
Computational Problems

Last Updated: January 27th, 2022

1 Introduction

Informally, when we think of a problem, we think of a situation that is in need of a solution. In
computer science we think of a problem as not just one situation, but rather a collection of situations
that share a common underlying theme. Each situation is referred to as a problem instance, and
represents a concrete example of the general problem.

1

Example 1.1. Consider the problem called Prime, where a problem instance is a positive integer
n ≥ 2, and the solution we seek is an answer, yes or no, to the question of whether n is a prime
number. For example, the solution to 11 is yes, while the solution to 36 is no. Prime is an example
of what is called a decision problem because the solution to each instance is a Boolean value:
1 = yes, 0 = no. For a decision problem, a positive instance (respectively, negative instance) is
any instance for which the solution is 1 (respectively, 0). Here, 11 is a positive instance, while 36 is
a negative instance.

As we’ll see in Chapter 3 and subsequent chapters, decision problems are fundamental to the theory
of computing.

2

Example 1.2. Consider the problem called Clique, where a problem instance is a simple graph
G = (V,E), and the solution we seek is a subset C ⊆ V of vertices of maximum size such that, for
every u ∈ C and v ∈ C, (u, v) ∈ E. In other words, for every pair of vertices in C there is an edge
e ∈ E that is incident with u and v. Clique is called an optimization problem, since it calls
for finding a structure (in this case a subset) that optimizes (in this case maximizes) an objective
function (the objective is to make the set as large as possible) subject to the constraint that every
pair of set members must form an edge in G. The graph below is an instance of Clique. Provide a
solution to this problem instance.

1 2 3 7

4 5 6 8

Solution.

3

Example 1.3. Consider the problem called Sort, where a problem instance is an array a of integers,
and the solution we seek is another array b whose members are the same members of a, but in sorted
order. For example, an instance of sort is (−4, 28,−11, 33, 18,−12,−15), and its solution is

(−15,−12,−11,−4, 18, 28, 33).

4

2 Problem size parameters

Of course, problems of all kinds are what drive computer science, especially the theory of computing.
Given a problem L the first stop for L on the theory train is in the land of computability where we
make sure that it can be solved by a computer. If the answer is “no”, then computability theory is
responsible for providing a proof of this claim. This can seem a very challenging task, especially since
there are an infinite number of possible programs that can be written, and how can we be sure that
none of them can solve L? On the other hand, if the answer is “yes”, then L is sent on its way with
a souvenir algorithm and continues on its journey to the land of computational complexity where it
attempts to find its proper place in society amongst different classes of problems. It’s here that the
intrinsic complexity of L gets studied, meaning that one attempts to determine functions s(n) and
t(n) that represent tight lower bounds on the amount of memory and time needed for an algorithm
to solve the problem, respectively. In other words, if P is a computer program that implements some
algorithm for solving L, then P would require Ω(s(n)) amount of memory and Ω(t(n)) amount of
time to solve a problem instance having size n. Here, n is what is referred to as a size parameter
for L, i.e. a parameter that is associated with the size of a given problem instance, i.e. the number
of bits that are needed to represent the instance. In complexity theory, for the sake of simplicity,
we work with size parameters that represent the size of a problem instance rather than the actual
instance size.

5

Example 2.1. Consider an algorithm that sorts an array of integers. Suppose each integer can be
represented using k bits. Then the size of a problem instance is equal to k times the number of
integers to be sorted. Let n be a parameter that represents the number of integers in the array. Then
the problem size is equal to nk, and the memory and time functions can be written as s(n, k) and
t(n, k). Now, if the algorithm is independent of the number of bits used to represent each integer,
then we may drop the k parameter. In this case we have s(n) and t(n) is written. For example, the
Quicksort algorithm assumes an O(1) comparison operation for integers that is independent of the
number of bits representing each integer. In this case n suffices as size parameter. On the other hand,
the Radixsort algorithm requires to each bit of each integer, in which case n and k are appropriate
size parameters. Therefore, choosing appropriate size parameters for a problem may be algorithm
dependent.

6

Example 2.2. Recall that a graph is a pair of sets G = (V,E), where V is the vertex set, and E
is the edge set whose members have the form (u, v), where u, v ∈ V . A graph algorithm takes as
input a graph, and computes some property of the graph. The most commonly used size parameters
for describing the memory and time requirements of such an algorithm are n = |V |, called the order
of G, and m = |E|, called the graph size of G. Also, we usually do not include size parameters
for representing the memory required to store a single vertex or edge, since graph-algorithm steps
are usually independent of the data stored in each vertex and edge. In other words, regardless of
whether each vertex stores an integer, or an Employee data structure, the algorithm steps, and hence
the big-O growth of the memory and running time, remain the same.

7

Example 2.3. Consider an algorithm that takes as input a positive integer p, and determines whether
or not p is prime. Since a positive integer p can be repreented using blog pc + 1 bits, we use size
parameter m = log p to represent the problem size.

8

Example 2.4. The Vertex Cover (VC) decision problem is the problem of deciding if a simple
graph G = (V,E) has a vertex cover of size k ≥ 0, for some integer k. In other words does G have
a subset C of k vertices for which every edge e ∈ E is incident with at least one vertex in C? Show
that (G, k = 5) is a positive instance of VC and provide appropriate size parameters for VC.

1 2 3 7

4 5 6 8

Solution.

9

3 Algorithms and their Analysis

Given computational problem A, an algorithm that solves A is a description of a step-by-step
process whose execution on an instance x of A has the effect of realizing a solution for x. Before
accepting an algorithm as providing a valid mean for solving A and using it in practice, we must first
provide sufficient analysis of the algorithm. The analysis has the goal of establishing the following
properties of the algorithm.

Correctness It must be established that the algorithm performs as advertised. In other words, for
each problem instance x of A the algorithm produces a correct solution to x.

Complexity Bounds must be provided on either the amount of time required to execute the algo-
rithm, or the amount of space (i.e. memory) used by the algorithm as a function of the size of
an input instance.

Implementation Appropriate data structures must be identified that allow for the algorithm to
achieve a desired time or space complexity.

The correctness of an algorithm is sometimes immediate from its description, while the correctness
of others may require clever mathematical proofs.

As for complexity, in this course we are primarily concerned with the big-O growth of the worst-
case running time of an algorithm. Of course, the running time T will be a function of the size
parameters for the problem, and will have a big-O growth that is proportional to the number of
algorithm steps that is required to execute the algorithm on some instance. Recall that we define
the size of a problem instance as the minimum number of bits needed to represent the instance.

Note that we use the growth terminology from the big-O lecture to describe the running time of an
algorithm. For example, if an algorithm has running time T (n) = O(n), then the algorithm is said
to have a linear running time. In general we may write

Ω(f(n)) ≤ T (n) ≤ O(g(n)),

where f(n) represents the best-case running time, and g(n) denotes the worst-case. In case f(n) =
Θ(g(n)), then we may write T (n) = Θ(g(n)), meaning that the algorithm always requires on the
order of g(n) steps, regardless of the size-n input.

Another time complexity measure of interest is the average-case running time Tave, which is
obtained by taking the average of the running times for inputs of a given size.

Finally, the runnng time of an algorithm is dependent on its implementation. For example, a graph
algorithm may have running time T (m,n) = O(m2) using one implementation, and T (m,n) =
O(m log n) using another. For this reason complexity analysis is inseparable from implementation
analysis, and it often requires the use of both basic and advanced data structures for achieving a
desired running time. On the other hand, correctness analysis is usually independent of implemen-
tation.

10

Exercises

1. An instance of the Perfect decision problem is an integer n ≥ 1, and the problem is to decide
if n is the sum of each of its proper divisors. For example, 6 is perfect since 6 = 3 + 2 + 1.
i) Determine whether 36 is perfect. ii) Provide one or more size parameters for Perfect to
properly represent the size of a Perfect instance.

2. Suppose an algorithm for deciding Perfect requires O(n2) steps, where n is the problem in-
stance. Use your answer to the previous exercise and the big-O growth terminology provided
in this chapter to describe the algorithm’s running time.

3. A permutation of the numbers 1, . . . , n is an ordering of these numbers. It may also be thought
of as a one-to-one correspondence p from the set {1, . . . , n} to the set {1, . . . , n}, where p(i)
equals the value at position i. For example, the permutation

p = (4 5 3 1 2)

may be viewed as the one-to-one correspondence from {1, 2, 3, 4, 5} to itself in which p(1) = 4,
p(2) = 5, p(3) = 3, p(4) = 1, and p(5) = 2. Then if p and q are two permutations of 1, . . . , n,
then we may define the multiplication of p with q, written p ◦ q as the composite function
(p ◦ q)(i) = p(q(i)). Since the composite of two one-to-one correspondences is also a one-to-one
correspondence, it follows that p◦q results in another permutation. Using p defined above, and

q = (1 3 5 4 2),

compute p ◦ q.

4. Prove that permutation multiplication is associative, i.e.

p ◦ (q ◦ r) = (p ◦ q) ◦ r.

Hint: apply both sides (i.e. functions) to some input i, 1 ≤ i ≤ n, and show that both sides
produce the same output.

5. Since the previous two exercises define what it means to multiply two permutations, and that
multiplication is associative, we may thus raise a permutation to some power. For example, if
p is a permutation, then p3 = p ◦ p ◦ p is also a permutation. Compute p3 for the permutation
defined in Exercise 3.

6. An instance of decision problem Perm Power takes as input two permutations p and q of 1, . . . , n,
and a nonnegative integer t. The problem is to decide if q = pt. i) Determine whether (p, q, 4)
is a positive instance, where

p = (3 1 4 5 2)

and
q = (2 5 1 3 4).

ii) Provide one or more size parameters for Perm Power to properly represent the size of a Perm

Power instance.

7. Suppose an algorithm for deciding Perm Power requires O(n log t) steps. Use your answer to
the previous exercise and the big-O growth terminology provided in this chapter to describe
the algorithm’s running time.

11

8. Consider the optimization problem called Coloring where an input instance is a simple graph
G = (V,E), and a solution is a minimum (in size) set of colors that can be used to color each
vertex in V in such a way that no two adjacent vertices are assigned the same color. i) Find
a minimum set of colors for the graph provided in Example 2.4. ii) Provide one or more size
parameters for Coloring to properly represent the size of a Coloring instance.

9. An instance of the Perfect Matching decsion problem is a bipartite graph G = (V1, V2, E),
where |V1| = |V2| = n. The problem is to decide if G has a matching of size n, in other words,
a set of n edges, no two of which are incident with the same vertex. i) Decide whether the
bipartite graph provided below is a positive instance of Perfect Matching. ii) Provide one
or more size parameters for Perfect Matching to properly represent the size of a Perfect

Matching instance.

a 1

b 2

c 3

d 4

e 5

10. The 3-Dimensional Matching (3DM) decision problem takes as input three sets A, B, and C,
each having size n, along with a set S of triples of the form (a, b, c) where a ∈ A, b ∈ B, and
c ∈ C. We assume that |S| = m ≥ n. The problem is to decide if there exists a subset of n
triples (called a matching) from S for which each member from A ∪ B ∪ C belongs to exactly
one of the triples. i) Decide if (A,B,C, S) is a positive instance of 3DM, where A = {a, b, c},
B = {1, 2, 3}, C = {x, y, z}, and

S = {(b, 2, y), (b, 1, z), (a, 3, z), (c, 2, y), (a, 2, y), (a, 3, y), (c, 3, x), (c, 1, z), (b, 1, x)}.

ii) Provide one or more size parameters for 3DM to properly represent the size of a 3DM instance.

12

Exercise Solutions

1. i) The divisors of 36 are 1,2,3,4,6,9,12, and 18.

1 + 2 + 3 + 4 + 6 + 9 + 12 + 18 = 55 6= 36,

and so 36 is a negative instance of Perfect. ii) Since the input to perfect is a single integer
n, an appropriate size parameter is m = log n, since this rougnly the number of bits needed to
represent n.

2. The algorithm has exponential running time since n2 = (2logn)2 = 4logn which grows exponen-
tially with respect to input parameter log n.

3. We have
p ◦ q = (4 3 2 1 5).

For example,
(p ◦ q)(3) = p(q(3)) = p(5) = 2,

and so the third number in the permutation is 2.

4. For arbitrary i, we have

(p ◦ (q ◦ r))(i) = p((q ◦ r)(i)) = p(q(r(i))).

Similarly,
((p ◦ q) ◦ r)(i) = (p ◦ q)(r(i)) = p(q(r(i))).

5. We have
p2 = (1 2 3 4 5),

which is the identity permutation. Therefore, p3 = p ◦ p2 = p.

6. i) We have
p2 = (4 3 5 2 1),

and
p4 = p2 ◦ p2 = (2 5 1 3 4) = q.

Therefore (p, q, 4) is a positive instance of Perm Power. ii) The size parameters are n, the size
of each permutation, and log t, the size of input t.

7. The algorithm has quadratic running time since, if we substitute m = log t, we get O(nm)
which is quadratic.

8. i) The least number of colors needed is four (why not three?): red (r), blue (b), green (g), and
yellow (y). We have the following coloring of vertices.

Vetex Color
1 r
2 r
3 g
4 g
5 b
6 y
7 r
8 b

13

ii) Size parameters: m = |E|, n = |V | since an instance of Coloring is a graph.

9. i) Positive instance with perfect matching: {(a, 1), (b, 3), (c, 4), (d, 2), (e, 5)} ii) Size parameters:
m = |E|, n = |V | since an instance of Perfect Matching is a graph.

10. i) Positive instance with 3DM {(a, 3, z), (b, 1, x), (c, 2, y)}. ii) Size parameters: m = |S| and
n = |A| = |B| = |C|.

14

