Context Free Languages

Last Updated: February 15th, 2023

1 Introduction

Context free languages are foundational for defining several types of computing languages that occur
in practice; including programming languages, markup languages, and languages for communication
protocols. CFL’s were first studied in relation to natural-language processing in the 1950’s.

Their importance stems from the following.

1. CFL’s are significantly more expressive than regular languages in that they are capable of
defining recursive languages that may have unlimited recursive depth.

2. a CFL can be recognized by a pushdown automaton (PDA). Unlike DFA’s a PDA has unlimited
memory, albeit in the form of a stack whose access is limited to i) reading the top of the stack,
ii) pushing on to the stack, and iii) popping the top of the stack. PDA’s are also interesting
because their nondeterministic counterparts (NPDA’s) are more powerful than PDA’s, and the
set of languages accepted by an NPDA is equal to the set of CFL languages.

Although every regular language is also a CFL (see the exercises), the converse is not true. For
example, it can be proved that the language

L={a"b"|n >0}

is a CFL but is not regular. Intuitively, L is not regular because a DFA M would have to keep
track of the number a’s read and them make sure that the same number of b’s are subsequently
read. However, the number of a’s read can grow without bound and exceed M’s finite and bounded
memory capacity. Example 7 below shows that L is a CFL.

2 Context-Free Grammars

A Context-Free Grammar (CFG) is a 4-tuple (V, X, R, S), where

1. V is a finite set of variables
2. Y is a finite set that is disjoint from V', called the terminal set
3. R is a finite set of rules where each rule has the form

A — s,

where A € V and s € (V U X)*. Variable A is referred to as the head of the rule, while s is
referred to its body.

4. S €V is the start variable

Example 1. Consider the set of rules
R={S— 55,8 — aSh,S — ¢}.
Then we may use this set of rules to define a CFG G = (V, %, R, S), where
vV ={s},
Y ={a, b},

and variable S is the start variable.

For brevity we may list together rules having the same head as follows.
S — 5SS |aSh|e.

Here, each of the rule bodies is separated by a vertical bar.

Example 2. One common use of CFG’s is to provide grammatical formalism for natural languages.
For example, consider the set of rules R:

(SENTENCE) — (NOUN-PHRASE)(VERB-PHRASE)

(NOUN-PHRASE) — (COMPLEX-NOUN) | (COMPLEX-NOUN)(PREP-PHRASE)
(VERB-PHRASE) — (COMPLEX-VERB) | (COMPLEX-VERB)(PREP-PHRASE)
(PREP-PHRASE) — (PREP)(COMPLEX-NOUN)
(COMPLEX-NOUN) — (ARTICLE)(NOUN)
(COMPLEX-VERB) — (VERB)|(VERB)(NOUN-PHRASE)

(ARTICLE) — a | the
(NOUN) — trainer | dog | whistle
(VERB) — calls | pets | sees
(PREP) — with | in

Here, the variables are the ten parts of speech delimited by (), 3 is the lowercase English alphabet,
including the space character, and (SENTENCE) is the start variable.

Example 3. A CFG may also be used to define the syntax of a programming language. One fun-
damental language component to any programming language is that of an expression. The following
rules imply a CFG for defining expressions formed by a single terminal a, parentheses, and the two
arithmetic operations 4+ and x. Here E stands for expression, T for term, and F for factor.

E—-E+T|T
T>TxF|F
F—(E)]|a

We have V ={E,T,F}, ¥ = {+, X,qa,(,)}, and FE is the start variable.

2.1 Grammar derivations

Let G = (V, X, R, S) be a CFG, then the language D(G) € (VUX)* of derived words is structurally
defined as follows.

Atom S € D(G).

Compound Rule Suppose s € D(G), s is of the form uAv for some u,v € (VUX)*, A€V, and
A — v is a rule of G, then
uyv € D(G).

In this case we write s = u~yv, and say that s yields uyv. In words, to get a new derived word,
take an existing derived word and replace one of its variables A with the body of a rule whose
head is A.

The subset L(G) of derived words w € D(G) for which w € ¥* is called the context-free language
(CFL) associated with G. Thus, the words of L(G) consist only of terminal symbols.

2.2 The Derivation relation

Let u and v be words in (V UX)*. We say that u derives v, written v = v if and only if either u = v
or there is a sequence of words wy, wo, ..., w, such that

U=wW = Wy = W3 = +-* = W, = 0.
Such a sequence is called a derivation sequence from u to v.

L(G) = {w € ¥*|S = w}.

Example 4. Use the CFG from Example 1 to derives the word aabbaababb.

S — 5SS |aSh|e.

Solution.

2.3 Derivation parse trees

Determining if an arbitrary word belongs to L(G) is of fundamental importance. But in addition, it
is sometimes important to know the structure of the grammar’s derivation of the word. For example,
if a CFG generates arithmetic expressions, then knowing the structure of the derivation allows one
to readily evaluate the expression (assuming the expression terminals have assigned values and the
expression operations are properly defined). A parse tree for a word w € L(G) is a tree whose
structure and node labels reflect the derivation w, where, from left to right, the leaves of the tree are
labeled with the letters of w. Indeed, consider the derivation sequence

S=w =>wy= - = w, =w.

Then the parse tree for w can be defined in a step-by-step manner. To begin the parse tree 17 for
S = w; consists of a single node labeled with S.

Now suppose a parse tree T}, has been associated with wy, the k th word of the derivation. Moreover,
assume that, from left to right, the leaves of T} are labeled in one-to-one correspondence with the
symbols of wy. Moreover, assume that wy, has the form wy = uwAv, where A is substituted for a word
v, so that w1 = wyv. Then T}, is obtained from T} by assigning the leaf node labeled with A a
number of children equal to the length of v and for which, from left to right, the 7 th child is labeled
with the ith symbol of ~.

Example 5. Use the CFG from Example 3 to derive the expression a x (a + a), and provide the
parse tree associated with the derivation.

E—-E+T|T
T—TxF|F
F— (E)|a

Solution.

10

2.4 Ambiguity

Given a CFG G, and a word w € L(G), there may be several different derivations of w from start
symbol S. Many of these derivations however will yield identical parse trees. But in the event
that two different derivation sequences of w from S yield two different parse trees, then we call G
ambiguous. It turns out that an easy way to check for ambiguity is to check that no word w has
more than one leftmost derivation.

Given grammar G = (V, X, R, S) and word w € L(G), a derivation sequence S = wy = wy = -+ - =
W,_1 = w, = w is called a leftmost derivation of w provided that, for every 0 < i < n — 1, the
yielding of w; from w;_; was obtained by replacing the leftmost variable A of w;_; with the body
of one of a rule whose head is A. Therefore, if w has more than one leftmost derivation, it must
be the case that a different sequence of rules were used to derive w. When this happens we call G
ambiguous, since some words in the grammar have more than one parsing structure.

11

Example 6. Show that the grammar defined by the following rules is ambiguous.

(SENTENCE) — (NOUN-PHRASE)(VERB-PHRASE)
(NOUN-PHRASE) — (COMPLEX-NOUN) | (COMPLEX-NOUN)(PREP-PHRASE)
(VERB-PHRASE) — (COMPLEX-VERB) | (COMPLEX-VERB)(PREP-PHRASE)

(PREP-PHRASE) — (PREP){COMPLEX-NOUN)
(COMPLEX-NOUN) — (ARTICLE)(NOUN)
(COMPLEX-VERB) — (VERB)|(VERB)(NOUN-PHRASE)
(ARTICLE) — a | the
(NOUN) — trainer | dog | whistle
(VERB) — calls | pets | sees
(PREP) — with | in

Solution.

12

Solution Continued.

13

Example 7. Provide a CFG G for which
L(G) = {a"b"|n > 0}.
3b3

Provide a derivation of a°b® and draw its parse tree.

14

Example 8. Provide a CFG G for which

L(G) = {z'y’z"]i,j,k > 0 and j = 2i or k = 2j}.

15

Example 9. Use the CFG from the previous example to provide a derivation of z2y*2% and draw its
parse tree.

16

Exercises

1. For the CFG defined in Example 1, provide a derivation for the following words.

a. ababab
b. aaababbbab
c. aababaabbbaabb

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a
b. a+a
c. ax(axa)

d. ((a))

3. For the CFG in Example 6, provide a leftmost derivation and parse tree for the sentence “the
trainer calls the dog with the whistle”, where we assume that it is the dog that possesses the
whistle.

4. Provide context-free grammars for each of the following languages.

. The set of binary words that contain at least three 1’s.

a
b. The set of binary words that begin and end with the same symbol.

o

The set of binary words having odd length.
The set of binary words having odd length and for which the middle bit is 0.

e

e. The set of binary words that are palindromes (i.e. read the same forward as backwards).
For example, 110011 is a palindrome, but 110 is not.

=

The empty set.

The set of words over {a,b}* for which there are more a’s than b’s.

F o

The complement of the language {a"b"|n > 0}.

The set of words of the form w#x, where w and x are both binary words and w" is a
substring of x, where w” denotes the reverse of w. For example, (00111)" = 11100.

[

5. Prove that the union of two CFL’s is also a CFL. Hint: how to take the “union” of two CFG’s?

6. Given a DFA M = (Q, 3,0, qo, F') we may define a CFG G = (Q, X, R, qo) for which L(G) =
L(M), where, for every two states ¢qi1,¢qo € Q and s € ¥ where d(q1,5) = g2, we have the
state-transition rule

q1 — Sq.
Also, for every g € F', we have the e-rule ¢ — . The idea behind G is that a derivation mimics
a computation of M on some input word w. The e-rules allow for only terminal words to be

derived that are accepted by M. We may thus conclude that all regular languages are context
free.

17

Provide the CFQG in the case that M is the DFA shown below.

Provide a derivation of the word w = 010100 € L(M).

Exercise Solutions

1. We have the following derivations.
a. ababab

S = SS = aSbS = abS = abSS = abaSbS = ababS = ababaSb = ababab.

b. aaababbbab
S = SS = aSbS = aaSbbS = aaSSbbS = aaaSbSbbS = aaabSbbS = aaabaSbbbS.

= aaababbbS = aaababbbaSb = aaababbbab.
c. aababaabbbaabb

S = SS = aSbS = aSSbS = aaSbSbS = aabSbS = aabSSbS
= aabaSbSbS = aababSbS = aababaSbbS = aababaaSbbbS = aababaabbbS
= aababaabbbaSb = aababaabbbaaSbb = aababaabbbaabb.

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a
F=T=F =a.

18

F=F+T=>=T+T=F+T=a+T=a+F=a+a.

E=T=F=(E)= ()= (F)= (E) = (1) = (F) = ().

19

@

@

®)

"

@
(&)

@ 20

3. The following is a leftmost derivation.
(SENTENCE) = (NOUN-PHRASE)(VERB-PHRASE) =

(COMPLEX-NOUN)(VERB-PHRASE) =
(ARTICLE)(NOUN)(VERB-PHRASE) =
the (NOUN)(VERB-PHRASE) =
the trainer (VERB-PHRASE) =
the trainer (COMPLEX-VERB) =
the trainer (VERB)(NOUN-PHRASE) =
the trainer calls (NOUN-PHRASE) =
the trainer calls (COMPLEX-NOUN)(PREP-PHRASE) =
the trainer calls (ARTICLE)(NOUN)(PREP-PHRASE) =
the trainer calls the (NOUN)(PREP-PHRASE) =
the trainer calls the dog (PREP-PHRASE) =
the trainer calls the dog (PREP)(COMPLEX-NOUN) =
the trainer calls the dog with (COMPLEX-NOUN) =
the trainer calls the dog with (ARTICLE)(NOUN) =
the trainer calls the dog with the (NOUN) =
the trainer calls the dog with the whistle.

4. The following are the rule sets (answers may vary!) that show each language is a CFL.

a. S — Z1Z17Z1B
Z =07 ¢
B—0B|1B |«

b. S — 0B0|1B1 | ¢
B—0B|1B | ¢

c. S—>0B|1B

B —00B | 01B | 10B | 11B |
d. S —0S80|0S1]1S0|1S1]0
e. S—0S0[1S1|0|1]e

f. Any CFG (V, X, R, S) for which R = ()

21

g. We say that a word w in {a,b}* is minimally balanced iff it has an equal number of
a’s and b’s and there is no prefix of w that also has an equal number of a’s and b’s. For
example aaababbabb is minimally balanced, but aabbaaabbb is not since prefix aabb also
has an equal number of a’s and b’s. Now consider a word w where there are more a’s than
b’s. If w begins with an ‘a’, then no prefix of w (including w) can be minimally balanced.
On the other hand, if it begins with a ‘b’, then it can be written as w = mims - - - myau
where each m; is a minimally-balanced word, £ > 1, and u is a word with at least as many
a’s as b’s. Therefore, we may derive w with the following CFG rules.

S —aA | MaU

A—aAle

M — aMb | bMa | MM | ¢

U — UU | AaAUADA | AbAUAaA | e

The rule S — aA can generate words having only a’s, while the rule S — MaU, allows
one to generate one or more balanced words using M, followed by an unbalanced word
that begins with ‘a’. The rules headed by U are almost the same as the rules headed by
M (which in turn is similar to the rules in Example 1), with the exception that they use
multiple occurrences of variable A so that additional a’s can be inserted where needed.

h. The desired CFL is the union of the following CFL’s: i) one or more a’s and no b’s, ii)
one or more a’s followed by one or more b’s, followed by an a, followed by any word from
{a,b}*, iii) {a™D"]0 < m < mnor 0 <n < m}, iv) one or more b’s, followed by any word
from {a,b}*. Take the union of their corresponding CFG’s.

i. S—=TB
T — 070 | 1T1 | #
B—0B|1B |«

5. Suppose L; and Ly are CFL’s, where Ly = L(G1) and Ly = L(Gs), where Ly = (Vi, %4, Ry, S1)
and Ly = (V1,%1, Ry, S1). Without loss of generality, we may assume that V; NV, = (), which
in turn implies that R; N Ry = (). Then define the grammar

G:(‘/1U%U{S},Zluzg,RlLJRzU{S—)Sl | SQ},S),

where S & V4 UV, The idea is that the rule S — S; will allow for all words in Ly to be
derived, and the same is true for rule S — S5 and L,. Moreover, since V; and V5 are disjoint,
it is impossible to derive any other word that does not belong in either L, or Ls. Therefore,
L(G) = L1 U Ly is a CFL. n

22

