
Approximation and Errors

Rules for Determining Significant Digits

The following rules can be used to determine the number of significant digits in a number x’s repre-
sentation. We assume x ≥ 0.

1. If x = d1 · · · dm.e1 · · · en, where d1 6= 0, then x has m+ n significant digits.

2. If x = 0.0 · · · 0d1d2 · · · dn, where d1 6= 0, then x has n significant digits.

3. If x = a× 10n, where a is a nonnegative real number, then the number of significant digits of
x equals the number of significant digits of a.

Example 1. Provide the number of significant digits for each representation.

1. 2340000

2. 0.02965

3. 1.011

4. 2.23× 103

5. 9.569× 102

6. 2, 314× 105

7. 200.000

8. 30.001
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Sources of Numerical Error

Round-off Error the error incurred when representing a number with fewer digits than are required
to completely capture its exact numerical value.

Truncation Error the error incurred when limiting the accuracy and/or running-time of a proce-
dure that requires an impractical amount of time (possibly infinite) in order to obtain the exact
true answer.

Suppose true value x is approximated as y. Then we have the following definitions with respect to x
and y.

True Error Et = x− y

Absolute True Error |Et| = |x− y|

Relative True Error εt = (x− y)/x = 1− y/x

Relative Absolute True Error |εt| = |(x− y)/x| = |1− y/x|

Example 2. Determine Et, and εt when approximating the derivative of f(x) = −x2 + 5x at x = 2,
using the approximation formula

f ′(x) ≈ f(x+ h)− f(x)

h
,

with h = 0.1.

Example 2 Solution. f ′(x) = −2x+ 5, and so f ′(2) = 1. On the other hand,

f(x+ h)− f(x)

h
=

(−(2.1)2 + 5(2.1))− (−(2)2 + 5(2))

0.1
= 0.9.

Therefore, Et = 1− 0.9 = 0.1, and εt = 0.1/1 = 0.1.

Note: sometimes we prefer to discuss the percentage relative error which is defined as 100× εt.
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Example 3. Determine Et, and εt when approximating the integral
∫ 3

0
2e0.1xdx using 10 rectangles

under the graph of f(x) = 2e0.1x.

Example 3 Solution. Each rectangle has a width of (3 − 0)/10 = 0.3. Moreover, the rectangle
heights are

f(0), f(0.3), f(0.6), . . . , f(2.7) = 2, 2.06091, 2.12367, . . . , 2.61993.

Summing these and multiplying by 0.3 yields 6.89274.

Moreover
∫ 3

0
2e0.1xdx = 20e0.1x |30 = 20(e0.3 − 1) = 6.99718. Therefore, Et = 0.10443, while εt =

0.014925 for an approximately 1.5% relative error.

Example 4. Provide a general formula for the true and relative true error when approximating the
derivative of f(x) = −x2 + 5x at x = 2 using an arbitrary value for h. Determine the largest value
of h that can achieve an absolute relative error of no more than 0.5%.
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Approximation Error

True error and relative true error do not seem very practical, since the true value is usually not
known. Instead, we may compute an approximate error by comparing one approximation with a
previous one.

Suppose a numerical value v is first approximated as x, and then is subsequently approximated by
y. Then the approximate error, denoted Ea, in approximating v as y is defined as Ea = x − y.
Similarly, the relative approximate error, denoted εa, is defined as εa = (x− y)/x = 1− y/x.

Example 5. Recall the function f(x) from Example 2. If a second approximation of f ′(2), uses
h = 0.05, then the approximate error is Ea = 0.9 − 0.95 = −0.05, while the relative approximate
error is εa = −0.05/0.9 = −0.0555556.

Taylor Series

Given function f(x), and a real value a for which the n th derivative f [n](a) is defined for all n ≥ 0
(note: f 0(a) ≡ f(a)), the Talylor series of f about a is defined as

∞∑
n=0

f [n](a)
(x− a)n

n!
.

Moreover, the radius of convergence of the Taylor series is defined as the largest r ≥ 0 such that,
for all x ∈ (a− r, a+ r), the series converges. Note that a Taylor series is called a Maclaurin series
in case a = 0.

Example 6. Determine the Taylor series for each of the following functions and values of a: i)
f(x) = ex, a = 0, ii) f(x) = sin x, a = 0, iii) f(x) = cos x, a = 0, and iv) f(x) = lnx, a = 1.
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The n th partial sum, n ≥ 0, of a Taylor series, denoted Sf,n(x) is defined as

Sf,n(x) = f(a) + f ′(a)(x− a) + · · ·+ f [n](a)(x− a)n/n!.

Remainder Theorem. Suppose the Taylor series of f(x) about a converges for some x. Then

|Et| = |Rf,n(x)| = |f(x)− Sf,n(x)| = |f
[n+1](ξ)

(n+ 1)!
(x− a)n+1|,

where ξ is a number between a and x. Here, Rf,n(x) is referred to as the nth remainder.

Example 7. Determine the true error when approximating f(x) = sin(0.5) using Sf,3(0.5). Also
determine an upper bound for the absolute true error as determined by |Rf,3(0.5)|. Finally, determine
the absolute relative approximate error in approximating sin(0.5) with Sf,5(0.5) instead of Sf,3(0.5).

Example 7 Solution. sin(0.5) = 0.479426, while

Sf,3(0.5) = 0.5− (0.5)3/6 = 0.479167.

Thus, Et = 2.58872× 10−4. Also,

|Rf,3(0.5)| ≤ f 4(ξ)(0.5)4/24 = sin(ξ)(0.5)4/24 ≤ 0.479426(0.5)4/24 = 0.00124850 = 1.24850× 10−3.

Finally,
Sf,5(0.5) = 0.5− (0.5)3/6 + (0.5)5/120 = 0.479427.

Therefore, |Ea| = (0.5)5/120 = 0.000260417 and |εa| = 0.0125000 for an error of 1.25%.

Error Propagation

Suppose x is an approximation of some value v, in which the absolute true error is bounded by δ ≥ 0.
This error can propagate once a function is applied to x. For example, if x is multiplied by 5, then
the absolute true error with respect to 5v and 5x is now 5δ.

Example 8. Suppose values x = 3.11034, y = 7.76436, and z = 1.45981 have respective absolute
true errors of δ1 = 0.01, δ2 = 0.05, and δ3 = 0.025. Then provide a bound on the absolute tree error
iherent in the expression (xy)/z.

Example 8 Solution. The upper bound on the true value is

(x+ δ1)(y + δ2)/(z − δ3) = 16.99421.

while the lower bound is
(x− δ1)(y − δ2)/(z + δ3) = 16.10788.

Finally, (xy/z) = 16.54311. Thus, the absolute true error in this expression is bounded by

max(|16.54311− 16.99421|, |16.54311− 16.10788|) = 0.4511
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At times it may seem difficult to compute an exact bound of the true error that is induced by
evaluating an expression, with approximation inputs When this happens we may obtain a first-
order approximation of the bound as follows.
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Exercises

Note: for this and all subsequent assignments round all answers to 6 significant digits. Note: for
numbers such as 6.01000, you may simply write 6.01.

1. Use the formula
f(x+ h)− f(x)

h

to approximate the derivative of f(x) = 3x2 at x = 1 using h = 0.1. Compute both the absolute
true error |Et|, and absolute relative true error |εt|.

2. Provide a general formula for determining both the absolute true error and absolute relative
true error when approximating the derivative of f(x) = x2 at x = a using a value h in the
expression

(a+ h)2 − a2

h
.

3. Using εt from the previous exercise, what is the greatest value of h that can be used to approx-
imate the derivative of f(x) = x2 at x = 4 with an error of no more than 1%?

4. Determine the absolute true error |Et|, and absolute relative true error |εt| that occurs when

approximating the integral
∫ 3

0
2xdx using three rectangles, each with width ∆x = 1, and for

which the heights are f(0), f(1), and f(2), where f(x) = 2x.

5. Repeat the previous exercise, but now assume an approximation that uses n rectangles, each
having width ∆x = 3/n and where the height of the i th rectangle is f(i∆x), i = 0, . . . , n− 1.

6. Using εt from the previous exercise, what is the least value of n that can be used to approximate∫ 3

0
2xdx with an error of no more than 1%?

7. Provide a formula for the n th term of the Taylor series for f(x) = ln x about the point a = 1.

8. Provide a formula for the n th term of the Taylor series for f(x) =
√
x about the point a = 1.

9. Determine the relative approximate error when approximating e−1 using a fifth-degree Taylor
polynomial with respect to ex, compared with using a sixth-degree Taylor polynomial.

10. Make a table with the following columns: i) The value of n = 0, 1 . . . ,, ii) the approximation
of cos(1 rad) using Pn(1), the n th degree Taylor polynomial with respect to cos(x), iii) the
approximate error in approximating Pn(1) with Pn−1(1), and iv) the relative approximate error.
Continue the table until the relative approximate error drops below 1%. Hint: you may skip
over the odd values of n since only even-degree terms are nonzero.

11. Compute an upper bound for the Taylor series remaininder R7(x+h) = (h8 cos[8](c))/8!, where
x = 0, h = 1, and c is some number in the closed interval [0, 1].

12. How many significant digits does each of the following numbers have?

a. 185000
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b. 0.0185

c. 1.0185

d. 1.85× 103

e. 1.850× 102

f. 1.8500× 10−2

g. 100.00

h. 100.001

13. Let v > 0 be a true value, and a > 0 be an approximation of v. Prove that |εt| is invariant with
respect to scalar multiplication. In other words, for scalar c > 0, the absolute relative true error
for ca approximating cv is equal to |εt|, the absolute relative true error for a approximating v.

14. Prove that if |εt| ≤ 0.5 × 10−m, then the true value v and the approximate value a are equal
at the first m significant digits. Hint 1: you may assume v > 0 and a > 0. Hint 2: use the
previous exercise.

15. Prove or disprove the converse of the statement in the previous exercise. In other words,
if the true value and approximation agree in the first m digits, is it necessarily true that
|εt| ≤ 0.5× 10−m?

16. Suppose your approximation yields an absolute relative true error of 0.003%. How many sig-
nificant digits of your approximation are guranteed to be accurate.

17. Suppose x ≥ 0 and y ≥ 0 are approximate values with respective true errors δ1 and δ2.
Determine the true error inherent in the product xy. Compare your answer with the answer

∂f

∂x
δ1 +

∂f

∂y
δ2,

where f(x, y) = xy.

18. Consider a sequence of numbers xn, n ≥ 0, that satisfies the equation axn + bxn−1 = 0, where
a, b 6= 0, for all n ≥ 1. Show that this equation is satisfied by xn = (−b/a)n.

19. Suppose xn is an inceasing sequence of numbers with the property that (xn − xn−1)/xn = c,
where 0 < c < 1 is a constant. In other words, the relative approximation error is constant.
Show that xn does not converge. Hint: use the previous exercise.

20. The formula for strain S on a longitudinal bar is given by S = F/(AE), where F is the
applied force, A is the cross-sectiional area, and E is Young’s modulus. If F = 50 ± 0.50 N,
A = 0.2 ± 0.002 m2, and E = 210 × 109 ± 1 × 109 Pa, determine a first-order approximation
of the maximum error in measuring S.Compare your approximation with the actual maximum
true error.
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Exercise Hints and Answers

1. |Et| = 0.3, |εt| = 0.3/6 = 0.05

2. |Et| = h, |εt| = h/2a.

3. Given that a = 4, We need h/(2)(4) ≤ 0.01 which implies h ≤ 0.08. Therefore, h = 0.08 is the
least h-value that can obtain a relative error of at most 1%.

4. We have ∫ 3

0

2xdx = x2
∣∣3
0 = 9− 0 = 9,

where as the apprixmation is
0 + 2 + 4 = 6,

yielding an absolute true error of |Et| = 3 and absolute relative error of |εt| = 3/9 = 0.333333.

5. The approximation is

n−1∑
i=0

3

n
(2i

3

n
) =

18

n2

n−1∑
i=0

i =
18

n2

n(n− 1)

2
= 9(n− 1)/n = 9(1− 1/n).

The absolute true error is thus equal to |Et| = 9− (9− 9/n) = 9/n, while the absolute relative
error equals |εt| = 1/n.

6. Since |εt| = 1/n, n = 100 gives a relative error of 0.01, or 1%.

7. For n ≥ 1, we have

f [n](x) =
(−1)n+1(n− 1)!

xn
.

Therefore, the n th term is

f [n](x) =

{
0 if n = 0
(−1)n+1(x−1)n

n
n ≥ 1

8. For n ≥ 2, we have

f [n](x) =
(−1)n+1(1 · 3 · · · · · (2n− 1))

2nx
1
2
−n

.

Therefore, the n th term is

f [n](x) =


1 if n = 0
1
2
(x− 1) if n = 1

(−1)n+1(1·····(2n−3))(x−1)n
n!2n

n ≥ 2

9. We have
1 + x/1 + x2/2 + x3/6 + x4/24 + x5/120 = 0.3666667,

while
1 + x/1 + x2/2 + x3/6 + x4/24 + x5/120 + x6/720 = 0.3680556,

which yields εa = (0.3680556 − 0.3666667)/0.3680556 = 0.003773615 which yields an error of
less than 1%.
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10. The table is shown below.

n Pn(1) Ea εa
0 1 na na
2 0.5 −0.5 −1.00
4 0.5416667 0.0416667 0.07692313
6 0.5402778 −0.0013889 −0.002570715

11. Function cos[8](x) = cos(x) has an upper bound of 1. Thus R7(1) has an upper bound of
1/8! = 0.0000248015.

12. We have

a. 185000 has 6

b. 0.0185 has 3

c. 1.0185 has 5

d. 1.85× 103 has 3

e. 1.850× 102 has 4

f. 1.8500× 10−2 has 5

g. 100.00 has 5

h. 100.001 has 6

13. Letting ε′t denote the absolute relative true error for ca approximating cv, we have

ε′t = |cv − ca|/|cv| = c|v − a|/cv = |v − a|/v = εt.

14. By the previous exercise, we may scale both v and a so that v has the form 0.d1d2 · · · , where
d1 ∈ {1, . . . , 9}. Now suppose that a differs from v at digit dj, where 1 ≤ j ≤ m. Then

|εt| ≥ 10−j > 0.5× 10−m,

a contradiction. Therefore v and a agree in the first m digits.

15. Consider v = 0.19 and a = 0.10, These numbers agree in the first m = 1 significant digits.
However,

εt = 0.09/0.19 = 0.47 > 0.5× 10−1 = 0.05.

Therefore, the statement is not always true.

16. Dividing 0.003 by 100 yields 0.00003 = 0.3 × 10−4. Therefore, the first four significant digits
are guaranteed accurate.

17. The true value is
(x+ δ1)(y + δ2) = (xy + xδ2 + yδ1 + δ1δ2,

which gives a true error of
xδ2 + yδ1 + δ1δ2,

Moreover, ∂f
∂x

= y and ∂f
∂y

= x, which yields a first-order approximation of

yδ1 + xδ2,

and so the first-order true-error approximation differs from the actual true error by δ1δ2.
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18. We have

a(−b/a)n + b(−b/a)n−1 = (−b/a)n−1(a(−b/a) + b) = (−b/a)n−1(−b+ b) = (−b/a)n−1(0) = 0.

19. We have (xn − xn−1)/xn = c, which implies that

xn − xn−1 = cxn,

which yields the equation
(1− c)xn − xn−1 = 0.

But from the previous exercise we kow that (1/(1−c))n is a solution to this equation Moreover,
1/(1− c) > 1 which implies

lim
n→∞

(1/(1− c))n =∞.,

and so xn diverges.

20. We have
∂S

∂F
= 1/(AE),

∂S

∂A
= −F/(A2E), and

∂S

∂E
= −F/(AE2).

Moreover, evaluating these derivatives at (50, 0.2, 210×109) yields 2.380952×10−11, −5.952381×
10−9, and −5.668934 × 10−21, respectively. Therefore, the first order approximation of the
maximum error is

(2.380952×10−11)(0.50)+(5.95238×10−9)(0.002)+(5.668934×10−21)(1×109) = 1.366213×10−10.

Finally, the actual maximum true error is

50.5/((0.198)209× 109)− 50/((.2)(210× 109)) = 2.986115× 10−11.
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