ways for a student to attain
the curriculum. The weight function counts the number of
ways. For example, suppose the curriculum is course A and
course B. Course A has two sections that have been assigned
as MW morning and TTH evening. Course B has three
sections, assigned as MW evening, TTH morning, and Friday
morning. A soft constraint function might assign a vlaue of
2× 3 = 6, since there are 6 ways that a student can attain the
curriculum based on this assignment.

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Examples of Soft Constraints

Academic Scheduling

Two-day Teaching Schedule. An instructor prefers to have
a two-day teaching schedule.

Curriculum Availability. A curriculum is a set of courses
that a student of some level (e.g. first-semester Junior)
should take together. Some courses are offered in multiple
sections that allow for different ways for a student to attain
the curriculum. The weight function counts the number of
ways. For example, suppose the curriculum is course A and
course B. Course A has two sections that have been assigned
as MW morning and TTH evening. Course B has three
sections, assigned as MW evening, TTH morning, and Friday
morning. A soft constraint function might assign a vlaue of
2× 3 = 6, since there are 6 ways that a student can attain the
curriculum based on this assignment.

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Examples of Soft Constraints

Academic Scheduling

Two-day Teaching Schedule. An instructor prefers to have
a two-day teaching schedule.
Curriculum Availability. A curriculum is a set of courses
that a student of some level (e.g. first-semester Junior)
should take together. Some courses are offered in multiple
sections that allow for different ways for a student to attain
the curriculum. The weight function counts the number of
ways. For example, suppose the curriculum is course A and
course B. Course A has two sections that have been assigned
as MW morning and TTH evening. Course B has three
sections, assigned as MW evening, TTH morning, and Friday
morning. A soft constraint function might assign a vlaue of
2× 3 = 6, since there are 6 ways that a student can attain the
curriculum based on this assignment.

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Examples of Soft Constraints

Maximum Clique for G = (V ,E )

For each v ∈ V the constraint xv = true is a soft constraint with
f (a) = 1 if a(xv ) = 1, and f (a) = 0 otherwise.

MaxSAT Problem

Given a constraint model P = (V ,D,C ), find an assignment
a ∈ A(V ) that maximizes the number of satisfied constraints. As a
soft-constraint model, P̂ = (V ,D, ∅,C ), where c(a) = 1 iff a
satisfies c , and 0 otherwise.

Todd Ebert Constraint Optimization Problems
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Examples of Soft Constraints: Combinatorial Bidding

Problem Definition

Auction Set. A = {a1, . . . , an} is a set of items to be
auctioned.

Bid Set. B = {b1, . . . , bm} is the set of bids. For
i = 1, . . . ,m, bi = (Si , pi ), where Si ⊆ A is a subset of items,
and pi is the total bidding price for those items.

Goal. find a subset B̂ ⊆ B of bids in such a way that no two
bids in B̂ overlap in items, and the sum of all bid prices is
maximum with respect to all such subsets of nonoverlapping
bids.
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Examples of Soft Constraints: Combinatorial Bidding

Bidding Example

Auctioned items. A = {1, . . . , 8}
Bids. b1 = ({2, 3, 5, 7, 8}, 7), b2 = ({7, 8}, 4),
b3 = ({1, 5, 8}, 6), b4 = ({1, 8}, 5), b5 = ({1, 2, 4, 5, 6}, 8),
b6 = ({3, 4, 5}, 7), b7 = ({2, 4, 5, 7}, 6), and b8 = ({1, 4}, 4).
Optimal subset. B̂ = {b2, b5} for a total bid value of
4+8=12.

Soft Constraint Model for the Bidding Problem

Boolean variables V = {x1, . . . ,m}, where xi true means bid i
is accepted.
C : for all 1 ≤ i < j ≤ n, xi ∧ xj → Si ∩ Sj = ∅.
F : for all 1 ≤ i ≤ n, fi ∈ F is such that fi (a) = pi iff
a(xi ) = 1.

Todd Ebert Constraint Optimization Problems
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Soft Constraint and Constraint Optimization Equivalence

Soft Constraint Problem P = (V ,D,C ,F ) as a Constraint
Optimization Problem

Define g : A(V )→ R so that, given assignment a ∈ A(V ),

g(a) =
∑
f ∈F

f (πvar(f )(a)).

Then a is an optimal solution to P iff it is an optimal solution to
Popt = (V ,D,C , g).

Constraint Optimization Problem P = (V ,D,C , f ) as a Soft
Constraint Problem

Psoft = (V ,D,C ,F ), where F = {f }.

Todd Ebert Constraint Optimization Problems
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Soft Constraint Upper-Bound Functions

Defining fmax : A(V )→ R for Soft Constraint f

fmax(a) = max
avb

(f (b)),

where a v b means that assignment b either equals a, or is an
extension of a. fmax is called the upper-bound function of f .

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Upper-Bound Function Example

f (x , y , z ,w) = 3x − 5y + 10z − 7w

dom(x) = dom(y) = dom(z) = dom(w) = {0, 1, . . . , 10}
a = ∅: fmax(a) = max

(x ,y ,z,w)
(f (x , y , z ,w)) = 130

a = (x = 3, y = 4): fmax(a) = max
(z,w)

(10z − 7w − 11) = 89

a = (x = 7, y = 2,w = 5):
fmax(a) = max

z∈dom(z)
(10z − 24) = 76

a = (7, 2, 6, 5): fmax(a) = f (a) = 14

Todd Ebert Constraint Optimization Problems
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Branch and Bound Method for P = (V ,D,C , f )

Description of Branch and Bound

Extends the tree search framework; assumes use of the
forward-checking childbearing rule.

During search, the lower bound L represents the greatest
value of f observed thus far.

For node/assignment a to bear children, it is necessary that
constraint fmax(a) > L be satisfied.

If a solution s is found for which f (s) > L, then L← f (s),
and search continues.
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Branch and Bound Example: Combinatorial Bidding

See branch and bound example.pdf
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Defining Subproblems via Projections

The Projection of P = (V ,D,C ) onto U

Let U ⊂ V be a nonempty subset of V . Then the projection of P
onto U, denoted πU(P) = (U,DU ,CU), is defined so that DU ⊂ D
is the set of domains of variables in U, and c ∈ CU ⊆ C iff
var(c) ⊆ U. Note: FU is defined similarly in case P has soft
constraint set F .

Projection Example

P = (V ,D,C ,F ), where V = {x , y , z ,w , t}, C = {c1, c2, c3},
F = {f1, f2}, var(c1) = {x , y , z}, var(c2) = {y ,w},
var(c3) = {w , t}, var(f1) = {y , t}, var(f2) = {y , z ,w},
U = {y ,w , t}.
πU(P) = (U,DU ,CU ,FU), where
DU = {dom(y), dom(w), dom(t)}, CU = {c2, c3}, and
FU = {f1}.
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Russian Doll Search

Overview

Russian doll search solves increasingly larger optimization
subproblems via branch and bound. The solutions to the smaller
subproblems are used to obtain both lower bounds and tighter
upper bounds on the optimal objective values for the larger
subproblems.
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Russian Doll Search Algorithm

Subproblems of P = ({x1, . . . , xn},D,C ,Cs)

Subproblem Pn. Un = {xn}. Pn = πUn(P). Mn: optimal
objective value for Pn.
Subproblem Pn−i , i = 1, . . . , n − 1. Un−i = {xn−i , . . . , xn},
Pn−i = πUn−i

(P).

Computing Initial Lower Bound L for Pn−i

If i = 0, then L = −∞. Otherwise, let b be an optimal solution for
Pn−i+1. Then

L = Mn−i+1 + max
e

(
∑
f

f (πvar(f )(e))),

where the max is taken over all extensions e of b over Un−i that
satisfy Pn−i ; while sum is taken over all f ∈ FUn−i

for which
xn−i ∈ var(f ).
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Russian Doll Search Algorithm

Computing Upper Bound U for Assignment a in Problem Pn−i

Let a be an assignment over W = {xn−i , . . . , xn−j} that is
consistent with Pn−i . Partition FUn−i

into three sets: X , Y , and Z ,
where, for f ∈ FUn−i

,

f ∈ X iff var(f ) ⊆W (functions with all variables assigned by
a),
f ∈ Y iff var(f ) ⊆ Un−j+1 (functions with no variables
assigned by a),
f ∈ Z iff f is neither in X nor in Y (functions with some
variables assigned by a),

Then U =
∑
f ∈X

f (a) +
∑
f ∈Z

fmax(a) + Mn−j+1
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Russian Doll Search Example: Combinatorial Bidding

Subproblems P8, . . . ,P2

P8. Bids: B8 = {({1, 4}, 4)}. M8 = 4.
P7. Bids: B7 = B8 + {({2, 4, 5, 7}, 6)}. M7 = 6.
P6. Bids: B6 = B7 + {({3, 4, 5}, 7)}. M6 = 7.
P5. Bids: B5 = B6 + {({1, 2, 4, 5, 6}, 8)}. M5 = 8.
P4. Bids: B4 = B5 + {({1, 8}, 5)}. M4 = 12.
P3. Bids: B3 = B4 + {({1, 5, 8}, 6)}. M3 = 12.
P2. Bids: B2 = B3 + {({7, 8}, 4)}. M2 = 12.
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 {7, 8} 4 12

x3 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12

Figure: L = 12 via P2 solution extension (0, 0, 0, 1, 0, 1, 0, 0)
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x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 1 {7, 8} 4 12

x3 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 1 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 1 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 1 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 0 {1, 2, 4, 5, 6} 8 12 14 = 7 + M6

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 0 {1, 2, 4, 5, 6} 8 12 14 = 7 + M6

x6 = 1 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 0 {1, 2, 4, 5, 6} 8 12 14 = 7 + M6

x6 = 0 {3, 4, 5} 7 12 13 = 7 + M6

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 0 {1, 2, 4, 5, 6} 8 12 14 = 7 + M6

x6 = 0 {3, 4, 5} 7 12 13 = 7 + M7

x7 = 1 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Russian Doll Example: Combinatorial Bidding

Assignment Items Price L U

x1 = 1 {2, 3, 5, 7, 8} 7 12 19 = 7 + M2

x2 = 0 {7, 8} 4 12 19 = 7 + M3

x3 = 0 {1, 5, 8} 6 12 19 = 7 + M4

x4 = 0 {1, 8} 5 12 15 = 7 + M5

x5 = 0 {1, 2, 4, 5, 6} 8 12 14 = 7 + M6

x6 = 0 {3, 4, 5} 7 12 13 = 7 + M6

x7 = 0 {2, 4, 5, 7} 6 12 11 = 7 + M8

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price Lower Bound U

x1 = 0 {2, 3, 5, 7, 8} 7 12 12 = M2

x2 {7, 8} 4 12

x3 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12
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Russian Doll Example: Combinatorial Bidding

Assignment Items Price Lower Bound U

x1 {2, 3, 5, 7, 8} 7 12

x2 {7, 8} 4 12

x3 {1, 5, 8} 6 12

x4 {1, 8} 5 12

x5 {1, 2, 4, 5, 6} 8 12

x6 {3, 4, 5} 7 12

x7 {2, 4, 5, 7} 6 12

x8 {1, 4} 4 12

Figure: Optimal solution: (0, 0, 0, 1, 0, 1, 0, 0) with optimal objective
value 12.
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Russian Doll Search Example: Table Functions

Objective: maximize
6∑

i=1
fi

x4 f1
0 4
1 6

x3 x4 f2
0 0 0
0 1 6
1 0 4
1 1 6

x2 x3 f3
0 0 3
0 1 3
1 0 0
1 1 8
2 0 2
2 1 1

x2 x4 f4
0 0 3
0 1 2
1 0 1
1 1 5
2 0 1
2 1 3



Russian Doll Search Example: Table Functions

Objective: maximize
6∑

i=1
fi

x1 x2 x3 f5
0 0 0 3
0 0 1 6
0 1 0 6
0 1 1 5
0 2 0 4
0 2 1 3
1 0 0 2
1 0 1 1
1 1 0 3
1 1 1 5
1 2 0 4
1 2 1 2
2 X X 2

x1 x3 f6
0 0 5
0 1 4
1 0 5
1 1 6
2 0 4
2 1 2
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Russian Doll Search Example: Table Functions

Solve P4

Assignment U L

x4 f1,max(x4) = 6 −∞
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Russian Doll Search Example: Table Functions

Solve P4

Assignment U L

x4 = 0 f1(0) = 4 4
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Russian Doll Search Example: Table Functions

Solve P4

Assignment U L

x4 = 1 f1(1) = 6 6
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Russian Doll Search Example: Table Functions

Solve P4

Assignment U L

x4 6

Figure: Optimal solution: x4 = 1, Optimal objective value: M4 = 6.
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Russian Doll Search Example: Table Functions

Solve P3

Assignment U L

x3 f2,max(x3, x4) + M4 = 12 12

x4 12

Figure: L = 12 via P4 solution extension (0, 1)
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Russian Doll Search Example: Table Functions

Solve P3

Assignment U L

x3 = 0 f2,max(0, x4) + M4 = 12 12

x4 12
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Russian Doll Search Example: Table Functions

Solve P3

Assignment U L

x3 = 1 f2,max(1, x4) + M4 = 12 12

x4 12
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Russian Doll Search Example: Table Functions

Solve P3

Assignment U L

x3 12

x4 12

Figure: Optimal solution: (0, 1), Optimal objective value: M3 = 12.
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 f3,max + f4,max + M3 = 25 17

x3 17

x4 17

Figure: L = 17 via P3 solution extension (0, 0, 1)
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 0 f3,max + f4,max + M3 = 18 17

x3 17

x4 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 0 f3,max + f4,max + M3 = 18 17

x3 = 0 f3 + f2,max + f4,max + M4 = 18 17

x4 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 0 f3,max + f4,max + M3 = 18 17

x3 = 0 f3 + f2,max + f4,max + M4 = 18 17

x4 = 0 f1 + f2 + f3 + f4 = 10 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 0 f3,max + f4,max + M3 = 18 17

x3 = 0 f3 + f2,max + f4,max + M4 = 18 17

x4 = 1 f1 + f2 + f3 + f4 = 17 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 0 f3,max + f4,max + M3 = 18 17

x3 = 1 f3 + f2,max + f4,max + M4 = 17 17

x4 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 1 f3,max + f4,max + M3 = 25 17

x3 17

x4 17

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 1 f3,max + f4,max + M3 = 25 17

x3 = 0 f3 + f2,max + f4,max + M4 = 17 17

x4 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 1 f3,max + f4,max + M3 = 25 17

x3 = 1 f3 + f2,max + f4,max + M4 = 25 17

x4 17
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 1 f3,max + f4,max + M3 = 25 21

x3 = 1 f3 + f2,max + f4,max + M4 = 25 21

x4 = 0 f1 + f2 + f3 + f4 = 21 21
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 1 f3,max + f4,max + M3 = 25 25

x3 = 1 f3 + f2,max + f4,max + M4 = 25 25

x4 = 1 f1 + f2 + f3 + f4 = 25 25
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 = 2 f3,max + f4,max + M3 = 17 25

x3 25

x4 25
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Russian Doll Search Example: Table Functions

Solve P2

Assignment U L

x2 25

x3 25

x4 25

Figure: Optimal solution: (1, 1, 1), Optimal objective value: M2 = 25.
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Russian Doll Search Example: Table Functions

Solve P1

Assignment U L

x1 f5,max + f6,max + M2 = 37 36

x2 36

x3 36

x4 36

Figure: L = 36 via P2 solution extension (1, 1, 1, 1)
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Russian Doll Search Example: Table Functions

Solve P1

Assignment U L

x1 = 0 f5,max + f6,max + M2 = 36 36

x2 36

x3 36

x4 36
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Russian Doll Search Example: Table Functions

Solve P1

Assignment U L

x1 = 1 f5,max + f6,max + M2 = 36 36

x2 36

x3 36

x4 36
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Russian Doll Search Example: Table Functions

Solve P1

Assignment U L

x1 = 2 f5,max + f6,max + M2 = 31 36

x2 36

x3 36

x4 36
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Russian Doll Search Example: Table Functions

Solve P1

Assignment U L

x1 36

x2 36

x3 36

x4 36

Figure: Optimal solution: (1, 1, 1, 1), Optimal objective value: M1 = 36.
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Dynamic Programming Approach to Function Optimization

A Bottom-up Approach to Optimization

Goal. Find an assignment a over {x1, . . . , xn} that maximizes

F (x1, . . . , xn) =
k∑

i=1

fi .

Strategy. Optimize sub-problems that depend on fewer
variables and fewer functions (fi ’s). Use these sub-problem
solutions to optimize over increasingly larger sub-problems, up
to and including F (x1, . . . , xn).
Strategy Execution. Partition fi ’s into buckets
B(x1), . . . ,B(xn). Process the buckets in reverse order; i.e.
B(xn−1), . . . ,B(x1). Each processed bucket corresponds with
optimizing over a sub-problem. This approach is sometimes
called variable elimination, or bucket elimination.
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A Bottom-up Approach to Optimization

Goal. Find an assignment a over {x1, . . . , xn} that maximizes
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i=1

fi .

Strategy. Optimize sub-problems that depend on fewer
variables and fewer functions (fi ’s). Use these sub-problem
solutions to optimize over increasingly larger sub-problems, up
to and including F (x1, . . . , xn).
Strategy Execution. Partition fi ’s into buckets
B(x1), . . . ,B(xn). Process the buckets in reverse order; i.e.
B(xn−1), . . . ,B(x1). Each processed bucket corresponds with
optimizing over a sub-problem. This approach is sometimes
called variable elimination, or bucket elimination.
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Dynamic Programming Approach to Function Optimization

A Bottom-up Approach to Optimization

Goal. Find an assignment a over {x1, . . . , xn} that maximizes

F (x1, . . . , xn) =
k∑

i=1

fi .

Strategy. Optimize sub-problems that depend on fewer
variables and fewer functions (fi ’s). Use these sub-problem
solutions to optimize over increasingly larger sub-problems, up
to and including F (x1, . . . , xn).

Strategy Execution. Partition fi ’s into buckets
B(x1), . . . ,B(xn). Process the buckets in reverse order; i.e.
B(xn−1), . . . ,B(x1). Each processed bucket corresponds with
optimizing over a sub-problem. This approach is sometimes
called variable elimination, or bucket elimination.
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Dynamic Programming Approach to Function Optimization

A Bottom-up Approach to Optimization

Goal. Find an assignment a over {x1, . . . , xn} that maximizes

F (x1, . . . , xn) =
k∑

i=1

fi .

Strategy. Optimize sub-problems that depend on fewer
variables and fewer functions (fi ’s). Use these sub-problem
solutions to optimize over increasingly larger sub-problems, up
to and including F (x1, . . . , xn).
Strategy Execution. Partition fi ’s into buckets
B(x1), . . . ,B(xn). Process the buckets in reverse order; i.e.
B(xn−1), . . . ,B(x1). Each processed bucket corresponds with
optimizing over a sub-problem. This approach is sometimes
called variable elimination, or bucket elimination.
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Bucket Elimination Example

Goal: maximize
f1(u) + f2(u, x) + f3(u,w , y) + f4(u, y) + f5(v , x , y) + f6(v , z)

Assume variable ordering u, v ,w , x , y , z . Then

max
u,v ,w ,x ,y ,z

f1(u)+f2(u, x)+f3(u,w , y)+f4(u, y)+f5(v , x , y)+f6(v , z) =

max
u

f1(u)+max
v

max
w

max
x

f2(u, x)+max
y

f3(u,w , y)+f4(u, y)+f5(v , x , y)

+max
z

f6(v , z).
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Bucket Elimination Example

Goal: maximize
f1(u) + f2(u, x) + f3(u,w , y) + f4(u, y) + f5(v , x , y) + f6(v , z)

Assume variable ordering u, v ,w , x , y , z . Then

max
u,v ,w ,x ,y ,z

f1(u)+f2(u, x)+f3(u,w , y)+f4(u, y)+f5(v , x , y)+f6(v , z) =

max
u

f1(u)+max
v

max
w

max
x

f2(u, x)+max
y

f3(u,w , y)+f4(u, y)+f5(v , x , y)

+max
z

f6(v , z).
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Bucket Elimination Example

Key Observations

The max operators are distributed from left to right, in
accordance with the pre-defined variable ordering.

If f is positioned to the left of a max
t

operator, for some

variable t, then f neither depends on t, nor on any variable to
the right of t.

If max
t

is the first max operator to the left of f , then t is the

latest (in terms of the variable ordering) variable for whhich f
depends. Moreover, t is the unique variable for which
f ∈ B(t), the bucket of t.

Todd Ebert Constraint Optimization Problems
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Bucket Elimination Example

Key Observations

The max operators are distributed from left to right, in
accordance with the pre-defined variable ordering.

If f is positioned to the left of a max
t

operator, for some

variable t, then f neither depends on t, nor on any variable to
the right of t.

If max
t

is the first max operator to the left of f , then t is the

latest (in terms of the variable ordering) variable for whhich f
depends. Moreover, t is the unique variable for which
f ∈ B(t), the bucket of t.
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Key Observations

The max operators are distributed from left to right, in
accordance with the pre-defined variable ordering.

If f is positioned to the left of a max
t

operator, for some

variable t, then f neither depends on t, nor on any variable to
the right of t.

If max
t

is the first max operator to the left of f , then t is the

latest (in terms of the variable ordering) variable for whhich f
depends. Moreover, t is the unique variable for which
f ∈ B(t), the bucket of t.
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Bucket Elimination Example

Key Observations

The max operators are distributed from left to right, in
accordance with the pre-defined variable ordering.

If f is positioned to the left of a max
t

operator, for some

variable t, then f neither depends on t, nor on any variable to
the right of t.

If max
t

is the first max operator to the left of f , then t is the

latest (in terms of the variable ordering) variable for whhich f
depends. Moreover, t is the unique variable for which
f ∈ B(t), the bucket of t.

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Bucket Elimination Example

max
u

f1(u)+max
v

max
w

max
x

f2(u, x)+max
y

f3(u,w , y)+f4(u, y)+f5(v , x , y)

+max
z

f6(v , z).

Pre-processed Buckets

B(u) = {f1(u)}, B(v) = B(w) = ∅, B(x) = {f2(u, x)},
B(y) = {f3(u,w , y), f4(u, y), f5(v , x , y)}, B(z) = f6(v , z).
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Bucket Elimination Example

max
u

f1(u)+max
v

max
w

max
x

f2(u, x)+max
y

f3(u,w , y)+f4(u, y)+f5(v , x , y)

+max
z

f6(v , z).

Pre-processed Buckets

B(u) = {f1(u)}, B(v) = B(w) = ∅, B(x) = {f2(u, x)},
B(y) = {f3(u,w , y), f4(u, y), f5(v , x , y)}, B(z) = f6(v , z).
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Bucket Elimination Example

Bucket Processing

Buckets are processed in reverse variable order.
For bucket B(t), let x1, . . . , xn denote the variables (other
than t) that the functions in B(t) depend on. Then
processing B(t) means computing the function

gt(x1, . . . , xn) = max
t

F (x1, . . . , xn, t),

and placing it in bucket B(xn) (assuming xn is the rightmost
variable of x1, . . . , xn), where F (x1, . . . , xn, t) is the sum of all
functions in B(t).
BS0 denotes the pre-processed set of buckets. BSk denotes
the state of the buckets after the k latest buckets have been
processed. Processed buckets are no longer listed as part of
BSk .
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Bucket Elimination Example

BS0

B(u) = {f1(u)}, B(v) = B(w) = ∅, B(x) = {f2(u, x)},
B(y) = {f3(u,w , y), f4(u, y), f5(v , x , y)}, B(z) = f6(v , z).

Process B(z)

Compute gz(v) = max
z

f6(v , z). Place in B(v).
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Bucket Elimination Example

BS1

B(u) = {f1(u)}, B(v) = {gz(v)}, B(w) = ∅, B(x) = {f2(u, x)},
B(y) = {f3(u,w , y), f4(u, y), f5(v , x , y)}

Process B(y)

Compute gy (u, v ,w , x) = max
y

f3(u,w , y) + f4(u, y) + f5(v , x , y).

Place in B(x).
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Bucket Elimination Example

BS2

B(u) = {f1(u)}, B(v) = {gz(v)}, B(w) = ∅,
B(x) = {f2(u, x), gy (u, v ,w , x)}

Process B(x)

Compute gx(u, v ,w) = max
x

f2(u, x) + gy (u, v ,w , x). Place in

B(w).
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Bucket Elimination Example

BS3

B(u) = {f1(u)}, B(v) = {gz(v)}, B(w) = {gx(u, v ,w)}

Process B(w)

Compute gw (u, v) = max
w

gx(u, v ,w). Place in B(v).

Todd Ebert Constraint Optimization Problems



Introduction
Branch and Bound
Russian Doll Search

Dynamic Programming Optimization

Bucket Elimination Example

BS4

B(u) = {f1(u)}, B(v) = {gz(v), gw (u, v)}

Process B(v)

Compute gv (u) = max
v

gz(v) + gw (u, v). Place in B(u).
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Bucket Elimination Example

BS5

B(u) = {f1(u), gv (u)}

Process B(u)

Compute gu() = max
u

f1(u) + gv (u). gu() denotes the maximum

value of the original sum!
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Bucket Elimination Example: Table Functions

Variables and Functions

Variable ordering: x1, x2, x3, x4.

Functions: f1(x4), f2(x3, x4), f3(x2, x3), f4(x2, x4),
f5(x1, x2, x3), f6(x1, x3)
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Bucket Elimination Example: Table Functions

Process bucket B(x4) = {f1(x4), f2(x3, x4), f4(x2, x4)}

x4 f1
0 4
1 6

x3 x4 f2
0 0 0
0 1 6
1 0 4
1 1 6

x2 x4 f4
0 0 3
0 1 2
1 0 1
1 1 5
2 0 1
2 1 3

x2 x3 gx4(x2, x3) = max
x4

f1 + f2 + f4

0 0 14/x4 = 1
0 1 14/x4 = 1
1 0 17/x4 = 1
1 1 17/x4 = 1
2 0 15/x4 = 1
2 1 15/x4 = 1 Todd Ebert Constraint Optimization Problems
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Bucket Elimination Example: Table Functions

Process bucket
B(x3) = {f3(x2, x3), f5(x1, x2, x3), f6(x1, x3), gx4(x2, x3)}

x2 x3 f3
0 0 3
0 1 3
1 0 0
1 1 8
2 0 2
2 1 1

x1 x2 x3 f5
0 0 0 3
0 0 1 6
0 1 0 6
0 1 1 5
0 2 0 4
0 2 1 3
1 0 0 2
1 0 1 1
1 1 0 3
1 1 1 5
1 2 0 4
1 2 1 2
2 X X 2

x1 x3 f6
0 0 5
0 1 4
1 0 5
1 1 6
2 0 4
2 1 2
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Bucket Elimination Example: Table Functions

Process bucket
B(x3) = {f3(x2, x3), f5(x1, x2, x3), f6(x1, x3), gx4(x2, x3)}

x2 x3 gx4
0 0 14/x4 = 1
0 1 14/x4 = 1
1 0 17/x4 = 1
1 1 17/x4 = 1
2 0 15/x4 = 1
2 1 15/x4 = 1

x1 x2 gx3 = max
x3

f3 + f5 + f6 + gx4

0 0 27/x3 = 1
1 0 24/x3 = 0
2 0 23/x3 = 0
0 1 34/x3 = 1
1 1 36/x3 = 1
2 1 29/x3 = 1
0 2 26/x3 = 0
1 2 25/x3 = 0
2 2 23/x3 = 0
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Bucket Elimination Example: Table Functions

Process bucket B(x2) = {gx3(x1, x2)}

x1 x2 gx3(x1, x2)

0 0 27/x3 = 1
1 0 24/x3 = 0
2 0 23/x3 = 0
0 1 34/x3 = 1
1 1 36/x3 = 1
2 1 29/x3 = 1
0 2 26/x3 = 0
1 2 25/x3 = 0
2 2 23/x3 = 0

x1 gx2(x1)

0 34/x2 = 1
1 36/x2 = 1
2 29/x2 = 1
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Bucket Elimination Example: Table Functions

Process bucket B(x1) = {gx2(x1)}

x1 gx2(x1)

0 34/x2 = 1
1 36/x2 = 1
2 29/x2 = 1

Maximum objective value

gx1() = 36/x1 = 1
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Bucket Elimination Example: Table Functions

Moving forward to find the optimal solution

gx1() = 36 = max
x1

gx2(x1) was realized via x1 = 1.

gx2(1) = 36 = max
x2

gx3(1, x2) was realized via x2 = 1.

gx3(1, 1) = 36 =

max
x3

f3(1, x3) + f5(1, 1, x3) + f6(1, x3) + gx4(1, x3)

was realized via x3 = 1.
gx4(1, 1) = 17 =

max
x4

f1(x4) + f2(1, 1, x4) + f4(1, x4)

was realized via x4 = 1.
Optimal solution: (1, 1, 1, 1)
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Using Bucket Elimination as Part of Branch and Bound

Computing Upper Bound with Buckets

Assume variable ordering x1, . . . , xn, and objective function
F =

∑
i
fi . Let a be an assignment over x1, . . . , xn−k−1. Then

Fmax(a) may be approximated by summing over all bucket
functions of BSk , the bucket state that occurs after the k latest
buckets are processed. This gives the formula

Fmax(a) =
n−k−1∑
i=1

∑
f ∈B(xi )

f (a),

where B(xi ) is the associated with bucket state BSk .
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Using Bucket Elimination as Part of Branch and Bound

Rationale for Computing Upper Bound with Buckets

Since the latest k variables have yet to be instantiated, we may
apply max operators to them (i.e. process their buckets) to create
functions gxn , . . . , gxn−k

. Each of these functions is a function over
a subset of x1, . . . , xn−k−1, and hence can be evaluated by using
assignment a. Moreover, each of these functions outputs the
maximum attainable sum (of functions in the associated bucket).
Finally, since any function fi is either in one of the buckets
1, . . . , n − k − 1 (and hence can be evaluated using a), or is in one
of the k later buckets, it follows that fi ’s contribution to fmax will
be correctly recorded.
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Using Bucket Elimination as Part of Branch and Bound

Example of Computing Upper Bound U with Buckets

Assume variable ordering and table functions from previous
example. Let a = (1, 0) be an assignment over {x1, x2}. Hence,
k = 2 with BS2 consisting of B(x1) = ∅ and B(x2) = {gx3(x1, x2)}.
Then

Fmax(a) = gx3(1, 0) = 24.

Why is the upper bound only an approximation?

Given assignment a over x1, . . . , xn−k−1, one can move forward to
compute an assignment a ∪ b over x1, . . . , xn that realizes Fmax,
where b is an assignment over xn−k , . . . , xn. However, it is possible
that a ∪ b does not satisfy all the hard constraints. Hence, in the
presence of hard constraints, there is no guarantee that Fmax can
be realized.
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Complexity of Bucket Elimination

Bucket processing grows exponentially with number of variables

Let d be a bound on the size of each variable domain. Let n be
the number of variables y for which y 6= x and y ∈ var(f ), for
some f ∈ B(x). Then gx has domain size dn.
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Complexity of Bucket Elimination

Managing Complexity with Upper Approximations

h is called an upper approximation of g iff g(z) ≤ h(z), for
all domain values z of g .
Upper approximation via max operator distribution. If
g(u, v ,w , x , y , z , t) = max

t
f1(u, v ,w , t) + f2(x , y , z , t), then

g(z) ≤ h1(u, v ,w) + h2(x , y , z) =
max
t

f1(u, v ,w , t) + max
t

f2(x , y , z , t). Therefore h1 and h2

have smaller domains, and require less computation than g .
The use of max operator distribution for bucket processing is
called mini-bucket elimination. Here, processed bucket B(x)
may yield several functions with lower complexity than gx .
However, these functions are upper-approximations of gx . So
exact solutions are no longer guaranteed.
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