
1 Constraint Graphs

Primal Representation of a CSP with a Graph

Primal Constraint Graph
Given CSP P = (V,D,C), the primal constraint graph of P is the undirected
simple graph G = (V,E), where (x, y) ∈ E iff there is some constraint c ∈ C for
which x, y ∈ var(c).

Primal Constraint Graph Example

Defining the Problem

• Variables: T1, . . . , T5, where Ti is the starting time for a processor to
begin work on task i.

• Constraints: T1 < T2, T1 < T3, T2 < T3, T5 < T2, T4 < T5, T4 < T3

Primal Constraint Graph
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Constraints: T1 < T2, T1 < T3, T2 < T3, T5 < T2, T4 < T5, T4 < T3

Importance of the Primal Graph

The Primal Graph Sheds Light on the CSP

• Connectivity. The components of the primal graph represent indepen-
dent problems.

• Tree Decompositions. Removing some edges from the primal graph to
form a tree can result in a polynomial-time solvable sub-problem.

• Isomorphism. Isomorphic primal graphs suggest similar types of prob-
lems. Solving one problem might shed light on solving the other problem.

• Vertex degrees help identify efficient ordering of the variables when
solving the problem via backtracking.
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Dual Representation of a CSP with a Graph

Dual Constraint Graph
Given CSP P = (V,D,C), the dual constraint graph of P is the undirected
simple graph whose vertex set is the set of all distinct constraint scopes of the
constraints in C, and for which two scopes are adjacent iff they have one or
more variables in common.

Dual Constraint Graph Example

Defining the Problem

• Variables: T1, . . . , T5, where Ti is the starting time for a processor to
begin work on task i.

• Constraints: T1 < T2, T1 < T3, T2 < T3, T5 < T2, T4 < T5, T4 < T3

Dual Constraint Graph
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Constraints: T1 < T2, T1 < T3, T2 < T3, T5 < T2, T4 < T5, T4 < T3

2 The Dual of a Constraint Problem

The Dual of a Constraint Problem

Dual Constraint Graph
Given CSP P = (V,D,C), the dual of P , denoted P⊥ is the constraint problem
with the following properties.

• Variables: c ∈ C, for each constraint c of P .

• Domains: dom(c) = c (remember, c is a subset of assignments!).

• Constraints: for each pair ci, cj ∈ C for which var(ci) ∩ var(cj) 6= ∅,
(a1, a2) satisfies the dual constraint cij iff a1 ∈ ci, a2 ∈ cj , and ai and aj
agree at var(ci) ∩ var(cj).
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Dual Constraint Problem Example

• c1 = {(1, 2, 1), (1, 3, 2), (2, 1, 4), (1, 4, 2)} is a constraint of P over {x, y, z}.

• c2 = {(1, 2, 3), (2, 4, 1), (1, 2, 2), (1, 4, 2)} is a constraint of P over {x, z, w}.

• c12 is a constraint over variables c1 and c2 of P⊥.

• Satisfying assignments of c12:

{((1, 3, 2), (1, 2, 3)), ((1, 3, 2), (1, 2, 2)), ((1, 4, 2), (1, 2, 3)),

((1, 4, 2), (1, 2, 2)), ((2, 1, 4), (2, 4, 1))}

Easier way to Extensionally Represent a Dual Constraint

Use the assignments from c1 ./ c2

• c1 = {(1, 2, 1), (1, 3, 2), (2, 1, 4), (1, 4, 2)} is a constraint of P over {x, y, z}.

• c2 = {(1, 2, 3), (2, 4, 1), (1, 2, 2), (1, 4, 2)} is a constraint of P over {x, z, w}.

• Satisfying assignments of c12:

{((1, 3, 2), (1, 2, 3)), ((1, 3, 2), (1, 2, 2)), ((1, 4, 2), (1, 2, 3)),

((1, 4, 2), (1, 2, 2)), ((2, 1, 4), (2, 4, 1))}

• Written as join tuples: {(1, 3, 2, 3), (1, 3, 2, 2), (2, 1, 4, 1), (1, 4, 2, 3), (1, 4, 2, 2)

3 Binary Constraint Networks

Binary Constraint Networks

• A binary constraint network is a constraint satisfaction problem for
which each constraint is binary (i.e. is a relation over exactly two vari-
ables).

• Not every problem can be represented by a binary constraint network.

• P1 and P2 are logically equivalent iff sol(P1) = sol(P2).

Counting Arguments

• Assume n variables, each with a domain of size k.

• Number of possible constraint problems (up to logical equivalence): 2k
n

• Number of binary constraint networks: (2k
2

)n
2

= 2k
2n2
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Projection Networks

• Given relation R over V , then projection network of R, denoted π(R),
is the binary constraint network over variable set V , and whose constraints
are cxy = π{x,y}(R).

• In other words, the constraints of π(R) are obtained by projecting the
assignments of R onto each pair of variables of V .

Projection Network Example

• R = {(2, 3, 2), (2, 2, 3), (2, 3, 3)} is a relation over {x, y, z}.

• Constraints of π(R): cxy = {(2, 2), (2, 3)}, cxz = {(2, 2), (2, 3)}, cyz =
{(2, 3), (3, 2), (3, 3)}

• For this Example: sol(π(R)) = R

Projection Network Example 2

• R = {(1, 1, 1), (1, 2, 3), (2, 1, 1), (2, 2, 1)} is a relation over {x, y, z}.

• Constraints of π(R): cxy = {(1, 1), (1, 2), (2, 1), (2, 2)}, cxz = {(1, 1), (1, 3), (2, 1)},
cyz = {(1, 1), (2, 1), (2, 3)}

• sol(π(R)) = {(1, 1, 1), (1, 2, 1), (1, 2, 3), (2, 1, 1), (2, 2, 1)} has more assign-
ments than R.

Some Facts About Projection Networks

• For all relations R, R ⊆ sol(π(R)).

• Any binary constraint network P for which R ⊆ sol(P ) must contain π(R).

• Hence, π(R) is the minimum binary constraint network whose set of solu-
tions contains R.

• Therefore, R can be represented by a binary constraint network iff R =
sol(π(R)).
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Exercises

1. Recall the Graph Coloring Problem. Let G = (V,E) be a simple graph
where V = {a, b, c, d, e, f, g} and

E = {(a, b), (a, d), (b, c), (b, d), (b, g), (c, g), (d, e), (d, f), (d, g), (f, g)}.

The problem is to find a coloring of V using colors red,blue, and yellow,
so that no two adjacent vertices are assigned the same color. Define a CSP
for this problem. Clearly define the variables, domains, and constraints.
Find at least one solution to the CSP. Draw the primal graph for this CSP.
What do you notice?

2. Repeat Problem 1, but now draw the dual graph of the CSP.

3. Let c1 = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b) be a constraint over {x, y},
and c2 = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b) a constraint over {y, z} for
some constraint problem P . List the tuples of the constraint that exists
between c1 and c2 in P⊥.

4. A magic square of order n is an n × n matrix of the integers 1, 2 . . . , n2,
arranged so that the sum of every row, column, and main diagonals add
to the same value. Provide a formula for the value that the rows, columns,
and diagonals should add to. Prove your answer. Define a CSP P for the
case n = 3. Draw the primal and dual graphs of P . Either solve by hand,
or use MiniZinc to decide if this problem (for n = 3) has a solution.

5. Consider the following relation over {x, y, z, t}:

R = {(a, a, a, a), (a, b, b, b), (b, b, a, c)}.

(a) Compute π(R).

(b) Is R representable by a binary consraint network? Justify your an-
swer.

(c) Same question for the relation πxyz(R).

(d) A partial solution to a CSP P = (V,D,C) is any assignment a
over a subset of V that is consistent with every c ∈ C. Provide a
partial solutiona for π(R) that is defined over {x, y}. Verify that a
is consistent with all constraints.

(e) We say that a CSP has a backtrack-free ordering {x1, . . . , xn} of its
variables iff any partial solution defined over {x1, . . . , xi} can be ex-
tended to a partial solution over {x1, . . . , xi, xi+1}. Find a backtrack-
free ordering of {x, y, z, t} for π(R).

(f) Show by counterexample that {x, y, z, t} itself is not a backtrack-free
ordering for π(R).
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