
Greedy Algorithms

Last Updated: January 28th, 2022

1 Introduction

In this lecture we begin the actual “analysis of algorithms” by examining greedy algorithms, which
are considered among the easiest algorithms to describe and implement. A greedy algorithm is
characterized by the following two properties:

1. the algorithm works in stages, and during each stage a choice is made that is locally optimal

2. the sum totality of all the locally optimal choices produces a globally optimal solution

If a greedy algorithm does not always lead to a globally optimal solution, then we refer to it as a
heuristic, or a greedy heuristic. Heuristics often provide a “short cut” (not necessarily optimal)
solution. Henceforth, we use the term algorithm for a method that always yields a correct/optimal
solution, and heuristic to describe a procedure that may not always produce the correct or optimal
solution.

The following are some problems that that can be solved using a greedy algorithm.

Minimum Spanning Tree finding a spanning tree for a graph whose weight edges sum to a mini-
mum value

Fractional Knapsack selecting a subset of items to load in a container in order to maximize profit

Task Selection finding a maximum set of non-overlapping tasks (each with a fixed start and finish
time) that can be completed by a single processor

Huffman Coding finding a code for a set of items that minimizes the expected code-length

Unit Task Scheduling with Deadlines finding a task-completion schedule for a single processor
in order to maximize the total earned profit

1

Single source distances in a graph finding the distance from a source vertex in a weighted graph
to every other vertex in the graph

Like all families of algorithms, greedy algorithms tend to follow a similar analysis pattern.

Greedy Correctness Correctness is usually proved through some form of induction. For example,
assume their is an optimal solution that agrees with the first k choices of the algorithm. Then
show that there is an optimal solution that agrees with the first k + 1 choices.

Greedy Complexity The running time of a greedy algorithm is determined by the ease in main-
taining an ordering of the candidate choices in each round. This is usually accomplished via a
static or dynamic sorting of the candidate choices.

Greedy Implementation Greedy algorithms are usually implemented with the help of a static
sorting algorithm, such as Quicksort, or with a dynamic sorting structure, such as a heap.
Additional data structures may be needed to efficiently update the candidate choices during
each round.

2

2 Huffman Coding

Huffman coding represents an important tool for compressing information. For example, consider a
1MB text file that consists of a sequence of ASCII characters from the set {‘A’, ‘G’, ‘T’}. Moreover,
suppose half the characters are A’s, one quarter are G’s, and one quarter are T’s. Then instead of
having each byte encode a letter, we instead let each byte encode a sequence of zeros and ones. We
do this by assigning the codeword 0 to ‘A’, 10 to ‘G’, and 11 to ‘T’. Then rather than the sequence
AGATAA requiring 6 bytes of memory, we instead store it as the single byte 01001100. Moreover,
the average length of a codeword is

(1)(0.5) + (2)(0.25) + (2)(0.25) = 1.5 bits

which yields a compression percentage of 81%, meaning that the file size has been reduced to 0.19
MB. For example, bit length 1 is weighted by 0.5 since half the characters are A’s, while 2 is weighted
with 0.25 since one quarter of the characters are G’s.

With a moment’s thought one can see that 1.5 is the least attainable average by any binary prefix
code that encodes the three characters with respect to the given frequencies, where a prefix code
means that no codeword can be a prefix of any other codeword. For example, C = {0, 1, 11} is not
a prefix code since 1 is a prefix of 11. The advantage of a prefix code is that the encoding of any
sequence of characters is uniquely decodable, meaning that the encoding of two different character
sequences will produce two different bit sequences.

The Huffman Coding Algorithm is a recursive greedy algorithm for assigning an optimal prefix

code to a set of characters/members X = {x1, . . . , xn}, where element i has weight pi, with
n∑

i=1

pi = 1.

In the following we let h(x) denote the codeword that Huffman’s algorithm assigns to element x.

Base Case If X = {x1} consists of a single element, then h(x1) = λ, the empty word.

Recursive Case Assume X = {x1, . . . , xn}, with n ≥ 2. Without loss of generality, assume p1 ≥
p2 ≥ · · · ≥ pn, and so xn−1 and xn are the two least probable members. Merge these two
members into a new member y whose probability equals pn−1+pn. Then apply the algorithm to
the input X ′ = {x1, . . . , xn−2, y} to obtain the prefix code C ′. Finally, define C by h(xi) = h′(xi),
for all i = 1, . . . , n− 2, and h(xn−1) = h′(y) · 0, h(xn) = h′(y) · 1. In words, we use the returned
code C ′, and assign xn−1 and xn the codeword asssigned to y followed by a 0 or 1 so that they
may be distinguished.

3

Example 2.1. Apply Huffman’s algorithm to X = {1, 2, 3, 4, 5} whose members have respective
probabilities p1 = 0.3, p2 = 0.25, p3 = 0.2, p4 = 0.15, p5 = 0.10.

4

00 01

100 101

11

Figure 1: Code tree for prefix code C = {00, 01, 100, 101, 11}

Theorem 2.2. Huffman’s algorithm is correct in that it always returns an optimal prefix code,
i.e. one of minimum average bit length.

Proof. It helps to think of the codewords of a binary prefix code as nodes on a binary tree. For
example, the codeword 1 represents the right child of the tree root, while 01 represents the right child
of the left child of the tree root (or the root’s left-right grandchild). Moreover, being a prefix code
means that no codeword can be an ancestor of any other codeword. Figure 1 shows a binary code
tree for the prefix code C = {00, 01, 100, 101, 11}.

Claim: there is an optimal prefix code for X = {x1, . . . , xn} for which the two least probable
codewords are (tree) siblings.

Proof of Claim: Without loss of generality (WLOG), assume the respective codeword probabilities
are p1 > · · · > pn−1 > pn. Suppose wn−1 and wn are the two least probable codewords of an
optimal prefix code C. First notice that wn−1 and wn must be the two longest codewords. For
suppose codeword wi has a length that exceeds max(|wn−1|, |wn|). If this were true then, since
pi > pn−1 > pn, we may assign item xi codeword wn, and xn codeword wi, resulting in a lowering of
the average codeword length (show this!) and contradicting the fact that the code is optimal.

5

The next observation is that we must have |wn−1| = |wn|. For suppose |wn| > |wn−1|, i.e., wn exists
at a lower level of the tree than that of wn−1. Then wn is the only codeword at this level (why?), and
hence its parent is not the ancestor of any other codeword. Thus, wn may be replaced by its parent
to obtain a code of smaller average length, a contradiction.

Finally, given that wn−1 and wn reside at the same (bottom) tree level, if wn has no sibling codeword,
then we may replace wn−1 with wn’s sibling, to obtain another (optimal) code having the same
average length. On the other hand, if, say, codeword wn−2 is the sibling of wn, then we may swap
the codewords of xn−1 and xn−2 to obtain another (optimal) code in which the two least probable
codewords are siblings.

6

Continuing with the proof, let X = {x1, . . . , xn} be the item set, and assume p1 ≥ p2 ≥ · · · ≥ pn.

For the basis step, if n = 1, then h(x1) = λ is optimal, since the average bit length equals 0(1) = 0.

For the inductive step, assume Huffman’s algorithm always returns an optimal prefix code for sets
with n− 1 or fewer members, for some n ≥ 2. Consider X = {x1, . . . , xn}. Merge xn−1 and xn into
the single member y, whose probability is pn−1 + pn, and consider X ′ = {x1, . . . , xn−2, y}. Then,
by the inductive assumption, the recursive call to Huffman’s algorithm returns an optimal code C1.
Moreover, we take this code, and replace h′(y) with h(xn−1) = h′(y) ·0, and h(xn) = h′(y) ·1, yielding
the code C2 that is returned by Huffman for the original input X of size n. Now, letting L(C) denote
the average length of a prefix code C, we thus have equation

L(C2) = L(C1) + pn−1 + pn,

In other words, replacing h′(y) with h′(y) · 0 amd h′(y) · 1 adds pn−1 + pn more in average length for
code C2.

Now consider an optimal prefix code C3 for X in which the two least-probable codewords are siblings,
letting y = {xn−1, xn}, we may use this code to create the code C4 for X ′ = {x1, . . . , xn−2, y}, with
the only change being replacement of codewords h(xn−1) = wn−1 and h(xn) = wn with their common
parent y. This yields

L(C3) = L(C4) + pn−1 + pn.

Thus, we have established the two following facts.

1. An optimal code C1 for n− 1 members yields a code C2 for n members whose average length is
pn−1 + pn more than that of C1.

2. An optimal prefix code C3 for n members yields a prefix code C4 for n − 1 members whose
average bit length is pn−1 + pn less than that of C3.

The above two facts imply that

L(C2)− L(C1) = L(C3)− L(C4),

which in turn implies that L(C2) = L(C3), meaning that C2 is optimal (since C3 is optimal). With
an eye towards a contradiction, suppose instead we have L(C2) > L(C3). Then the above equation
would force L(C1) > L(C4), which is a contradiction, since C1 is optimal by the inductive assumption.
Therefore, C2 is optimal and, since this is the code returned by Huffman for an input of size n, we
see that Huffman’s algorithm is correct.

7

Example 2.3. The following table shows each subproblem that is solved by Huffman’s algorithm for
the problem instance provide in Example 2.1, its optimal code, the code’s average length, and how
the difference in average length between a parent and child code is equal to the sum of the two least
probabilities of the parent code.

i Char Set Prob Code L(Ci) L(Ci)− L(Ci−1)
1 {{{1, 2}, {3, {4, 5}}}} {1.0} {λ} 0
2 {{1, 2}, {3, {4, 5}}} {0.55, 0.45} {0, 1} 1 1− 0 = 0.55 + 0.45
3 {{3, {4, 5}}, 1, 2} {0.45, 0.3, 0.25} {1, 00, 01} 1.55 1.55− 1 = 0.3 + 0.25
4 {1, 2, {4, 5}, 3} {0.3, 0.25, 0.25, 0.2} {00, 01, 11, 10} 2 2− 1.55 = 0.25 + 0.2
5 {1, 2, 3, 4, 5} {0.3, 0.25, 0.2, 0.15, 0.1} {00, 01, 10, 110, 111} 2.25 2.25− 2 = 0.15 + 0.1

8

3 Minimum Spanning Tree Algorithms

A graph G = (V,E) is a pair of sets V and E, where V is the vertex set and E is the edge set for
which each member e ∈ E is a pair (u, v), where u, v ∈ V are vertices. Unless otherwise noted, we
assume that G is simple, meaning that i) each pair (u, v) appears at most once in E, and ii) G has
no loops (i.e. no pairs of the form (u, u) for some u ∈ V), and iii) each edge is undirected, meaning
that (u, v) and (v, u) are identified as the same edge.

The following graph terminology will be used repeatedly throughout the course.

Adjacent u, v ∈ G are said to be adjacent iff (u, v) ∈ E.

Incident e = (u, v) ∈ E is said to be incident with both u and v.

Directed and Undirected Graphs G is said to be undirected iff, for all u, v ∈ V , the edges
(u, v) and (v, u) are identified as the same edge. On the other hand, in a directed graph (u, v)
means that the edge starts at u and ends at v, and one must follow this order when traversing
the edge. In other words, in a directed graph (u, v) is a “one-way street”. In this case u is
referred to as the parent vertex, while b is the child vertex.

Vertex Degree The degree of vertex v in a simple graph, denoted deg(v), is equal to the number
of edges that are incident with v. Handshaking property: the degrees of the vertices of a graph
sum to twice the number of edges of the graph.

Weighted Graph G is said to be weighted iff each edge of G has a third component called its
weight or cost.

Path A path P in G of length k from v0 to vk is a sequence of vertices P = v0, v1, . . . , vk, such
that (vi, vi+1) ∈ E, for all i = 0, . . . , k − 1. In other words, starting at vertex v0 and traversing
the k edges (v0, v1), . . . , (vk−1, vk), one can reach vertex vk. Here v0 is called the start vertex
of P , while vk is called the end vertex.

Connected Graph G is called connected iff, for every pair of vertices u, v ∈ V there is a path
from u to v in G.

Cycle A path P having length at least three is called a cycle iff its start and end vertices are
identical. Note: in the case of directed graphs, we allow for cycles of length 2.

Acyclic Graph G is called acyclic iff it admits no cycles.

Tree Simple graph G is called a tree iff it is connected and has no cycles.

Forest A forest is a collection of trees.

Subgraph H = (V ′, E ′) is a subgraph of G iff i) V ′ ⊆ V , ii) E ′ ⊆ E, and iii) (u, v) ∈ E ′ implies
u, v ∈ V ′.

The proof of the following Theorem is left as an exercise.

9

Theorem 3.1. If T = (V,E) is a tree, then

1. T has at least one degree-1 vertex, and

2. |E| = n− 1.

Let G = (V,E) be a simple connected graph. Then a spanning tree T = (V,E ′) of G is a subgraph
of G which is also a tree. Notice that T must include all the vertices of G. Thus, a spanning tree of G
represents a minimal set of edges that are needed by G in order to maintain connectivity. Moreover,
if G is weighted, then a minimum spanning tree (mst) of G is a spanning tree whose edge weights
sum to a minimum value.

10

Example 3.2. Consider a problem in which roads are to be built that connect all four cities a, b, c,
and d to one another. In other words, after the roads are built, it will be possible to drive from any
one city to another. The cost (in millions) of building a road between any two cities is provided in
the following table.

cities a b c d
a 0 30 20 50
b 30 0 50 10
c 20 50 0 75
d 50 10 75 0

Using this table, find a set of roads of minimum cost that will connect the cities.

11

In this section we present Kruskal’s greedy algorithm for finding an MST in a simple weighted
connected graph G = (V,E).

3.1 Kruskal’s Algorithm

Kruskal’s algorithm builds a minimum spanning tree in greedy stages. Assume that V = {v1, . . . , vn},
for some n ≥ 1. Define forest F that has n trees T1, . . . , Tn, where Ti consists of the single vertex
vi. Sort the edges of G in order of increasing weight. Now, following this sorted order, for each edge
e = (u, v), if u and v are in the same tree T , then continue to the next edge, since adding e will
create a cycle in T . Otherwise, letting Tu and Tv be the respective trees to which u and v belong,
replace Tu and Tv in F with the single tree Tu+v that consists of the merging of trees Tu and Tv via
the addition of edge e. In other words,

Tu+v = (Vu+v, Eu+v) = (Vu ∪ Vv, Eu ∪ Ev ∪ {e}),

and
F ← F − Tu − Tv + Tu+v.

The algorithm terminates when F consists of a single (minimum spanning) tree.

12

Example 3.3. Use Kruskal’s algorithm to find an mst for the graph G = (V,E), where the weighted
edges are given by

E = {(a, b, 1), (a, c, 3), (b, c, 3), (c, d, 6), (b, e, 4), (c, e, 5), (d, f, 4), (d, g, 4),

(e, g, 5), (f, g, 2), (f, h, 1), (g, h, 2)}.

13

3.2 Replacement method

The replacement method is a method for proving correctness of a greedy algorithm and works as
follows.

Greedy Solution Let S = c1, . . . , cn represent the solution produced by a greedy algorithm that
we want to show is correct. Note: ci denotes the i th greedy choice, i = 1, . . . , n.

Optimal Solution Let Sopt denote the optimal solution.

First Disagreement Let k ≥ 1 be the least index for which ck 6∈ Sopt, i.e. c1, . . . , ck−1 ∈ Sopt, but
not ck.

Replace Transform Sopt into a new optimal solution Ŝopt for which c1, . . . , ck ∈ Ŝopt. Note: this
usually requires replacing something in Sopt with ck.

Continue Continuing in this manner, we eventually arrive at an optimal solution that has all the
choices made by the greedy algorithm. Argue that this solution must equal the greedy solution,
and hence the greedy solution is optimal.

14

Theorem 3.4. When Kruskal’s algorithm terminates, then F consists of a single minimum spanning
tree.

Proof Using Replacement Method.

Greedy Solution Let T = e1, e2, . . . , en−1 be the edges of the spanning tree returned by Kruskal,
and written in the order selected by Kruskal. We’ll let these edges represent Kruskal’s spanning
tree T . Note: here n represents the order of problem instance G.

Optimal Solution Let Topt be an mst of G.

First Disagreement Let k ≥ 1 be the least index for which ek 6∈ Topt, i.e. e1, . . . , ek−1 ∈ Topt,
but not ek.

Replace Consider the result of adding ek to Topt to yield the graph Topt +ek. Then, since Topt +ek
is connected and has n edges, it must have a cycle C containing ek.

Claim. There must be some edge e in C that comes after ek in Kruskal’s list of sorted edges.
Hence, w(e) ≥ w(ek).

Proof of Claim. Suppose no such edge e exists. Then all edges of C must come before ek in
Kruskal’s list of sorted edges. Moreover, these edges fall into two categories: i) those selected
by Kruskal (i.e. e1, . . . , ek−1), and ii) those rejected by Kruskal. However, notice that none of
the rejected edges can be in C. This is true since e1, . . . , ek−1 ∈ Topt, and so having a rejected

edge in Topt would create a cycle. Therefore, this means that C ⊆ {e1, . . . , ek−1, ek} which is a

contradiction, since {e1, . . . , ek−1, ek} ⊆ T , and T has no cycles. Therefore, such an edge e ∈ C
does exist.

Now consider T̂opt = Topt − e + ek. This is a spanning tree since it is connected and the

removal of e eliminates the cycle C. Finally, since w(e) ≥ w(ek), cost(T̂opt) ≤ cost(Topt).

Continue Continuing in this manner, we eventually arrive at an mst that has all of Kruskal’s edges.
But this tree must equal Kruskal’s tree, since any two mst’s have the same number of edges.

15

Theorem 3.5. Kruskal’s algorithm can be implemented to yield a running time of T (m,n) =
Θ(m logm), where m = |E|.

Proof. Given connected simple graph G = (V,E), sort the edges of E by increasing order of weight
using Mergesort. This requires Θ(m logm) steps. The only remaining issue involves checking to
see if the vertices of an edge e belong in the same tree. If yes, then e is omitted. Otherwise, it is
added and merges two of the trees in the Kruskal forest. Thus, checking and merging must both
be done efficiently, and we may accomplish both by associating with each graph vertex v a unique
membership node, or M-node, M(v) that has a parent attribute, where M(v).parent either
equals null, in which case it is called a root node, or references an M-node of some other vertex v′

that belongs in the same M-tree as v. In general, we say that M-node n1 is an ancestor of M-node
n2 iff either i) n1 is referenced by the parent of n2, or ii) n1 is the ancestor of the M-node referenced
by the parent of n2. Finally, there is a unique M-tree associated with each tree in the Kruskal forest,
and every M-node n belongs to a unique M-tree whose root is an ancestor of n.

Now consider an edge e = (u, v). To determine if e should be added to the solution, we simply trace
up and locate the M-tree root nodes associated with M(u) and M(v), and add e to the solution iff the
two root nodes are different (i.e. M(u) and M(v) belong to different M-trees). In addition, as a side
effect, the parent attribute of any node involved in the upward tracing is set to its tree’s respective
root node, so that a future root-node lookup involving such a node will require O(1) steps. This is
referred to as path compression. Finally, if M(u) and M(v) belong to different M-trees, then e is
added to the solution, and the parent of M(u)’s root node is now assigned the root node of M(v).
This has the effect of merging the two tress, in that M-nodes associated with both trees now possess
the same root-node ancestor.

The collection of all M-trees is referred to as the disjoint-set data structure, and can be used in any
situation where one needs to keep track of a collection of disjoint sets, and perform subsequent union
(i.e. merging) and membership-query operations. Moreover, it can be shown that a sequence of m
merge and query operations requires a running time T (m) = O(α(m)m), where α(m) = o(logm) is
an extremely slow growing function. Therefore, Kruskal’s algorithm has a running time of T (m,n) =
Θ(m logm),

We summarize the two M-node operations that are needed for Kruskal’s algorithm.

root(n) Returns the M-node that is the root r of the tree for which M-node n belongs. Has the side
effect of compressing the path from n to r.

merge(n1, n2) Has the effect of assigning the root(n1) as the parent for root(n2). This results in the
merging of the tree containing n1 with the tree containing n2.

16

a

c

d

f

h

j

b

Figure 2: An M-tree

Example 3.6. Figure 2 shows an example of an M-tree. Figure 3 shows that result of calling function
root(f)

a

f

h

d c

j

b

Figure 3: M-tree from Figure 2 after calling root(f).

17

Example 3.7. For the weighted graph with edges

(b, d, 5), (a, e, 4), (a, b, 1), (e, c, 3), (b, f, 6), (e, d, 2),

Show how the membership trees change when processing each edge in the Kruskal’s sorted list of
edges. When merging two trees, use the convention that the root of the merged tree should be the
one having lower alphabetical order. For example, if two trees, one with root a, the other with root
b, are to be merged, then the merged tree should have root a.

Solution. E1. After processing first edge:

E2. After processing second edge:

E3. After processing third edge:

18

E4. After processing fourth edge:

E5. After processing fifth edge:

E6. After processing sixth edge:

19

3.3 Prim’s Algorithm

Prim’s algorithm builds a single tree in stages, where a single edge/vertex is added to the current
tree at each stage. Given connected and weighted simple graph G = (V,E), the algorithm starts by
initializing a tree T1 = ({v}, ∅), where v ∈ V is a vertex in V that is used to start the tree.

Now suppose tree Ti having i vertices has been constructed, for some 1 ≤ i ≤ n. If i = n, then the
algorithm terminates, and Tn is the desired spanning tree. Otherwise, let Ti+1 be the result of adding
to Ti a single edge/vertex e = (u,w) that satisfies the following.

1. e is incident with one vertex in Ti and one vertex not in Ti.

2. Of all edges that satisfy 1., e has the least weight.

20

Example 3.8. Demonstrate Prim’s algorithm on the graph G = (V,E), where the weighted edges
are given by

E = {(a, b, 1), (a, c, 3), (b, c, 3), (c, d, 6), (b, e, 4), (c, e, 5), (d, f, 4), (d, g, 4),

(e, g, 5), (f, g, 2), (f, h, 1), (g, h, 2)}.

Solution.

21

Theorem 3.9. Prim’s algorithm returns a minimum spanning tree for input G = (V,E).

The proof of correctness of Prim’s algorithm is very similar to that of Kruskal’s algorithm, and his
left as an exercise. Like all exercises in these lectures, the reader should make an honest attempt to
construct a proof before viewing the one provided in the solutions.

Prim’s algorithm can be efficiently implemented with the help of a binary min-heap. The first step
is to build a binary min-heap whose elements are the n vertices. A vertex is in the heap iff it has
yet to be added to the tree under construction. Moreover, the priority of a vertex v in the heap is
defined as the least weight of any edge e = (u, v), where u is a vertex in the tree. In this case, u is
called the parent of v, and is denoted as p(v). The current parent of each vertex can be stored in
an array. Since the tree is initially empty, the priority of each vertex initialized to ∞ and the parent
of each vertex is undefined.

Now repeat the following until the heap is empty. Pop the heap to obtain the vertex u that has a
minimum priority. Add u to the tree. Moreover, if p(u) is defined, then add edge (p(u), u) to the
tree. Finally, for each vertex v still in the heap for which e = (u, v) is an edge of G, if we is less than
the current priority of v, then set the priority of v to we and set p(v) to u.

The running time of the above implementation is determined by the following facts about binary
heaps.

1. Building the heap can be performed in Θ(n) steps.

2. Popping a vertex from the heap requires O(log n) steps.

3. When the priority of a vertex is reduced, the heap can be adjusted in O(log n) steps.

4. The number of vertex-priority reductions is bounded by the number m = |E|, since each
reduction is caused by an edge, and each edge e = (u, v) can contribute to at most one reduction
(namely, that of v’s priority) when u is popped from the heap.

Putting the above facts together, we see that Prim’s algorithm has a running time of O(n+n log n+
m log n) = O(m log n).

22

Example 3.10. Demonstrate the heap implementation of Prim’s algorithm with the graph from
Example 3.2.

23

4 Dijkstra’s Algorithm

Let G = (V,E) be a weighted graph whose edge weights are all nonnegative. Then the cost of a
path P in G, denoted cost(P), is defined as the sum of the weights of all edges in P . Moreover, given
u, v ∈ V , the distance from u to v in G, denoted d(u, v), is defined as the minimum cost of a path
from u to v. In case there is no path from u to v in G, then d(u, v) =∞.

Dijkstra’s algorithm is used to find the distances from a single source vertex s ∈ V to every other
vertex in V . The description of the algorithm is almost identical to that of Prim’s algorithm. In
what follows we assume that there is at least one path from s to each of the other n− 1 vertices in
V . Like Prim’s algorithm, the algorithm builds a single Dijkstra distance tree (DDT) in rounds
1, 2, . . . , n, where a single edge/vertex is added to the current tree at each round. We let Ti denote
the current DDT after round i = 1, . . . , n. To begin, T1 consists of the source vertex s.

Now suppose Ti has been defined. A vertex not in Ti is called external. For each external vertex,
let di(s, v) denote the neighboring distance from s to v, i.e. the minimum cost of any path from
s to v that includes, aside from v, only vertices in Ti. We set di(s, v) = ∞ in case no such path
exists (in this case at least one other external vertex must be visited before v can be reached from s).
Then Ti+1 is obtained by adding the vertex v∗ to Ti for which di(s, v

∗) is minimum among all possible
external vertices v. We also add to Ti+1 the final edge e in the path that achieves this minimum
neighboring distance. Notice that e joins a vertex in Ti to v∗.

Then the final DDT is T = Tn.

24

Example 4.1. Demonstrate Dijkstra’s algorithm on the directed weighted graph with the following
edges.

(a, b, 3), (a, c, 1), (a, e, 7), (a, f, 6), (b, f, 4), (b, g, 3), (c, b, 1), (c, e, 7), (c, d, 5), (c, g, 10), (d, g, 1),

(d, h, 4), (e, f, 1), (f, g, 3), (g, h, 1).

25

The heap implementation of Prim’s algorithm can also be used for Dijkstra’s algorithm, except now
the priority of a vertex v is the minimum of d(s, u) +we, where e = (u, v) is an edge that is incident
with a vertex u in the tree. Also, the priority of s is initialized to zero.

Although we are able to copy the implementation of Prim’s algorithm, and appy it to Dijkstra’s
algorithm, we cannot do the same with Prim’s correctness proof, since finding an mst is inherently
different from that of finding distances in a graph.

Theorem 4.2. After round i of Dijkstra’s algorithm, and for each v ∈ Ti, the cost of the unique
path from root s to v in Ti is equal to the distance from s to v in graph G.

Proof by Induction on the round number i ≥ 1.

Basis Step: Round 1. After round 1, we have T1 = {s} and the distance from s to s equals zero,
both in T1 and in G.

Induction Step. Now assume the theorem’s statement is true up to round i − 1. In other words,
the distances computed from s to other vertices in Ti−1 are equal to the distances from s to those
vertices in G. Now consider the vertex v∗ added to Ti−1 to form Ti. Notice that di(s, v

∗) equals the
distance from s to v∗ in Ti, since the unique path from s to v∗ in Ti is the same path used to compute
di(s, v

∗). Moreover, if there was a path P from s to v∗ in G for which cost(P) < di(s, v
∗), then there

must exist a first external (relative to Ti−1) vertex u in P . Furthermore, this vertex cannot equal
v∗ since, by definition, any path whose only external vertex is v∗ must have a cost that is at least
di(s, v

∗). Finally, by definition, the cost along P from s to u must equal di(s, u) ≥ di(s, v
∗), which

implies cost(P) ≥ di(s, v
∗), a contradiction.

26

Exercises

1. Use Huffman’s algorithm to provide an optimal average-bit-length code for the 7 elements
{a, b, . . . , g} whose respective probabilities are

0.2, 0.2, 0.15, 0.15, 0.15, 0.1, 0.05.

Compute the average bit-length of a codeword.

2. Prove that a tree (i.e. undirected and acyclic graph) of size two or more must always have a
degree-one vertex.

3. Prove that a tree of size n has exactly n− 1 edges.

4. Prove that if a graph of order n is connected and has n− 1 edges, then it must be acyclic (and
hence is a tree).

5. Draw the weighted graph whose vertices are a-e, and whose edges-weights are given by

{(a, b, 2), (a, c, 6), (a, e, 5), (a, d, 1), (b, c, 9), (b, d, 3), (b, e, 7), (c, d, 5),

(c, e, 4), (d, e, 8)}.

Perform Kruskal’s algorithm to obtain a minimum spanning tree for G. Label each edge to
indicate the order that it was added to the forest. When sorting, break ties based on the order
that the edge appears in the above set.

6. For the weighted graph with edges

(f, e, 5), (a, e, 4), (a, f, 1), (b, d, 3), (c, e, 6), (d, e, 2),

Show how the membership trees change when processing each edge in Kruskal’s list of sorted
edges. When merging two trees, use the convention that the root of the merged tree should be
the one having lower alphabetical order. For example, if two trees, one with root a, the other
with root b, are to be merged, then the merged tree should have root a.

7. Repeat Exercise 5 using Prim’s algorithm. Assume that vertex e is the first vertex added to
the mst. Annotate each edge with the order in which it is added to the mst.

8. For the previous exercise. Show the state of the binary heap just before the next vertex is
popped. Label each node with the vertex it represents and its priority. Let the initial heap
have e as its root.

9. Prove the correctness of Prim’s algorithm. Hint: use the proof of correctness for Kruskal’s
algorithm as a guide.

10. Does Prim’s and Kruskal’s algorithm work if negative weights are allowed? Explain.

11. Explain how Prim’s and/or Kruskal’s algorithm can be modified to find a maximum spanning
tree.

27

12. Draw the weighted directed graph whose vertices are a-g, and whose edges-weights are given
by

{(a, b, 2), (b, g, 1), (g, e, 1), (b, e, 3), (b, c, 2), (a, c, 5), (c, e, 2), (c, d, 7), (e, d, 3),

(e, f, 8), (d, f, 1)}.

Perform Dijkstra’s algorithm to determine the Dijkstra spanning tree that is rooted at source
vertex a. Draw a table that indicates the distance estimates of each vertex in each of the
rounds. Circle the vertex that is selected in each round.

13. Let G be a graph with vertices 0, 1, . . . , n−1, and let parent be an array, where parent[i] denotes
the parent of i for some shortest path from vertex 0 to vertex i. Assume parent[0] = −1;
meaning that 0 has no parent. Provide a recursive implementation of the function

void print_optimal_path(int i, int parent[])

that prints from left to right the optimal path from vertex 0 to vertex i. You may assume
access to a print() function that is able to print strings, integers, characters, etc.. For example,

print i

print "Hello"

print ’,’

are all legal uses of print.

14. The Fuel Reloading Problem is the problem of traveling in a vehicle from one point to
another, with the goal of minimizing the number of times needed to re-fuel. It is assumed that
travel starts at point 0 (the origin) of a number line, and proceeds right to some final point
F > 0. The input includes F , a list of stations 0 < s1 < s2 < · · · < sn < F , and a distance d
that the vehicle can travel on a full tank of fuel before having to re-fuel. Consider the greedy
algorithm which first checks if F is within d units of the current location (either the start or
the current station where the vehicle has just re-fueled). If F is within d units of this location,
then no more stations are needed. Otherwise it chooses the next station on the trip as the
furthest one that is within d units of the current location. Apply this algorithm to the problem
instance F = 25, d = 6, and

s1 = 4, s2 = 7, s3 = 11, s4 = 13, s5 = 18, s6 = 20, s7 = 23.

15. Prove that the Fuel Reloading greedy algorithm always returns a minimum set of stations.
Hint: use a replacement-type argument similar to that used in proving correctness of Kruskal’s
algorithm.

16. Given a finite set T of tasks, where each task t is endowed with a start time s(t) and finish
time f(t), the goal is to find a subset Topt of T of maximum size whose tasks are pairwise non-
overlapping, meaning that no two tasks in Topt share a common time in which both are being
executed. This way a single processor can complete each task in Topt without any conflicts.

Consider the following greedy algorithm, called the Task Selection Algorithm (TSA), for
finding Topt. Assume all tasks start at or after time 0. Initialize Topt to the empty set, and
initialize variable last finish to 0. Repeat the following step. If no task in T has a start time

28

equal to or exceeding last finish, then terminate the algorithm and return Topt. Otherwise

add to Topt the task t ∈ T for which s(t) ≥ last finish and whose finish time f(t) is a

minimum amongst all such tasks. Set last finish to f(t).

Implement TSA on the following set of tasks.

Task ID Start time Finish Time
1 2 4
2 1 4
3 2 7
4 4 8
5 4 9
6 6 8
7 5 10
8 7 9
9 7 10
10 8 11

17. Prove that the Task Selection algorithm is correct, meaning that it always returns a maximum
set of non-overlapping tasks. Hint: use a replacement-type argument similar to that used in
proving correctness of Kruskal’s algorithm.

18. Describe an efficient implementationn of the Task Selection algorithm, and provide the algo-
rithm running time under this implementation.

19. Consider the following alternative greedy procedure for finding a maximum set of non-overlapping
tasks for the Task Selection problem. Sort the tasks in order of increasing duration. Initialize
S = ∅ to be the set of selected non-overlapping tasks. At each round, consider the task t of
least duration that has yet to be considered in a previous round. If t does not overlap with
any activity in S, then add t to S. Otherwise, continue to the next task. Prove or disprove
that this procedure will always return a set (namely S) that consists of a maxiumum set of
non-overlapping tasks.

20. In one or more paragraphs, describe how to efficiently implement the procedure described in
the previous exercise. Provide the worst-case running time for your implementation.

21. The Fractional Knapsack takes as input a set of goods G that are to be loaded into a
container (i.e. knapsack). When good g is loaded into the knapsak, it contributes a weight of
w(g) and induces a profit of p(g). However, it is possible to place only a fraction α of a good
into the knapsack. In doing so, the good contributes a weight of αw(g), and induces a profit
of αp(g). Assuming the knapsack has a weight capacity M ≥ 0, determine the fraction f(g) of
each good that should be loaded onto the knapsack in order to maximize the total container
profit.

The Fractional Knapsack greedy algorithm (FKA) solves this problem by computing the profit
density d(g) = p(g)/w(g) for each good g ∈ G. Thus, d(g) represents the profit per unit weight
of g. FKA then sorts the goods in decreasing order of profit density, and initializes variable RC

to M , and variable TP to 0. Here, RC stands for “remaining capacity”, while TP stands for “total
profit”. Then for each good g in the ordering, if w(g) ≤ RC, then the entirety of g is placed
into the knapsack, RC is decremented by w(g), and TP is incremented by p(g). Otherwise, let

29

α = RC/w(g). Then αw(g) = RC weight units of g is addded to the knapsack, TP is incremented
by αp(g), and the algorithm terminates.

For the following instance of the FK problem, determine the amount of each good that is placed
in the knapsack by FKA, and provide the total container profit. Assume M = 10.

good weight profit
1 3 4
2 5 6
3 5 5
4 1 3
5 4 5

22. Prove that the FK algorithm always returns a maximum container profit.

23. Describe an efficient implementationn of the FK algorithm, and provide the algorithm running
time under this implementation.

24. The 0-1 Knapsack problem is similar to Fractional Knapsack, except now, for each good g ∈ G,
either all of g or none of g is placed in the knapsack. Consider the following modification of
the Fractional Knapsack greedy algorithm. If the weight of the current good g exceeds the
remaining capacity RC, then g is skipped and the algorithm continues to the next good in
the ordering. Otherwise, it adds all of g to the knapsack and decrements RC by w(g), while
incrementing TP by p(g). Verify that this modified algorithm does not produce an optimal
knapsack for the problem instance of Exercise 21.

25. Scheduling with Deadlines. The input for this problem is a set of n tasks a1, . . . , an. The
tasks are to be executed by a single processor starting at time t = 0. Each task ai requires
one unit of processing time, and has an integer deadline di. Moreover, if the processor finishes
executing ai at time t, where di ≤ t, then a profit pi is earned. For example, if task a1 has a
deadline of 3 and a profit of 10, then it must be either the first, second, or third task executed
in order to earn the profit of 10. Consider the following greedy algorithm for maximizing the
total profit earned. Sort the tasks in decreasing order of profit. Then for each task ai in the
ordering, schedule ai at time t ≤ di, where t is the latest time that does not exceed di, and
for which no other task has yet to be scheduled at time t. If no such t exists, then skip ai
and proceed to the next task in the ordering. Apply this algorithm to the following problem
instance. If two tasks have the same profit, then ties are broken by alphabetical order. For
example, Task b preceeds Task e in the ordering.

Task a b c d e f g h i j k
Deadline 4 3 1 4 3 1 4 6 8 2 7
Profit 40 50 20 30 50 30 40 10 60 20 50

26. Prove that the Task-Scheduling greedy algorithm from the previous exercise always attains
the maximum profit. Hint: use a replacement-type argument similar to that used in proving
correctness of Kruskal’s algorithm.

27. Explain how the Task-Scheduling greedy algorithm can be implemented in such a way to yield
a Θ(n log n) running time. Hint: use the disjoint-set data structure from Kruskal’s algorithm.

28. Given the set of keys 1, . . . , n, where key i has weight wi, i = 1, . . . , n. The weight of the key
reflects how often the key is accessed, and thus heavy keys should be higher in the tree. The

30

Optimal Binary Search Tree problem is to construct a binary-search tree for these keys, in such
a way that

wac(T) =
n∑

i=1

widi

is minimized, where di is the depth of key i in the tree (note: here we assume the root has
a depth equal to one). This sum is called the weighted access cost. Consider the greedy
heuristic for Optimal Binary Search Tree: for keys 1, . . . , n, choose as root the node having the
maximum weight. Then repeat this for both the resulting left and right subtrees. Apply this
heuristic to keys 1-5 with respective weights 50,40,20,30,40. Show that the resulting tree does
not yield the minimum weighted access cost.

29. Given a simple graph G = (V,E), a vertex cover for G is a subset C ⊆ V of vertices for which
every edge e ∈ E is incident with at least one vertex of C. Consider the greedy heuristic for
finding a vertex cover of minimum size. The heuristic chooses the next vertex to add to C as
the one that has the highest degree. It then removes this vertex (and all edges incident with
it) from G to form a new graph G

′
. The process repeats until the resulting graph has no more

edges. Give an example that shows that this heuristic does not always find a minimum cover.

31

Exercise Solutions

1. One such code is h(a) = 00, h(b) = 01, h(c) = 100, h(d) = 101, h(e) = 110, h(f) = 1110,
h(g) = 1111.

Average bit length = 2(0.2) + 2(0.2) + 3(0.15) + 3(0.15) + 3(0.15) + 4(0.1) + 4(0.05) = 2.75.

2. Consider the longest simple path P = v0, v1, . . . , vk in the tree. Then both v0 and vk are
degree-1 vertices. For example, suppose there was another vertex u adjacent to v0, other than
v1. Then if u 6∈ P , then P ′ = u, P is a longer simple path than P which contradicts the fact
that P is the longest simple path. On the other hand, if u ∈ P , say u = vi for some i > 1, then
P ′ = u, v0, v1, . . . , vi = u is a path of length at least three that begins and ends at u. In other
words, P ′ is a cycle, which contradicts the fact that the underlying graph is a tree, and hence
acyclic.

3. Use the previous problem and mathematical induction. For the inductive step, assume trees
of size n have n − 1 edges. Let T be a tree of size n + 1. Show that T has n edges. By the
previous problem, one of its vertices has degree 1. Remove this vertex and the edge incident
with it to obtain a tree of size n. By the inductive assumption, the modified tree has n − 1
edges. Hence T must have n edges.

4. Use induction.

Basis step If G has order n = 1 and 1− 1 = 0 edges, then G is clearly acyclic.

Inductive step Assume that all connected graphs of order n−1 and size n−2 are acyclic. Let
G = (V,E) be a connected graph of order n, and size n − 1. Using summation notation,
the Handshaking property states that∑

v∈V

deg(v) = 2|E|.

This theorem implies G must have a degree-1 vertex u. Otherwise,∑
v∈V

deg(v) ≥ 2n > 2|E| = 2(n− 1).

Thus, removing u from V and removing the edge incident with u from E yields a connected
graphG′ of order n−1 and size n−2. By the inductive assumption, G′ is acyclic. Therefore,
since no cycle can include vertex u, G is also acyclic.

5. Edges added: (a, d, 1), (a, b, 2), (c, e, 4), (a, e, 5) for a total cost of 12.

6. The final M -tree is shown below.

a

b

d

f c e

32

7. Edges added: (c, e, 4), (c, d, 5), (a, d, 1), (a, b, 2) for a total cost of 12.

8. The heap states are shown below. Note: the next heap is obtained from the previous heap by
i) popping the top vertex u from the heap, followed by ii) performing a succession of priority
reductions for each vertex v in the heap for which the edge (u, v, c) has a cost c that less than
the current priority of v. In the case that two or more vertices have their priorities reduced,
assume the reductions (followed by a percolate-up operation) are performed in alphabetical
order.

e/∞

a/∞

c/∞ d/∞

b/∞

c/4

b/7

d/8

a/5

d/5

b/7 a/5

a/1

b/3

b/2

9. Let T be the tree returned by Prim’s Algorithm on input G = (V,E), and assume that
e1, e2, . . . , en−1 are the edges of T in the order in which they were added. T is a spanning
tree (why?), and we must prove it is an mst. Let Topt be an mst for G that contains edges
e1, . . . , ek−1, but does not contain ek, for some 1 ≤ k ≤ n− 1. We show how to transformTopt
into an mst Topt2 that contains e1, . . . , ek.

Let Tk−1 denote the tree that consists of edges e1, . . . , ek−1; in other words, the tree that has
been constructed after stage k − 1 of Prim’s algorithm. Consider the result of adding ek to

33

Topt to yield the new graph Topt + ek. Then, since Topt + ek is connected and has n edges,
Topt + ek is not a tree, and thus must have a cycle C containing ek. Now since ek is selected at
stage k of the algorithm, ek must be incident with exactly one vertex of Tk−1. Hence, cycle C
must enter Tk−1 via ek, and exit Tk−1 via some other edge e that is not in Tk−1, but is incident
with exactly one vertex of Tk−1. Thus, e was a candidate to be chosen at stage k, but was
passed over in favor of ek. Hence, wek ≤ we.

Now define Topt2 to be the tree Topt+ek−e. Then Topt2 has n−1 edges and remains connected,
since any path in Topt that traverses e can alternately traverse through the remaining edges of
C, which are still in Topt2. Thus, Topt2 is a tree and it is an mst since e was replaced with
ek which does not exceed e in weight. Notice that Topt2 agrees with T in the first k edges
selected for T in Prim’s Algorithm, where as Topt only agrees with T up to the first k − 1
selected edges. Therefore, by repeating the above transformation a finite number of times, we
will eventually construct an mst that is identical with T , proving that T is indeed an mst.

10. Add a sufficiently large integer J to each edge weight so that the weights will be all nonnegative.
Then perform the algorithm, and subtract J from each mst edge weight.

11. For Kruskal’s algorithm, sort the edges by decreasing edge weight. For Prim’s algorithm, use a
max-heap instead of a min-heap. Verify that these changes can be successfully adopted in each
of the correctness proofs.

12. Edges added in the following order: (a, b, 2), (b, g, 1), (b, c, 2), (g, e, 1), (e, d, 3), (d, f, 1). d(a, a) =
0, d(a, b) = 2, d(a, g) = 3, d(a, c) = 4, d(a, e) = 4, d(a, d) = 7, d(a, f) = 8.

13. void print_optimal_path(int i, int parent[])

{

if(i == 0)

print 0

print_optimal_path(parent[i], parent);

print ‘‘ ‘’;

print i;

}

14. Minimal set of stations: s1, s2, s4, s5, s7.

15. Let S = s1, . . . , sm be the set of stations returned by the algorithm (in the order in which they
are visited), and Sopt be an optimal set of stations. Let sk be the first station of S that is not
in Sopt. In other words, Sopt contains stations s1, . . . , sk−1, but not sk. Since F is more than

d units from sk−1 (why ?), there must exits some s ∈ Sopt for which s > sk−1. Let s be such

a station, and for which |s − sk−1| is a minimum. Then we must have sk−1 < s < sk, since
the algorithm chooses sk because it is the furthest away from sk−1 and within d units of sk−1.
Now let Sopt2 = Sopt + sk − s. Notice that Sopt2 contains the optimal number of stations.

Moreover, notice that, when re-fueling at sk instead of s, the next station in Sopt (and hence

in Sopt2) can be reached from sk, since sk is closer to this station than s. Thus, Sopt2 is a
valid set of stations, meaning that it is possible to re-fuel at these stations without running out
of fuel. By repeating the above argument we are eventually led to an optimal set of stations
that contain all the stations of S. Therefore, S is an optimal set of stations, and the algorithm
is correct.

34

16. TSA returns Topt = {1, 4, 10}.

17. Assume each task t has a positive duration; i.e., f(t) − s(t) > 0. Let t1, . . . , tn be the tasks
selected by TSA, where the tasks are in the order in which they were selected (i.e. increasing
start times). Let Topt be a maximum set of non-overlapping tasks. Let k be the least integer
for which tk 6∈ Topt. Thus t1, . . . , tk−1 ∈ Topt.

Claim: t1, . . . , tk−1 are the only tasks in Topt that start at or before tk−1. Suppose, by way
of contradiction, that there is a task t in Topt that starts at or before tk−1, and t 6= ti,
i = 1, . . . , k − 1. Since t does not overlap with any of these ti, either t is executed before t1
starts, in between two tasks ti and ti+1, where 1 ≤ i < k − 1. In the former case, ASA would
have selected t instead of t1 since f(t) < f(t1). In the latter case, ASA would have selected t
instead of ti+1, since both start after ti finishes, but f(t) < f(ti+1). This proves the claim.

Hence, the first k − 1 tasks (in order of start times) in Topt are identical to the first k − 1
tasks selected by TSA. Now let t be the k th task in Topt. Since TSA selected tk instead of t

as the k th task to add to the output set, it follows that f(tk) ≤ f(t). Moreover, since both
tasks begin after tk−1 finishes, the set Topt2 − t+ tk is a non-overlapping set of tasks (since tk
finishes before t, and starts after tk−1 finishes) with the same size as Topt. Hence, Topt2 is also
optimal, and agrees with the TSA output in the first k tasks.

By repeating the above argument we are eventually led to an optimal set of tasks whose first n
tasks coincide with those returned by TSA. Moreover, this optimal set could not contain any
other tasks. For example, if it contained an additional task t, then t must start after tn finishes.
But then the algorithm would have added t (or an alternate task that started after the finish of
tn) to the output, and would have produced an output of size at least n+ 1. Therefore, there is
an optimal set of tasks that is equal to the output set of TSA, meaning that TSA is a correct
algorithm.

18. It is sufficient to represent the problem size by the number n of input tasks. Sort the tasks in
order of increasing start times. Now the algorithm can be completed in the following loop.

earliest_finish <- INFINITY

output <- EMPTY_SET

for each task t

if f(t) < earliest_finish

earliest_finish <- f(t)

next_selected <- t

else if s(t) >= earliest_finish

earliest_finish <- f(t)

output += next_selected

next_selected <- t

The above code appears to be a correct implementation of TSA. The only possible concern
is for a task t that neither satisfies the if nor the else-if condition. Such tasks never get
added to the final set of non-overlapping tasks. To see that this is justified, suppose in the if

statement t is comparing its finish time f(t) with that of t′. Then we have

s(t′) ≤ s(t) < f(t′),

35

where the first inequality is from the fact that the tasks are sorted by start times, and the
second inequality is from the fact that t does not satisfy the else-if condition. Hence, it
follows that t and t′ overlap, so, if t′ is added to the optimal set, then t should not be added.
Moreover, the only way in which t′ is not added is if there exists a task t′′ that follows t in
terms of start time, but has a finish time that is less than that of t′’s. In this case we have
s(t) ≤ s(t′′) and f(t) ≥ f(t′) ≥ f(t′′) and so t overlaps with t′′. And once again t should not
be added to the final set.

Based on the above code and analysis, it follows that TSA can be implemented with an initial
sorting of the tasks, followed by a linear scan of the sorted tasks. Therefore, T (n) = Θ(n log n).

19. Hint: consider the case where there are three tasks t1, t2, and t3, where there is overlap between
t1 and t2, and t2 and t3.

20. The most efficient implementation has running time Θ(n log n). Hint: your implementation
should make use of a balanced (e.g. AVL) binary search tree.

21. The table below shows the order of each good in terms of profit density, how much of each good
was placed in the knapsack, and the profit earned from the placement. The total profit earned
is 14.4.

good weight profit density placed profit earned
4 1 3 3 1 3
1 3 4 1.3 3 4
5 4 5 1.25 4 5
2 5 6 1.2 2 2.4
3 5 5 1 0 0

22. Let (g1, w1), . . . , (gn, wn) represent the ordering of the goods by FKA, where each wi represents
the amount of gi that was added to the knapsack by FKA. Let Copt be an optimal container,

and let (gk, wk) be the first pair in the ordering for which wk is not the amount of gk that
appears in Copt. Thus, we know that Copt has exactly wi units of gi, for all i = 1, . . . , k −
1. As for gk, we must have wk > 0. Otherwise, FKA filled the knapsack to capacity with
(g1, w1), . . . , (gk−1, wk−1), which means that Copt could only assign 0 units of capacity for gk,
which implies Copt agrees with FKA up to k, a contradiction. Moreover, it must be the case
that Copt allocates weight w for gk, where w < wk. This is true since FKA either included all
of gk in the knapsack, or enough of gk to fill the knapsack. Thus, Copt can allocate no more of
gk than that which was allocated by FKA. Now consider the difference wk − w. This capacity
must be filled in Copt by other goods, since Copt is an optimal container. Without loss of
generality, assume that there is a single good gl, l > k, for which Copt allocates at least wk−w
units for gl. Then the total profit being earned by these weight units is d(gl)(wk − w). But,
since l > k, d(gl) ≤ d(gk), which implies

d(gl)(wk − w) ≤ d(gk)(wk − w).

Now let Copt2 be the container that is identical with Copt, but with wk−w units of gl replaced
with wk − w units of gk. Then the above inequality implies that Copt2 must also be optimal,
and agrees with the FKA container on the amount of each of the first k placed goods.

By repeating the above argument, we are eventually led to an optimal container that agrees
with the FKA container on the amount to be placed for each of the n goods. In other words,
FKA produces an optimal container.

36

23. The parameters n, and logM can be used to represent the problem size, where n is the number
of goods. Notice how logM is used instead of M , since logM bits are needed to represent
capacity M . Furthermore, assume each good weight does not exceed M , and the good profits
use a constant number of bits. Then the sorting of the goods requires Θ(n log n) steps, while
the profit density calculations and updates of variables RC and TP require O(n logM + n) total
steps. Therefore, the running time of FKA is T (n) = O(n log n+ n logM).

24. The table below shows the order of each good in terms of profit density, how much of each
good was placed in the knapsack by modified FKA, and the profit earned from the placement.
The total profit earned is 12. However, placing goods 2, 4, and 5 into the knapsack earns a
profit of 14 > 12. An alternative algorithm for 0-1 Knapsack will be presented in the Dynamic
Programming lecture.

good weight profit density placed profit earned
4 1 3 3 1 3
1 3 4 1.3 3 4
5 4 5 1.25 4 5
2 5 6 1.2 2 0
3 5 5 1 0 0

25. The optimal schedule earns a total profit of 300, and is shown below.

Time 1 2 3 4 5 6 7 8
Task 7 5 2 1 8 11 9
Profit 40 50 50 40 10 50 60

26. Let (a1, t1), . . . , (am, tm) represent the tasks that were selected by the algorithm for scheduling,
where ai is the task, and ti is the time that it is scheduled to be completed, i = 1, . . . ,m.
Moreover, assume that these tasks are ordered in the same order for which they appear in the
sorted order. Let Sopt be an optimal schedule which also consists of task-schedule-time pairs.

Let k be the first integer for which (a1, t1), . . . , (ak−1, tk−1) are in Sopt, but (ak, tk) 6∈ Sopt.
There are two cases to consider: either ak does not appear in Sopt, or it does appear, but with
a different schedule time.

First assume ak does not appear in Sopt. Let a be a task that is scheduled in Sopt that
is different from ai, i = 1, . . . , k − 1, and is scheduled at time dk. We now a must exist,
since otherwise (ak, dk) could be added to Sopt to obtain a more profitable schedule. Now if

p(a) > p(ak), then a comes before ak in the sorted order. But since a 6= ai, for all i = 1, . . . , k−1,
it follows that it is impossible to schedule a together with each of a1, . . . , ak−1 (otherwise the
algorithm would have done so), which is a contradiction, since Sopt schedules all of these tasks,
and schedules a1, . . . , ak−1 at the same times that the algorithm does. Hence, we must have
p(a) ≤ p(ak). Now define Sopt2 = Sopt− (a, dk) + (ak, dk). Then Sopt2 is an optimal schedule
that agrees with the algorithm schedule up to the first k tasks.

Now assume ak appears in Sopt, but is scheduled at a different time t 6= tk. First notice that
t cannot exceed tk, since the algorithm chooses the first unoccupied time that is closest to a
task’s deadline. Thus, every time between tk +1 and dk (inclusive) must already be occupied by
a task from a1, . . . , ak−1, and hence these times are not available for ak in Sopt. Thus, t < tk.

Now if tk is unused by Sopt, then let Sopt2 = Sopt − (ak, t) + (ak, tk). On the other hand, if
tk is used by some task a, then let

Sopt2 = Sopt − (ak, t)− (a, tk) + (ak, tk) + (a, t).

37

In both cases Sopt2 is an optimal schedule that agrees with the algorithm schedule up to the
first k tasks.

By repeating the above argument, we are eventually led to an optimal schedule that entirely
agrees with the algorithm schedule. In other words, the algorithm produces an optimal schedule.

27. If one uses a naive approach that starts at a task’s deadline and linearly scans left until an open
time slot is found, then the worst case occurs when each of the n tasks has a deadline of n and
all have the same profit. In this case task 1 is scheduled at n, task 2 at n− 1, etc.. Notice that,
when scheduling task i, the array that holds the scheduled tasks must be queried i − 1 times
before finding the available time n − i + 1. This yields a total of 0 + 1 + · · · + n − 1 = Θ(n2)
queries. Thus, the algorithm has a running time of T (n) = O(n2).

To improve the running time, we may associate an M-node (and hence an M-tree) with each
time slot. Then if M-nodee n is associated with time slot t, and lies in M=tree T , then any
task with a deadline of t is scheduled at time s, where the M-node of s is the root of T .
Thus, scheduling a task requires a single M-tree membership query, followed by a single M-tree
merging in which the M-tree associdated with s is merged with the M-tree associated with time
s− 1. This is necessary since time s is no longer available, and so any task that is directed to s
must now be re-directed to a time for which any s− 1-deadline task would get directed. Thus,
a total of 2n membership-query and merge operations are required, yielding a running time of
T (n) = α(n)n, where α(n) = o(log n). Therefore, the worst-case time is the Θ(n log n) time
required to sort the tasks.

28. The heuristic produces the tree below.

1/50

2/40

5/40

4/30

3/20

Its weighted access cost equals

50(1) + 40(2) + 40(3) + 30(4) + 20(5) = 470.

However, a binary-search tree with less weighted-access cost (380) is shown below.

38

2/40

1/50 4/30

3/20 5/40

29. In the graph below, the heuristic will first choose vertex a, followed by four additional vertices
(either b, d, f , h, or c, e, g, i), to yield a cover of size five. However, the optimal cover {c, e, g, i}
has a size of four.

a

b

c

d

e

f

g

h

i

39

