
Introduction to Information Theory

Last Updated January 30th, 2024

1 Entropy of an Information Source

An information source is a pair S = (A, P) where A = {x1, . . . , xn} is called the source alphabet
and P is a probability distribution on A, i.e. P = {p1, . . . , pn}, where pi denotes the probability
of xi. We also denote pi as p(xi).

Example 1.1. When Heather brings home a math test to show her parents, the exam’s letter grade
follows the following probability distribution: A: 0.60, B: 0.25, C: 0.10, D: 0.05. Thus, the letter
grade on Heather’s math test represents an information source with

A = {A,B,C,D},

and
P = 0.60, 0.25, 0.10, 0.05.

1

Our goal is to now quantitatively answer the following question: on average, how much information
does an information source actually provide? If we think of a news event, the amount of interest in the
event involves two factors: the event’s psychological impact on a human receiver, and its likelihood
of occurring. In this lecture we focus on the latter factor for measuring information content since
i) psychological impact seems quite subjective in its measurement and ii) we wish our definition to
apply to situations for which a human is not the receiver of the information, and thus there is no
pychological-impact factor to consider. In this case, the following statement seems supported by
everyday experience:

“The less likely an event, the more information that is conveyed by the
event.”

Thus, assuming p is the probability that an event occurs, we seek a function I(p) defined on the
interval (0, 1] that has the following properties.

1. I(p) increases as p decreases

2. I(1) = 0

3. lim
p→0+

I(p) = ∞

Property 2 states that, if an event is certain to occur, then its occurrence conveys zero information,
while Property 3 states that there is no bound on the amount of information that an event may
convey so long as its likelihood becomes increasingly small.

Definition 1.2. Given an information source S = (A, P), where A = {x1, . . . , xn} and P =
{p1, . . . , pn}, the entropy of S, written H(p1, . . . , pn), equals the average amount of information
conveyed by a symbol of A, i.e.

H(p1, . . . , pn) =
n∑

i=1

piI(pi).

2

1.1 Deriving I(p)

We now turn our attention to deriving a mathematical formula for I(p). We accomplish this by
stating the following three properties that we believe H(p1, . . . , pn) should possess.

1. H(p1, . . . , pn) is continuous over the n-dimensional cube [0, 1]n subject to the constraint that
x1 + · · ·+ xn = 1.

Rationale: entropy should react in a continuous manner to continuous changes of probabilities.

2. H(1
n
, . . . , 1

n
) < H(1

n+1
, . . . , 1

n+1
).

Rationale: since H(1
n
, . . . , 1

n
) = I(1

n
), H(1

n+1
, . . . , 1

n+1
) = I(1

n+1
) and, by Property 1 of I(p)

stated above, we must have I(1
n
) < I(1

n+1
).

3. H(1
n
, . . . , 1

n
) = H(b1

n
, . . . , bk

n
) +

k∑
i=1

bi
n
H(1

bi
, . . . , 1

bi
), where

k∑
i=1

bi = n.

Rationale: to observe one of A’s symbols, we obtain k empty bags, and divide up the symbols
into k disjoint sets S1, . . . , Sk, where |Si| = bi. We then place the symbols in Si into the i th
bag. Finally, we randomly select one of the bags, where the i th bag has probability bi

n
of being

selected, and randomly (according to a uniform distribution) select one of the symbols from the
bag. Thus, we desire that the entropy of the source equals the sum of i) the average amount of
information conveyed by the selection of a particular bag, and ii) the information conveyed by
selecting a particular symbol from that bag.

Theorem 1.3. The only way to define I(p) and satisfy the above three properties is for

I(p) = − logb p = logb

(
1

p

)
,

where b ≥ 2 can be any base. Consequently,

Hb(p1, . . . , pn) = −
n∑

i=1

pi logb pi =
n∑

i=1

pi logb

(
1

p

)
.

When b = 2 the unit of entropy is bits and in this case we drop the subscript and write H(p1, . . . , pn).

3

Administrator
Pencil

Example 1.4. Returning to Example 1.1, the average amount of information conveyed by the letter
grade on Heather’s math test equals

H(0.60, 0.25, 0.10, 0.05) = 0.60 log

(
1

0.60

)
+ 0.25 log

(
1

0.25

)
+ 0.10 log

(
1

0.10

)
+

0.05 log

(
1

0.05

)
= 1.71 bits.

4

Administrator
Pencil

Example 1.5. The 12-balls puzzle. You are given 12 balls, all of which are identical in size and
weight, except one, which may be heavier or lighter than the other 11. You must determine which
ball is non-standard using only a balance that can support up to six balls on each side. Determine
the initial balancing experiment that conveys the most information in the worst case.

5

Administrator
Pencil

2 Encoding an Information Source

Given an information source S = (A, P), we may think of a symbol xi ∈ A as representing an event
and its associated probability pi as the likelihood of the event occurring. Furthermore, when the
event occurs, we may want to communicate its occurrence which involves using a commmunication
channel. Finally, we prefer to be as efficient as possible in the sense that, if the communication
involves sending a string of characters through the channel, then the average string length should be
made as small as possible without compromising communication accuracy. In this lecture we assume
that the channel is noiseless in the sense that whatever string is sent through the channel is the
same string that is read by the receiver.

Definition 2.1. A b-ary code is a set of words C over some alphabet Ψ, where |Ψ| = b. The
members of C are called codewords. When b = 2, C is called a binary code, when b = 3, C is
called a ternary code.

Definition 2.2. Given a set Z, Z+ denotes the set of all sequences of the form z1 · · · zk, where k ≥ 1,
and zi ∈ Z for all 1 ≤ i ≤ k.

Definition 2.3. A b-ary encoding of an information source S = (A, P) is a one-to-one function
f : A → C, where C = Ψ+ and |Ψ| = b. The code associated with the encoding is

C = {c1 = f(x1), . . . , cn = f(xn)}.

Definition 2.4. Given an encoding function f : A → C for an information source, the extension
of f is the function f+ : A+ → C+ for which

f+(xi1 · · ·xik) = f(xi1) · · · f(xik).

In other words, f+ is mapping words over the alphabet A to words over the alphabet C (here, each
codeword is being viewed as a symbol).

Definition 2.5. An encoding f : A → C is said to be uniquely decodable iff f+ is a one-to-one
function. In other words, for any sequence of codewords, there is at most one word in A+ that maps
to that sequence.

Note that, although unique decodability is a property of an encoding, we also associate it with the
code itself. For example, if C = {c1, . . . , cn}, then C is uniquely decodable iff for every word
w ∈ C+, there is a unique sequence ci1 · · · cik for which w = ci1 · · · cik .

Definition 2.6. A code C is said to be a prefix code iff no codeword in C is a prefix of some other
codeword in C. In other words, there are no u,w ∈ C for which u · v = w, for some v ∈ C.

We leave the following as an exercise.

Proposition 2.7. Every prefix-code is uniquely decodable.

6

Administrator
Pencil

Example 2.8. The code C = {0, 10, 110, 111} is a prefix code, however C ′ = {22, 321, 233, 13, 221}
is not a prefix code since 22 is a prefix of 221.

7

Administrator
Pencil

Example 2.9. Let A = {a, b, c, d} and consider the binary encoding defined by f(a) = 0, f(b) = 01,
f(c) = 011, and f(d) = 0111. Then the resulting code C = {0, 01, 011, 0111} is not a prefix code
since, e.g., 0 is a prefix of every codeword. However, the encoding is still uniquely decodable since,
when a 0 is read, counting the subsequent 1’s that follow, up to the next 0, identifies the unique
codeword.

8

Administrator
Pencil

2.1 Probability encodings

As we’ll see, the results of this lecture depend only the relationship between codewords and probabilities,
and are independent of the information source. For this reason we may define a probability
(distribution) encoding as a pair E = (C,P), where C = {c1, . . . , cn} is a set of codewords,
and P = {p1, . . . , pn}. Note that an encoding f of an information source S = (A = {x1, . . . , xn}, P)
always induces a probability encoding E = (C,P), where C = {f(x1), . . . , f(xn)}.

Definition 2.10. Given a probability encoding E = (C,P), the average codword length, denoted
AveLen(C,P), is given by

AveLen(C,P) =
n∑

i=1

pi|ci|.

Example 2.11. Given the probability encoding E = (C = {0, 01, 011, 0111}, P = {0.5, 0.25, 0.125, 0.125}),
the average codeword length equals

AveLen(C,P) =
n∑

i=1

pi|ci| = (0.5)(1) + (0.25)(2) + (0.125)(3) + (0.125)(4) = 1.875.

9

Administrator
Pencil

2.2 Kraft’s Inequality

Theorem 2.12. (Kraft’s Inquality) For any b-ary prefix-code C with codeword lengths l1, . . . , ln,

n∑
i=1

b−li ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a b-ary prefix
code with these word lengths.

Proof of Kraft’s Inequality WLOG, assume that the codeword lengths are in non-decreasing order
and Consider a perfect b-ary tree T with height ln. The we have the following basic facts.

1. T has bln leaves

2. there is a one-to-one correspondence between b-ary words of length not exceeding ln and nodes
of T

3. there is one-to-one mapping from C into the set of nodes of T

4. every leaf of T has at most one ancestor in C

5. every codeword ci ∈ C is the ancestor of exactly bln−li leaves of T

From the above facts we see that
n∑

i=1

bln−li ≤ bln ,

and hence (dividing both sides by bln)
n∑

i=1

b−li ≤ 1.

Conversely, suppose that lengths l1, . . . , ln satisfy

n∑
i=1

b−li ≤ 1.

Let T be a perfect b-ary tree. Define binary code C in the following manner.

Basis step. Let w1 = 0l1 .

Inductive step. Assume that there exists 1 ≤ k ≤ n− 1 such that codewords w1, . . . , wk have been
defined in such a way that |wi| = li, for all 1 ≤ i ≤ k, and that the codewords represent a prefix
code. Then by Kraft’s inequality,

k∑
i=1

b−li < 1,

10

Administrator
Pencil

Administrator
Pencil

which implies
k∑

i=1

bln−li < bln .

Then there exists a leaf L of T for which no member of {w1, . . . , wk} is an ancestor of L. Choose the
first such leaf L and set wk+1 to the ancestor of L having length lk+1. Continuing in this manner a
prefix-code C with the desired word lengths will be attained.

It’s interesting to note that a theorem by McMillan states that Kraft’s inequality still holds in case
C is uniquely decodable (but not necessarily a prefix code). One corollary of McMillan’s theorem is
that, for every uniquely decodable code C, there is a prefix code C ′ whose codeword lengths match
those of C. Thus, no efficiency is lost (in terms of minimizing average codeword length) by working
exclusively with prefix codes.

11

Example 2.13. Is there a uniquely decodable code over the alphabet {0, 1, . . . , 9} with 9 codewords
of length 1, 9 codewords of length 2, 10 codewords of length 3, and 10 codewords of length 4?

Solution.

12

3 Huffman’s Coding Algorithm

For the sake of clarity, in this section we assume the use of binary codewords. With that said,
Huffman’s algorithm works for codeword alphabets of any size ≥ 2. For sizes other than 2, slight
changes must be made to both the algorithm and its proof of correctness. The details are left as an
exercise.

The Huffman Coding Algorithm is a recursive greedy algorithm that computes an optimal prefix
code for a probability distribution P = {p1, . . . , pn}, where

p1 ≥ · · · ≥ pn−1 ≥ pn.

In what follows we let h(pi) denote the codeword that Huffman’s algorithm assigns to probability pi,
i = 1, . . . , n.

Base Case If P = {1.0}, then h(1.0) = λ.

Recursive Case Assume P = {p1, . . . , pn} with n ≥ 2.

Recursively call Huffman on

P ′ = {p1, . . . , pn−2, pn−1 + pn}.

Return
C = {h(p1), . . . , h(pn−2), h(pn−1 + pn) · 0, h(pn−1 + pn) · 1},

meaning that the code returned by Huffman from the recursive call is expanded by replacing
codeword h(pn−1 + pn) with the two sibling codewords h(pn−1 + pn) · 0 and h(pn−1 + pn) · 1.

13

Example 3.1. Apply Huffman’s algorithm to the probability distribution {0.3, 0.23, 0.22, 0.15, 0.10}.

14

00 01

100 101

11

Figure 1: Code tree for prefix code C = {00, 01, 100, 101, 11}

It helps to think of the codewords of a binary prefix code as nodes on a binary tree. For example,
the codeword 1 represents the right child of the tree root, while 01 represents the right child of the
left child of the tree root (or the root’s left-right grandchild). Moreover, being a prefix code means
that no codeword can be an ancestor of any other codeword. Figure 1 shows a binary code tree for
the prefix code C = {00, 01, 100, 101, 11}.

Claim: for any probability distribution there is an optimal prefix code for which the two least
probable codewords are (tree) siblings.

Proof of Claim: WLOG, assume that the respective codeword probabilities are p1 ≥ · · · ≥ pn−1 ≥
pn. Suppose wn−1 and wn are the two least probable codewords of an optimal prefix code C. First
notice that wn−1 and wn must be the two longest codewords. For suppose codeword wi has a length
that exceeds max(|wn−1|, |wn|). If this were true then, since pi ≥ pn−1 ≥ pn, we may assign pi
codeword wn, and pn codeword wi, resulting in an average codeword length that does not exceed the
optimal average length (show this!), and so the new probability encoding must also be optimal.

15

The next observation is that we must have |wn−1| = |wn|. For suppose |wn| > |wn−1|, i.e., wn exists
at a lower level of the tree than that of wn−1. Then wn is the only codeword at this level (why?), and
hence its parent is not the ancestor of any other codeword. Thus, wn may be replaced by its parent
to obtain a prefix code of lesser average length, a contradiction.

Finally, given that wn−1 and wn reside at the same (bottom) tree level, if wn has no sibling codeword,
then we may replace wn−1 with wn’s sibling, to obtain another (optimal) code having the same
average length. On the other hand, if, say, codeword wn−2 is the sibling of wn, then we may swap
the codewords of pn−1 and pn−2 to obtain another (optimal) code in which the two least probable
codewords are siblings.

16

Theorem 3.2. Huffman’s algorithm is correct in that it always returns a probability encoding of
P = {p1, . . . , pn} that has the least average codeword length.

Proof. We use mathematical induction.

Basis step. if n = 1, then P = {1.0}, and h(1.0) = λ is optimal, since the average codeword length
equals 0(1) = 0.

Inductive step Part 1. Assume that, for some n ≥ 2, Huffman’s algorithm always returns an
optimal prefix code for probability distributions with n − 1 or fewer members. Now consider the
input P = {p1, . . . , pn−1, pn}. Then, by the inductive assumption, the recursive call to Huffman on
input {p1, . . . , pn−1 + pn} results in returning an optimal prefix code which we’ll call Chuff,opt,n−1

.

This code is then expanded to a code for P by replacing h(pn−1 + pn) with h(pn−1 + pn) · 0, and
h(pn−1 + pn) · 1. Call this new code Chuff,n

.

Notice that Chuff,n
has an average codeword length that is only pn−1 + pn more than the average for

Chuff,opt,n−1
. This is because the expansion of Chuff,opt,n−1

replaces h(pn−1 + pn) with two words,

each of which is only one bit longer than h(pn−1 + pn), thus adding an extra

1(pn−1) + 1(pn) = pn−1 + pn

in average codeword length.

To summarize, we have
L(Chuff,n

) = L(Chuff,opt,n−1
) + pn−1 + pn.

Inductive Step Part 2. Now consider an optimal prefix code Copt,n for P in which the two
least-probable codewords are siblings. Then letting

P ′ = {p1, . . . , pn−1 + pn},

we may use Copt,n to create the code Cn−1 with the only change being the replacement of codewords
wn−1 and wn with their longest common prefix y. And since

|y| = |wn−1| − 1 = |wn| − 1,

This yields
L(Copt,n) = L(Cn−1) + pn−1 + pn.

17

Thus, we have established the two following facts.

1. The optimal prefix code Chuff,opt,n−1
yields the code Chuff,n

whose average length is pn−1 + pn
more than that of Chuff,opt,n−1

.

2. The optimal prefix code Copt,n yields a prefix code Cn−1 whose length is pn−1 + pn less than
that of Copt,n.

The above two facts imply that

L(Chuff,n
)− L(Chuff,opt,n−1

) = L(Copt,n)− L(Cn−1),

which in turn implies that
L(Chuff,n

) = L(Copt,n),

meaning that Chuff,n
is optimal (since Copt,n is optimal). To see why this must be true, suppose

instead we have
L(Chuff,n

) > L(Copt,n).

Then the above equation would force

L(Chuff,opt,n−1
) > L(Cn−1),

which is a contradiction, since Chuff,opt,n−1
is assumed optimal by the inductive assumption. Therefore,

Chuff,n
is optimal and, since this is the code returned by Huffman for an input of size n, we see that

Huffman’s algorithm is correct.

18

Example 3.3. The following table shows each subproblem that is solved by Huffman’s algorithm for
the problem instance provide in Example 3.1, its optimal code, the code’s average length, and how
the difference in average length between a parent and child code is equal to the sum of the two least
probabilities of the parent code.

n Prob Code L(Ci) L(Ci)− L(Ci−1)
1 {1.0} {λ} 0
2 {0.55, 0.45} {0, 1} 1 1− 0 = 0.55 + 0.45
3 {0.45, 0.30, 0.25} {1, 00, 01} 1.55 1.55− 1 = 0.30 + 0.25
4 {0.30, 0.25, 0.23, 0.22} {00, 01, 10, 11} 2 2− 1.55 = 0.23 + 0.22
5 {0.30, 0.23, 0.22, 0.15, 0.10} {00, 10, 11, 010, 011} 2.25 2.25− 2 = 0.15 + 0.1

19

4 The Noiseless Coding Theorem

We begin with the Log-Concavity Lemma which gets its name from the fact that lnx is an increasing
concave function, and thus satisfies the inequality

lnx ≤ x− 1 (1)

for all x, with equality iff x = 1. This is true since y = x − 1 is tangent to lnx at x = 1 (draw the
graph for each function).

Lemma 4.1. (Log-Concavity Lemma) Let P = {p1, . . . , pn} be a probability distribution and let

Q = {q1, . . . , qn} have the properties i) 0 ≤ qi ≤ 1 and ii)
n∑

i=1

qi ≤ 1. Then

n∑
i=1

pi log
1

pi
≤

n∑
i=1

pi log
1

qi
,

with equality iff pi = qi for all i = 1, . . . , n.

Proof. Since the proof is independent of the log base, we will work with natural logarithms.

Claim: for all i = 1, . . . , n

pi ln
1

pi
≤ pi ln

1

qi
+ qi − pi.

Indeed, if pi = 0, then the above inequality reduces to qi ≥ 0 which is true, and if pi ̸= 0 but qi = 0,
then the left side is finite while the right side equals ∞. Finally, if both pi > 0 and qi > 0, then

pi ln
1

pi
≤ pi ln

1

qi
+ qi − pi

is true iff
pi ln

qi
pi

≤ qi − pi

which in turn (upon dividing both sides by pi) is true iff

ln

(
qi
pi

)
≤

(
qi
pi

)
− 1,

which is true by 1 above, and with equality iff qi = pi.

To finish the proof, if we sum the claimed statement over i = 1, . . . , n, we get

n∑
i=1

pi ln
1

pi
≤

n∑
i=1

pi ln
1

qi
+

n∑
i=1

qi +
n∑

i=1

pi ≤
n∑

i=1

pi ln
1

qi

with equality holding iff qi = pi for all i = 1, . . . , n.

20

Theorem 4.2. Let E = (C,P) be a probability encoding, where C = {c1, . . . , cn} and P =
{p1, . . . , pn}. Then

Hb(p1, . . . , pn) ≤ AveLen(C,P)

with equality iff, for all i = 1, . . . , n,

|ci| = logb

(
1

pi

)
.

Proof. Since C is an instantaneous code, by Kraft’s inequality, we have

n∑
i=1

1

bli
≤ 1.

Then by the Log-Concavity Lemma, and letting qi =
1
bli
, we have

Hb(p1, . . . , pn) =
n∑

i=1

pi logb

(
1

pi

)
≤

n∑
i=1

pi logb

(
1

qi

)
=

n∑
i=1

pi logb b
li =

n∑
i=1

pili = AveLen(c1, . . . , cn).

Finally, by the Log-Concavity Lemma, equality holds iff pi = qi, for i = 1, . . . , n, which is true iff

li = logb

(
1

pi

)
for i = 1, . . . , n.

Theorem 4.3. (Noiseless Coding Theorem) For any probability distribution P = {p1, . . . , pn}, let
MinAveLen(P) denote the minimum average codeword length attained over all possible probability
encodings of P . Then

Hb(p1, . . . , pn) ≤ MinAveLen(P) < Hb(p1, . . . , pn) + 1.

Proof. The first inequality is the result of Theorem 4.2. To show the upper bound, consider the
following lengths

li = ⌈logb
1

pi
⌉.

These lengths satisfy the Kraft inequality since

n∑
i=1

b
−⌈logb 1

pi
⌉ ≤

n∑
i=1

b
− logb

1
pi =

n∑
i=1

pi = 1.

Thus, by Theorem 2.12, there is a prefix code C whose respective codewords have these lengths.
Moreover, for all 1 ≤ i ≤ n,

logb
1

pi
≤ li < logb

1

pi
+ 1.

And from this we conclude (by first multiplying through by pi followed by summing over i)

Hb(p1, . . . , pn) ≤ MinAveLen(P) ≤ AveLen(C,P) < Hb(p1, . . . , pn) + 1.

21

4.1 Improving the information rate

The importance of the MinAveLen(P) value is that it represents the average number of codeword
symbols that must be transmitted in order to communicate a single symbol/event of the information
source. We thus refer to the ratio MinAveLen(P)/Hb(P) as the information transmission rate
(ITR), as it gives the average number of symbols transmitted per average amount of information
conveyed.

Given an information source S = (A, P = {p1, . . . , pn}), the Noiseless Coding Theorem guarantees
that the average number of transmitted symbols can be made better than Hb(p1, . . . , pn) + 1. We
now show how the average can be made arbitrarily close to Hb(p1, . . . , pn), showing that the ITR can
be made to approach 1. The key idea is to use the m-ary extension function

fm : Am → C,

as the encoding function and use a Huffman code to encode each m-ary word. Moreover, if we assume
that the symbols are occurring independently of one another, then the average information conveyed
by an m-ary word is mHb(p1, . . . , pn). Now, if we let Pm denote the probability distribution for a
sequence of m independent symbols, Then for a single transmission of m symbols we have,

mHb(p1, . . . , pn) ≤ MinAveLen(Pm) < mHb(p1, . . . , pn) + 1,

and dividing by m we see that

Hb(p1, . . . , pn) ≤
MinAveLen(Pm)

m
< Hb(p1, . . . , pn) +

1

m
.

But, since MinAveLen(Pm) gives the average encoding length for m symbols,

MinAveLen(Pm)

m

gives the average encoding length for a single symbol, and the average converges to Hb(p1, . . . , pn) for
increasing values of m. Therefore, the ITR can be made arbitrarily close to 1 via increasing values
of m.

22

The following example is taken from Roman’s “Information and Coding Theory” (see page 65).

Example 4.4. Given the probability distibution P = (1
4
, 3
4
), its Huffman code {0, 1} has an average

length equal to 1, while H(1
4
, 3
4
) = 0.811. Determine the average codeword length for both a binary

extension and a ternary extension.

Solution.

23

Administrator
Pencil

Administrator
Pencil

References

1. T. Cover, J. Thomas, “Elements of Information Theory”, 2nd Edition, Wiley-Interscience, 2006

2. L. Mlodinow, “The Drunkard’s Walk: How Randomness Rules our Lives”, Vintage Press, 2009

3. S. Roman, “Information and Coding Theory”, Springer-Verlag, 1992

4. S. Ross, “Introduction to Probability Models”, 10th Edition, Academic Press, 2009

24

