
The Discrete Fourier Transform

Complex Fourier Series Representation

Recall that a Fourier series has the form

a0 +
∞∑
k=1

ak cos(kt) +
∞∑
k=1

bk sin(kt).

This representation seems a bit awkward, since it involves two different infinite series. We remedy
this by representing a Fourier series with complex numbers.

To begin, recall the identity
eiθ = cos θ + i sin θ.

Moreover, setting θ = kt, we have
eikt = cos kt+ i sin kt,

for any integer k. Thus eikt has the ability to include both cosines and sines, and thus seems like a
good candidate for representing a Fourier series as a single series. Now consider the series

∞∑
k=0

cke
ikt.

If we allow for ck = ak − ibk to be a complex number, then the k th term of the series evaluates to

(ak − ibk)(cos kt+ i sin kt) = (ak cos kt+ bk sin kt) + i(ak sin kt− bk cos kt).

Notice how the real part ak cos kt + bk sin kt provides the coefficients of the original Fourier series.
However, there is also the imaginary part (ak sin kt − bk cos kt) which is problematic, since we still
want the output of the series to be real-valued, since in practice the signals are real valued. Moreover,
since the sine and cosine functions are collectively linearly independent, the imaginary part will only
vanish if all of the coefficients are zero, but this would also cause the real part to vanish! For this
reason we must also add the conjugate terms of the form c−ke

−ikt, for k = 1, 2, . . .. This gives the
series

∞∑
k=−∞

cke
ikt,

1



which is a single series, but now infinite in both directions.

If c = a+ bi is a complex number, then c = a− bi is called the conjugate of c.

Proposition 1. If c−k = ck, then, for all t ∈ R, the Fourier series

∞∑
k=−∞

cke
ikt

is real valued.

Proof of Proposition 1. We have

cke
ik = (ak − ibk)(cos kt+ i sin kt) = (ak cos kt+ bk sin kt) + i(ak sin kt− bk cos kt),

while

c−ke
−ik = cke

−ik = (ak + ibk)(cos kt− i sin kt) = (ak cos kt+ bk sin kt)− i(ak sin kt− bk cos kt).

Finally, adding the two equations yields

cke
ik + c−ke

−ik = 2(ak cos kt+ bk sin kt).

Notice in the proof of Proposition 1 that

ckeik = ckeikt = cke
−ik.

In general, if c and d are complex numbers, then cd = cd.

From here onward we call the Fourier series of Proposition 1 the complex-valued Fourier series, or
complex Fourier series for short. Moreover, an n th degree complex trigonometric polynomial
is one of the form

p(t) =
n∑

k=−n

cke
ikt.

Roots of Unity

Suppose our goal is to obtain a Fourier approximation of a signal E(t). In practice, we do not have
access to a rule or equation that describes E(t), and can only come to know it by sampling it at
different values of t. From the previous lecture we may assume, by choosing an appropriate time
scale, that E(t) is periodic over the interval [0, 2π]. Moreover, suppose that n samples are taken, and
starting at t = 0, a sample is taken once every 2π/n seconds. Then the sampling times are at t = 2πj

n
,

2



for j = 0, . . . , n− 1. These sampling times have an interesting mathematical property. Namely that,
for each j = 0, . . . , n− 1, e

2πij
n is a complex n th root of unity, meaning that

e(
2πij
n

)n = e2πij = cos(2πj) + i sin(2πj) = 1.

Example 1. Determine the a) complex 4th roots of unity, and b) complex 6th roots of unity.

The next proposition shows that e
2πij
n , j = 0, . . . , n− 1, are the only unique powers of e

2πi
n .

Proposition 2. For integers j and k satisfying j ≡ k mod n, then e
2πij
n = e

2πik
n .

Proof of Proposition 2. Assume j ≡ k mod n. Then k = nq + j, for some integer q. Then

e
2πik
n = e

2πi(j+nq)
n = e

2πij
n e

2πinq
n = e

2πij
n e2πiq = e

2πij
n · 1 = e

2πij
n .

Proposition 2 allows us to define the Abelian group whose elements are the n th roots of unity, with
multiplication as addition. Moreover,

e
2πij
n · e

2πik
n = e

2πi(j+k)
n .

Moreover, the addition is associative since multiplying two roots of unity is identical to integer
addition (e.g. adding j with k) which is associative. Also, 1 is the identity element, and the (additive)

inverse of e
2πij
n is e

2πi(n−j)
n . Another way of writing the inverse of e

2πij
n is e

−2πij
n . This is valid, since

n− i ≡ −i mod n.

For simplicity, we denote the j th power of the n th root of unity e
2πij
n by ωjn. Moreover, ω−jn denotes

the inverse of ωjn. In general, for any integer k, ωkn is defined as being equal to ωjn j ≡ k mod n.

3



Example 2. For the 6th roots of unity, determine the inverse of each group element, and verify that
(a+ bi)(a+ bi)−1 = 1 through direct multiplication.

Polynomial Interpolation

Our goal in this section is to develop a framework for solving the following problem. Suppose
we sample our signal E(t) at n different time values t0, . . . , tn−1, and obtain the n measurements
y0 = E(t0), . . . , yn−1 = E(tn−1). Problem: find the trigonometric polynomial that best fits these
measurements. It turns out that if we sample at times 2πj

n
, where j = 0, . . . , n − 1, and limit the

polynomial approximation to having degree n−1, then there is a unique (n−1) th degree trigonometric
polynomial that fits the n measurements.

Before getting into the details of solving the above problem, consider the related problem: given n
points (x0, y0), . . . , (xn−1, yn−1) having distinct x values, determine the coefficients c0 . . . , cn−1 of an
(n− 1)-degree polynomial

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1,

for which p(xi) = yi for all i = 0, . . . , n − 1. Finding a degree n − 1 polynomial that agrees with
each of the n data point is called polynomial interpolation. We now show that there is a unique
n− 1-degree polynomial that fits the data. Indeed, if the above p(x) is the desired polynomial, then
p(xi) = yi for all i = 0, . . . , n− 1, implies the following system of linear equations.

c0 + c1x0 + c2x
2
0 + · · ·+ cn−1x

n−1
0 = y0

...

4



c0 + c1xn−1 + c2x
2
n−1 + · · ·+ cn−1x

n−1
n−1 = y0,

which has the coefficient matrix

 1 x0 x20 · · · xn−10
...

1 xn−1 x2n−1 · · · xn−1n−1


The above matrix is called the n-dimensional Vandermonde matrix, in honor of Alexandre-Thophile
Vandermonde. The fact that this matrix is always invertible, and hence yields a unique solution, is
a special case of the following theorem.

Theorem 1. Let p1(x), . . . , pn−1(x) be a sequence of polynomials for which pi(x) has degree i,
i = 1, . . . , n− 1. Then if x0, . . . , xn−1 are distinct complex numbers, then the matrix 1 p1(x0) p2(x0) · · · pn−1(x0)

...
1 p1(xn−1) p2(xn−1) · · · pn−1(xn−1)


is invertible.

To prove Theorem 1, we need the following two lemmas.

Lemma 1. Assuming x 6= y, The polynomial xj − yj is divisible by x− y, for all integers j ≥ 1.

Proof of Lemma 1. One can verify through multiplication that

xj − yj = (x− y)(xj−1 + xj−2y + xj−3y2 + · · ·+ x2yj−3 + xyj−2 + yj−1).

Thereofre, x− y is a factor of xj − yj; i.e., xj − yj is divisible by x− y.

Lemma 2. Let p1(x) be a linear polynomial, and pj(x) be a degree j polynomial, where j ≥ 1.
Then, for any constant x0, (pj(x)− pj(x0))/(p1(x)− p1(x0)) is a degree j − 1 polynomial.

Proof of Lemma 2. Suppose
pj(x) = c0 + c1x+ · · ·+ cjx

j,

where c0, . . . , cj are complex numbers. Then

pj(x)− pj(x0) = (c0 + c1x+ · · ·+ cjx
j)− (c0 + c1x0 + · · ·+ cjx

j
0) =

cj(x
j − xj0) + · · ·+ c1(x− x0).

Thus, since each term of pj(x)− pj(x0) has a factor of the form (xi − xi0), i = 1, . . . , j, it follows by
Lemma 1 that pj(x)− pj(x0) is divisible by (x− x0). Moreover, since p1(x)− p1(x0) = a(x− x0), for
some nonzero complex number a, it follows that pj(x) − pj(x0) is divisible by p1(x) − p1(x0), and,
from the proof of Lemma 1, the quotient is a degree j − 1 polynomial.

5



Proof of Theorem 1. The proof uses induction on n. Assume the rows and columns are numbered
starting with index 0.

Basis Step: n = 2. Then n− 1 = 1, and the matrix is(
1 p1(x0)
1 p1(x1)

)
.

Then the elementary row operation r1 ← r1 − r0 yields the new matrix(
1 p1(x0)
0 p1(x1)− p1(x0)

)
.

Since p1(x) = ax+ b, where a 6= 0, entry a01 of the above matrix is ax1− ax0 = a(x1− x0) 6= 0, since
x1 6= x0. Therefore the subsequent row operations r1 ← 1

a01
r1 and r0 ← r0 − p1(x0)r1 produces the

identity matrix.

Inductive Step: Assume the theorem is true for all values of n up to some value n0, where n0 ≥ 2.
We now show it is also true for the value n0 + 1. Let n = n0. Then it must be shown that the matrix

1 p1(x0) p2(x0) · · · pn−1(x0) pn(x0)
...

1 p1(xn−1) p2(xn−1) · · · pn−1(xn−1) pn(xn−1)
1 p1(xn) p2(xn) · · · pn−1(xn) pn(xn)


is invertible, where x0, . . . , xn−1, xn are distinct complex numbers. Using Gauss-Jordan elimination,
for each row ri, i = 1, . . . , n, perform the operation ri ← ri − r0. This has the effect of placing zeros
in rows 1 through n of column 0. The matrix is now

1 p1(x0) p2(x0) · · · pn−1(x0) pn(x0)
...

0 p1(xn−1)− p1(x0) p2(xn−1)− p2(x0) · · · pn−1(xn−1)− pn−1(x0) pn(xn−1)− pn(x0)
0 p1(xn)− p1(x0) p2(xn)− p2(x0) · · · pn−1(xn)− pn−1(x0) pn(xn)− pn(x0)

 .

For the moment, ignore row 0 and column 0, since column 0 already has a leading 1 in row 0. It
remains to show that the submatrix with rows 1 through n and columns 1 through n can be row
reduced to the identity matrix. To show this, first divide row i, i = 1, . . . , n, by p1(xi) − p1(x0) to
obtain the new submatrix

1 p2(x1)−p2(x0)
p1(x1)−p1(x0) · · · pn−1(x1)−pn−1(x0)

p1(x1)−p1(x0)
pn(x1)−pn(x0)
p1(x1)−p1(x0)

...

1 p2(xn−1)−p2(x0)
p1(xn−1)−p1(x0) · · ·

pn−1(xn−1)−pn−1(x0)
p1(xn−1)−p1(x0)

pn(xn−1)−pn(x0)
p1(xn−1)−p1(x0)

1 p2(xn)−p2(x0)
p1(xn)−p1(x0) · · · pn−1(xn)−pn−1(x0)

p1(xn)−p1(x0)
pn(xn)−pn(x0)
p1(xn)−p1(x0)

 .

For i = 2, . . . , n, let

qi−1(x) =
pi(x)− pi(x0)
p1(x)− p1(x0)

.

6



Then by Lemma 2, qi−1(x) is a degree i− 1 polynomial, and the above submatrix may be written as
1 q1(x1) q2(x1) · · · qn−1(x1)

...
1 q1(xn−1) q2(xn−1) · · · qn−1(xn−1)
1 q1(xn) q2(xn) · · · qn−1(xn)

 .

By the inductive assumption, this matrix is invertible, and can thus be row reduced to the identify
matrix. Thereofre, adding back row 0 and column 0 of the original matrix, it follows that the entire
matrx can be row reduced to the identity matrix, and is hence invertible.

Collorary 1. The n-dimensional Vandermonde matrix is invertible for all n ≥ 1.

Proof of Collorary 1. This follows immediately from Theorem 1, by setting pi(x) = xi, i = 1, . . . , n.

Example 3. Find the equation of the quadratic polynomial whose graph passes through the points
(0, 6), (−1, 9), and (2, 6).

The Discrete Fourier Transform

Polynomial interpolation can also be used to find the n−1 th degree complex trigonometric polynomial
that best fits a set of n data points (t0, y0), . . . , (tn−1, yn−1), where yj = E(tj) is a sample of the signal
E(t) at time tj, j = 0, . . . , n − 1. Assuming a time scale for which E(t) is periodic over [0, 2π], let
tj = 2πj/n. First notice that

p(tj) =
n−1∑

k=−n+1

cke
2πijk/n =

n−1∑
k=−n+1

ckω
jk
n .

7



But since ω−kjn = ω
(n−k)j
n , we see that the terms of p(tj) with a negative k index may be combined

with the terms having positive k index. Thus, assuming tj = 2πj/n, we may write p(tj) as

p(tj) =
n−1∑
k=0

ckω
jk
n =

n−1∑
k=0

ck(ω
j
n)k.

In other words p(tj) is the evaluation of the complex polynomial

p(x) =
n−1∑
k=0

ckx
k

at the n th root of unity ωjn. This brings us to the definition of the discrete Fourier transform.

Discrete Fourier Transform. Given complex coefficients c0, . . . , cn−1, let p(x) be the polynomial

p(x) =
n−1∑
k=0

ckx
k.

Then the n th order discrete Fourier transform is the function

DFTn(c0, . . . , cn−1) = (y0, . . . , yn−1),

where yj = p(ωjn), j = 0, . . . , n − 1. In words the n th order discrete Fourier transform, takes as
input the complex coefficients of a degree n− 1 polynomial p, and returns the n-dimensional vector
whose components are the evaluation of p at each of the n th roots of unity. Another way to write
DFTn(c0, . . . , cn−1) is DFTn(p), where p is a polynomial of degree n− 1.

Example 4. Compute DFT4(0, 1, 2, 3).

8



The discrete Fourier transform maps from complex coefficients to data points. However, mapping
from data points to coefficients is also important, since their must be some empirical basis for deriving
the set of polynomial coefficients. This problem is called the n th order inverse discrete Fourier
transform, and is represented by the function DFT−1n (y0, . . . , yn−1), which takes as input n samples
of a signal, and returns the coefficients of a polynomial p(x) for which p(ωjn) = yj, j = 0, . . . , n− 1.

Example 5. Compute DFT−14 (0, 1,−1, 2).

The Fast Fourier Transform

To compute the n th order DFT, one must evaluate an (n− 1)-degree polynomial p(x) at n different
values, namely at the n th roots of unity. We now show that each polynomial evaluation can be
performed in Θ(n) steps, which implies that the DFTn can be computed in no more than Θ(n · n) =
Θ(n2) steps.

The method for evaluating an n th-degree polynomial pn(x) in Θ(n) steps is called Horner’s algorithm.
The algorithm is recursive with the following base case and recursive case.

Base case. If n = 0, then p0(x) = c0 is a constant. Thus p0(x) can be computed in 0 steps.

Recursive case. Suppose

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0.

9



Then pn(x) can be written as pn(x) = xpn−1(x) + c0, where

pn−1(x) = cnx
n−1 + cn−1x

n−2 + · · ·+ c2x+ c1.

Thus, pn(x) can be computed by first calling Horner’s algorithm on pn−1(x), and then multiplying
the result by x, and adding c0. Moreover, if Tn is the number of steps needed to compute pn(x) using
Horner’s algorithm, then necessarily Tn = Tn−1 + 2, since Tn−1 steps are needed to compute pn−1(x),
followed by 2 arithmetic steps: multiplying by x, and adding c0.

To see that Horner’s algorithm requires Θ(n) steps, notice that the recurrence Tn = Tn−1 + 2 has an
associated recursion tree that consists of a single branch with depth n+1, and that each node (except
for the leaf) of the tree requires 2 computational steps of work, which yields a total of 2n = Θ(n)
steps.

Example 6. Show the sequence of polynomials p0, p1, p2 that are evaluated when using Horner’s
algorithm to evaluate p3(x) = −4x3 + 6x2 + 10x− 7.

Using Horner’s algorithm, DFTn can be computed Θ(n2) steps. Unfortunately, for many applications
where n is very large (say in the hundreds of thousands or millions), computing DFTn may require
an excessive amount of time. We now provide an algorithm for computing DFTn in Θ(n log n) steps.
This algorithm is known as the fast Fourier transform (FFT).

In computing DFTn(p), the algorithm starts by assuming that n is a power of 2. Next, assuming

p(x) = cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0,

then p(x) may also be written as p(x) = p0(x
2) + xp1(x

2), where

p0(x) = cn−2x
(n−2)/2 + cn−4x

(n−4)/2 + · · ·+ c2x+ c0

is a degree n/2 − 1 polynomial whose coefficients consist of the even-indexed coefficients of p(x) ,
while

p1(x) = cn−1x
(n−2)/2 + cn−3x

(n−4)/2 + · · ·+ c3x+ c1

10



is a degree n/2− 1 polynomial whose coefficients consist of the odd-indexed coefficients of p(x)

Now, since p = p0(x
2) + xp1(x

2), DFTn(p) can be computed by first evaluating p0(x
2) at each of the

n th roots of unity, followed by evaluating xp0(x
2) at the n th roots of unity, and then adding the

two output vectors. This is due to the additivity property of polynomials: (r + s)(x) = r(x) + s(x),
for any polynomials r and s. In other words

DFTn(p) = DFTn(p0(x
2)) + DFTn(xp1(x

2)).

But, by the Cancellation Rule (see Exercise 5),

DFTn(p0(x
2)) = (p0((ω

0
n)2), . . . , p0((ω

n/2−1
n )2)p0((ω

n/2
n )2), . . . , p0((ω

n−1
n )2)) =

(p0(ω
0
n/2), . . . , p0(ω

n/2−1
n/2 )p0(ω

n/2+0
n/2 ), . . . , p0(ω

n/2+n/2−1
n/2 )) =

(p0(ω
0
n/2), . . . , p0(ω

n/2−1
n/2 )p0(ω

0
n/2), . . . , p0(ω

n/2−1
n/2 )) =

DFTn/2(p0) ·DFTn/2(p0),

where the 2nd to last equality comes from the fact that n/2+k ≡ k mod n/2, for each k = 0, . . . , n/2−
1. Note also that the last operation DFTn/2(p0)·DFTn/2(p0) means to concatenate vector DFTn/2(p0)
with itself. For example,

(1, 2, 3) · (1, 2, 3) = (1, 2, 3, 1, 2, 3).

Similarly,
DFTn(p1(x

2)) = DFTn/2(p1) ·DFTn/2(p1).

The above equations yield the following recursive algorithm for computing DFTn(p), assuming n is
a power of 2.

1. Base case. If n = 2, then return DFT2(p) by using the definition of DFT.

2. Compute DFTn/2(p0) and form the vector Y0 = DFTn/2(p0) ·DFTn/2(p0).

3. Compute DFTn/2(p1) and form the vector Y1 = DFTn/2(p1) ·DFTn/2(p1).

4. For each j = 0, . . . , n− 1, replace component j of Y1 with ωjnY1j. In other words, Y1j ← ωjnY1j.

5. Return Y0 + Y1.

11



Example 7. Compute DFT4(0, 1, 2, 3) using the FFT algorithm.

12



Theorem 2. Let T (n) denote the number of steps needed to compute DFTn(p) using the FFT
algorithm. Then T (n) satisfies the recurrence

T (n) = 2T (n/2) + an,

where a > 0 is a constant. Moreover, T (n) = Θ(n log n).

Proof of Theorem 2. To compute DFTn(p), we must first compute both DFTn/2(p0) and DFTn/2(p1).
By definition, both of these computations will require T (n/2) steps. Then vectors Y0 and Y1 must
be formed. Both can be computed in a constant times n number of steps. For example, to compute
Y1, we need only concatenate DFTn/2(p1) with itself which takes n steps, and then multiply each
component with the appropriate power of ωn, which takes another n steps. Finally, computing the
vector sum Y0 + Y1 requires another n steps. Putting this all together, we have

T (n) = 2T (n/2) + an,

where a > 0 is a constant.

To see that T (n) = Θ(n log n), note that the algoroithm’s recursion tree has a depth of log n − 1,
and that the number of nodes at depth i of the tree is 2i. Moreover, the number of computing steps
performed at each depth-i node is a(n/2i), since each node is performing a DFTn/2i computation
which requires a(n/2i) steps. Thus, the total number of steps required at depth i is

2ia(n/2i) = an.

Therefore, since there are log n− 1 depths, this gives the total work as an(log n− 1) = Θ(n log n).

13



The Inverted Fast Fourier Transform

The FFT algorithm can be modified to compute DFT−1n (y0, . . . , yn−1) in Θ(n log n) steps. To begin,
recall that we must find coefficients c0, . . . , cn−1 for which

yj = c0 + c1ω
j1
n + c2ω

j2
n + · · ·+ cn−1ω

j(n−1)
n ,

for j = 0, . . . , n−1. This gives the following linear system of n equations expressed in matrix-equation
form. 

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n




c0
c1
c2
...

cn−1

 =


y0
y1
y2
...

yn−1


Notice that coefficient matrix is a Vandermonde matrix. Denote it by Vn. Notice that, for 0 ≤ j, k ≤
n− 1, entry (j, k) of Vn is ωjkn . The following theorem now shows how to compute V −1n .

Theorem 3. For 0 ≤ j, k ≤ n− 1, the (j, k) entry of V −1n is ω−jkn /n.

Proof of Theorem 3. Let matrix A have coefficients ajk = ω−jkn /n, for 0 ≤ j, k ≤ n− 1. We must
show that VnA = In, which would then imply that A = V −1n . Now consider entry (j, k) of VnA.

Case 1: j = k. Then

(VnA)jj =
n−1∑
r=0

ωjrn ω
−rj
n /n =

1

n

n−1∑
r=0

1 = n/n = 1.

Case 2: j 6= k. Then

(VnA)jk =
n−1∑
r=0

ωjrn ω
−rk
n /n =

1

n

n−1∑
r=0

ωr(j−k)n .

Now j − k is a nonzero integer that lies in the interval [−n + 1, n − 1]. Thus, j − k is not divisible
by n. Therefore, by Exercise 8,

n−1∑
r=0

ωr(j−k)n = 0,

which implies (VnA)jk = 0. Therefore, VnA = In, and (V −1n )jk = ω−jkn /n.

Knowing the inverse of Vn allows us to solve the above matrix equation by multiplying both sides by
V −1n . This yields the equation

c0
c1
c2
...

cn−1

 =


1/n 1/n 1/n · · · 1/n

1/n ω−1n /n ω−2n /n · · · ω
−(n−1)
n /n

1/n ω−2n /n ω−4n /n · · · ω
−2(n−1)
n /n

...
...

...
. . .

...

1/n ω
−(n−1)
n /n ω

−2(n−1)
n /n · · · ω

−(n−1)(n−1)
n /n




y0
y1
y2
...

yn−1


14



Therefore, for j = 0, . . . , n− 1,

cj =
1

n
(y0 + y1ω

−j1
n + y2ω

−j2
n + · · ·+ yn−1ω

−j(n−1)
n ).

In words, cj is obtained by evaluating 1
n
p(x) = 1

n
(y0 + y1x+ y2x

2 + · · ·+ yn−1x
n−1) at ω−jn . This leads

to the following definition.

Inverted Discrete Fourier Transform. Given complex coefficients y0, . . . , yn−1, let p(x) be the
polynomial

p(x) =
n−1∑
k=0

ykx
k.

Then the n th order inverted discrete Fourier transform is the function

IDFTn(y0, . . . , yn−1) = (c0, . . . , cn−1),

where cj = 1
n
p(ω−jn ), j = 0, . . . , n − 1. In words the n th order inverted discrete Fourier transform,

takes as input the complex coefficients of a degree n−1 polynomial p, and returns the n-dimensional
vector whose components are the evaluation of 1

n
· p at each of the inverses of the n th roots of unity.

Another way to write IDFTn(c0, . . . , cn−1) is IDFTn(p), where p is a polynomial of degree n− 1.

Notice that IDFTn can be computed using the FFT algorithm, since it represents the same problem
of evaluating a polynomial at each of the n th roots of unity (recall that the inverse of each root of
unity is also a root of unity). To understand the recursion, we now have

1

n
p(x) =

1

n
p0(x

2) +
x

n
p1(x

2) =

1

2
(
2

n
p0(x

2) +
2x

n
p1(x

2)).

Notice that evaluating 2
n
p0(x

2) at each ω−jn gives the same result as evaluating p0(x) at each ω−jn/2,

duplicating the resulting vector, and then dividing by n/2. Similarly, evaluating 2
n
p1(x

2) at each ω−jn
gives the same result as evaluating p1(x) at each ω−jn/2, duplicating the resulting vector, and then

dividing by n/2. Thus,

IDFTn(p) =
1

2
(IDFTn/2(p0) · IDFTn/2(p0) + xIDFTn/2(p1) · IDFTn/2(p1),

where xIDFTn/2(p1)·IDFTn/2(p1) has the effect of multiplying component j of IDFTn/2(p1)·IDFTn/2(p1)
by ω−jn . This leads us to the following IFFT algorithm.

IFFT Algorithm for computing IDFTn(p) = IDFTn(y0, . . . , yn−1)

1. Base case. If n = 2, then return IDFT2(p) by using the definition of IDFT.

2. Compute IDFTn/2(p0) and form the vector C0, where C0 = IDFTn/2(p0) · IDFTn/2(p0).

3. Compute IDFTn/2(p1) and form the vector C1, where C1 = IDFTn/2(p1) · IDFTn/2(p1).

4. For each j = 0, . . . , n−1, replace component j of C1 with ω−jn C1j. In other words, C1j ← ω−jn C1j.

5. Return 1
2
(C0 + C1) which equals DFT−1n (y0, . . . , yn−1).

15



Example 8. Compute DFT−14 (0, 1,−1, 2) by a) using the definition of IDFT−14 (0, 1,−1, 2), and b)
using the IFFT algorithm on IDFT4(0, 1,−1, 2).

16



Exercises

1. Prove that for any two complex numbers c and d, cd = cd

2. Determine the complex cube roots of unity.

3. Determine the complex 8th roots of unity.

4. For the 8th roots of unity, determine the inverse of each group element, and verify that (a +
bi)(a+ bi)−1 = 1 through direct multiplication.

5. Let n ≥ 1, d > 0, and k be integers. Prove that ωdkdn = ωkn. This is called the cancellation
rule.

6. Let n be an even positive integer. Prove that the square of each of the n th roots of unity
yields the n/2 roots of unity. Moreover, each n/2 root of unity is associated with two different
squares of n th roots of unity.

7. Show that ω
n/2
n = −1, for all even n ≥ 2.

8. For positive integer n and for integer j not divisible by n, prove that

n−1∑
k=0

ωjkn = 0.

Hint: use the geometric series formula

n−1∑
k=0

ak =
an − 1

a− 1
,

which is valid when a is a complex number.

9. Find the equation of the quadratic polynomial whose graph passes through the points (2, 13),
(−1, 10), and (3, 26).

10. Find the equation of the cubic polynomial whose graph passes through the points (0,−1), (1, 0),
(−1,−4), and (2, 5).

11. Compute DFT4(1,−1, 2, 4).

12. Compute DFT4(−1, 3, 4, 10).

13. Compute DFT−14 (0, 0,−4, 0).

14. Compute DFT−14 (2, 1− i, 0, 1 + i).

15. Show the sequence of polynomials that are evaluated when evaluating p(x) = x3− 3x2 + 5x− 6
using Horner’s algorithm. Use the algorithm to evaluate p(−2).

16. Show the sequence of polynomials that are evaluated when evaluating p(x) = 2x4− x3 + 2x2 +
3x− 5 using Horner’s algorithm. Use the algorithm to evaluate p(5).

17



17. Use the FFT algorithm to compute DFT4(1,−1, 2, 4).

18. Use the FFT algorithm to compute DFT4(−1, 3, 4, 10).

19. Compute IDFT4(0, 0,−4, 0) using the definition.

20. Compute IDFT4(2, 1− i, 0, 1 + i) using the definition.

21. Use the IFFT algorithm to compute IDFT4(0, 0,−4, 0).

22. Use the IFFT algorithm to compute IDFT4(2, 1− i, 0, 1 + i).

Exercise Solutions

1. Let c = a+ bi, and d = e+ fi. Then

cd = (ae− bf) + i(af + be) = (ad− bf)− i(af + be).

On the other hand,

overlinecd = (a− bi)(e− fi) = (ae− bf) + i(−af − be) = (ae+ bf)− i(af + be),

which proves the claim.

2. For j = 0,

e
(2π)(0)i

3 = 1.

For j = 1,

e
2πi
3 = −1/2 +

√
3i

2
.

For j = 2,

e
4πi
3 = −1/2−

√
3i

2
.

3. For j = 0,

e
(2π)(0)i

3 = 1.

For j = 1,

e
πi
4 =

√
2

2
+

√
2i

2
.

For j = 2,

e
πi
2 = i.

For j = 3,

e
3πi
4 =

−
√

2

2
+

√
2i

2
.

For j = 4,
eπi = −1.

18



For j = 5,

e
5πi
4 =

−
√

2

2
+
−
√

2i

2
.

For j = 6,

e
3πi
2 = −i.

For j = 7,

e
7πi
4 =

√
2

2
+
−
√

2i

2
.

4. For example, ω2
8 = i while ω−28 = ω6

8 = −i, since (i)(−i) = 1. Similarly, ω4
8 = −1 while

ω−48 = ω4
8 = −1, since (−1)(−1) = 1.

5. By definition,

ωdkdn = e
2πidk
dn = e

2πik
n = ωkn.

6. For j = 0, . . . , n− 1,
(ωjn)2 = ωjnω

j
n = ω2j

n = ωjn/2,

where the last equality is due to the cancellation rule from Exercise 5. Thus the square of an
n th root of unity is indeed an n/2 root of unity. Moreover, notice that j ranges from 0 to
n− 1. By definition, when j ranges from 0 to n/2− 1, we obtain each n/2 root of unity. Then,
due to the cyclic nature of the roots unity, when j ranges from n/2 to n − 1, we once again
obtain each n/2 root of unity. Therefore, each n/2 root of unity ωjn/2 is the square of exactly

two different n th-roots of unity, namely (ωjn/2)
2 and (ω

j+n/2
n/2 )2.

7. We have, for even n ≥ 2,

ωn/2n = e(2πi/n)n/2 = eπi = cosπ + i sin π = −1.

8. Using the geometric series formula

n−1∑
k=0

ak =
an − 1

a− 1
,

we have
n−1∑
k=0

(ωjn)k =
n−1∑
k=0

ωjkn =

ωjnn − 1

ωjn − 1
=
ωj1 − 1

ωjn − 1
=

1− 1

ωjn − 1
= 0,

where the first equality is due to the cancellation rule, and the 2nd to last equality is due to
the fact that ω1

1 = 1. Notice also that the denominator is not equal to zero, since we assumed
j is not divisible by n; i.e. j 6≡ 0 mod n.

9. We desire a polynomial of the form c0 +c1x+c2x
2. The three points imply the following system

of equations.
c0 + 2c1 + 4c2 = 13

c0 − c1 + c2 = 10

c0 + 3c1 + 9c2 = 26

Solving this system gives the polynomial 5− 2x+ 3x2.

19



10. We desire a polynomial of the form c0 + c1x+ c2x
2 + c3x

3. The four points imply the following
system of equations.

c0 = −1

c0 + c1 + c2 + c3 = 0

c0 − c1 + c2 − c3 = −4

c0 + 2c1 + 4c2 + 8c3 = 5

Solving this system gives the polynomial −1 + x− x2 + x3.

11. DFT4(1,−1, 2, 4) = (6,−1− 5i, 0,−1− 5i)

12. DFT4(−1, 3, 4, 10) = (16,−5− 7i,−10,−5 + 7i)

13. We desire a polynomial of the form p(x) = c0 + c1x+ c2x
2 + c3x

3. Moreover, the four function
values p(1) = 0, p(i) = 0, p(−1) = −4, and p(−i) = 0 imply the following system of equations.

c0 + c1 + c2 + c3 = 0

c0 + ic1 − c2 − ic3 = 0

c0 − c1 + c2 − c3 = −4

c0 − ic1 − c2 + ic3 = 0

Solving this system gives the polynomial −1 + x− x2 + x3.

14. We desire a polynomial of the form p(x) = c0 + c1x+ c2x
2 + c3x

3. Moreover, the four function
values p(1) = 2, p(i) = 1 − i, p(−1) = 0, and p(−i) = 1 + i imply the following system of
equations.

c0 + c1 + c2 + c3 = 2

c0 + ic1 − c2 − ic3 = 1− i
c0 − c1 + c2 − c3 = 0

c0 − ic1 − c2 + ic3 = 1 + i

Solving this system gives the polynomial 1 + x3.

15. p0(x) = 1, p1(x) = xp0(x)− 3 = x− 3, p2(x) = xp1(x) + 5 = x2 − 3x+ 5, p3(x) = xp2(x)− 6 =
x3 − 3x2 + 5x − 6. p0(−2) = 1, p1(−2) = −2(1) − 3 = −5, p2(−2) = −2(−5) + 5 = 15,
p3(−2) = −2(15)− 6 = −36.

16. p0(x) = 2, p1(x) = xp0(x)− 1 = 2x− 1, p2(x) = xp1(x) + 2 = 2x2−x+ 2, p3(x) = xp2(x) + 3 =
2x3−x2 +2x+3, p4(x) = xp3(x)−5 = 2x4−x3 +2x2 +3x−5. p0(5) = 2, p1(5) = 5(2)−1 = 9,
p2(5) = 5(9) + 2 = 47, p3(5) = 5(47) + 3 = 238, p4(5) = 5(238)− 5 = 1185.

17. p0(x) = 1 + 2x, DFT2(1 + 2x) = (3,−1). Thus,

Y0 = (3,−1, 3,−1).

Also, p1(x) = −1 + 4x, and DFT2(−1 + 4x) = (3,−5). Thus,

Y1 = (3,−5, 3,−5).

Furthermore, Y1j ← ωj4Y1j gives
Y1 = (3,−5i,−3, 5i).

Finally, DFT4(1,−1, 2, 4) = Y0 + Y1 = (6,−1− 5i, 0,−1 + 5i).

20



18. p0(x) = −1 + 4x, DFT2(−1 + 4x) = (3,−5). Thus,

Y0 = (3,−5, 3,−5).

Also, p1(x) = 3 + 10x, and DFT2(−1 + 4x) = (13,−7). Thus,

Y1 = (13,−7, 13,−7).

Furthermore, Y1j ← ωj4Y1j gives

Y1 = (13,−7i,−13, 7i).

Finally, DFT4(−1, 3, 4, 10) = Y0 + Y1 = (16,−5− 7i,−10,−5 + 7i).

19. Input (0, 0,−4, 0) corresponds with polynomial p(x) = −4x2. Moreover,

p(ω
(−1)(0)
4 ) = p(1) = −4,

p(ω−14 ) = p(−i) = 4,

p(ω−24 ) = p(−1) = −4,

and
p(ω−34 ) = p(i) = 4.

Thus,

IDFT4(0, 0,−4, 0) =
1

4
(−4, 4,−4, 4) = (−1, 1,−1, 1),

and so DFT−14 (0, 0,−4, 0) = (−1, 1,−1, 1), which corresponds with polynomial −1+x−x2+x3.

20. Input (2, 1− i, 0, 1 + i) corresponds with polynomial p(x) = 2 + (1− i)x+ (1 + i)x3. Moreover,

p(ω
(−1)(0)
4 ) = p(1) = 4,

p(ω−14 ) = p(−i) = 0,

p(ω−24 ) = p(−1) = 0,

and
p(ω−34 ) = p(i) = 4.

Thus,

IDFT4(0, 0,−4, 0) =
1

4
(4, 0, 0, 4) = (1, 0, 0, 1),

and so DFT−14 (2, 1− i, 0, 1 + i) = (1, 0, 0, 1),, which corresponds with polynomial 1 + x3.

21. p0(x) = −4x, IDFT2(−4x) = 1
2
(−4, 4) = (−2, 2). Thus,

C0 = (−2, 2,−2, 2).

Also, p1(x) = 0, and IDFT2(0) = (0, 0). Thus,

C1 = (0, 0, 0, 0).

21



Furthermore, C1j ← ω−j4 C1j gives
C1 = (0, 0, 0, 0).

Finally, IDFT4(0, 0,−4, 0) = 1
2
(C0 + C1) = 1

2
(−2, 2,−2, 2) = (−1, 1,−1, 1). Therefore,

DFT−14 (0, 0,−4, 0) = (−1, 1,−1, 1),

which corresponds with polynomial −1 + x− x2 + x3.

22. p0(x) = 2, IDFT2(2) = 1
2
(2, 2) = (1, 1). Thus,

C0 = (1, 1, 1, 1).

Also, p1(x) = (1− i) + (1 + i)x, and IDFT2((1− i) + (1 + i)x) = 1
2
(2,−2i) = (1,−i). Thus,

C1 = (1,−i, 1,−i).

Furthermore, C1j ← ω−j4 C1j gives

C1 = (1,−1,−1, 1).

Finally, IDFT4(2, 1− i, 0, 1 + i) = 1
2
(C0 + C1) = (1, 0, 0, 1). Therefore,

DFT−14 (2, 1− i, 0, 1 + i) = (1, 0, 0, 1),

which corresponds with polynomial 1 + x3.

22


