The Growth of Functions and Big-O Notation

Big-O Notation

Big-O notation allows us to describe the aymptotic growth of a function without concern for i) constant multiplicative factors, and ii) lower-order additive terms. For example, using big-O notation, the function $f(n)=3 n^{2}+6 n+7$ is assumed to have the same kind of (quadratic) growth as $g(n)=n^{2}$.

Why do we choose to ignore constant factors and lower-order additive terms? One kind of function that we often consider throughout computing is $T(n)$, which represents the worst-case number of steps required by a an algorithm to process an input of size n. Function $T(n)$ will vary depending on the computing paradigm that is used to represent the algorithm. For example, one paradigm might represent the algorithm as a C program, while another might represent it as a sequence of random-access machine instructions. Now if T_{1} measures the number of algorithmic steps for the first paradigm, and $T_{2}(n)$ measures the number of steps for the second, then, assuming that a paradigm does not include any unnecessary overhead, these two functions will likely be within multiplicative constant factors of one another. In other words, there will exist two constants C_{1} and C_{2} for which

$$
C_{1} T_{2}(n) \leq T_{1}(n) \leq C_{2} T_{2}(n)
$$

For this reason, big-O notation allows one to describe the steps of an algorithm in a mostly paradigmindepenent manner, yet still be able to give meaningful representations of $T(n)$ by ignoring the paradigm-dependent constant factors.

Let $f(n)$ and $g(n)$ be functions from the set of nonnegative integers to the set of nonnegative real numbers. Then

Big-O $f(n)=\mathrm{O}(g(n))$ iff there exist constants $C>0$ and $k \geq 1$ such that $f(n) \leq C g(n)$ for every $n \geq k$.
$\operatorname{Big}-\Omega f(n)=\Omega(g(n))$ iff there exist constants $C>0$ and $k \geq 1$ such that $f(n) \geq C g(n)$ for every $n \geq k$.

Big- $\Theta f(n)=\Theta(g(n))$ iff $f(n)=\mathrm{O}(g(n))$ and $f(n)=\Omega(g(n))$.
little-o $f(n)=\mathrm{o}(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
little- $\omega f(n)=\omega(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Note that a more succinct way of saying "property $P(n)$ is true for all $n \geq k$, for some constant k " is to say "property $P(n)$ holds for sufficiently large n ". Although this phrase will be used often throughout the course, nevertheless, when establishing a big-O relationship between two functions, the student should make the effort to provide the value of k for which the inequality is true.

Given functions $f(n)$ and $g(n)$, to determine the big-O relationship between f and g, we mean establishing which, if any, of the above growth relationships apply to f and g. Note that, if more than one of the above relations is true, then we choose the one that gives the most information. For example, if $f(n)=\mathrm{o}(g(n))$ and $f(n)=\mathrm{O}(g(n))$, then we would simply write $f(n)=\mathrm{o}(g(n))$, since it implies the latter relation.

Example 1. Determine the big-O relationship between i) $f(n)=6 n^{2}+2 n+5$ and $g(n)=50 n^{2}$, and ii) the same $f(n)$ and $g(n)=n^{3}$.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
 Basic Results

In this section we provide some basic results that allow one to determine the big-O growth of a function, or the big-O relationship between two functions, without having to revert to the definitions.

Theorem 1. Let $p(n)$ be a polynomial of degree a and $q(n)$ be a polynomial of degree b. Then

- $p(n)=\mathrm{O}(q(n))$ if and only if $a \leq b$
- $p(n)=\Omega(q(n))$ if and only if $a \geq b$
- $p(n)=\Theta(q(n))$ if and only if $a=b$
- $p(n)=\mathrm{o}(q(n))$ if and only if $a<b$
- $p(n)=\omega(q(n))$ if and only if $a>b$

Thus, Theorem 1 could have been invoked to prove that $f(n)=o(g(n))$, where f and g are the functions from Example 1.

Theorem 2. Let $f(n), g(n), h(n)$, and $k(n)$ be nonnegative integer functions for sufficiently large n. Then

- $f(n)+g(n)=\Theta(\max (f, g)(n))$
- if $f(n)=\Theta(h(n))$ and $g(n)=\Theta(k(n))$, then $f(n) g(n)=\Theta((h k)(n))$
- Transitivity. Let $R \in\{\mathrm{O}, \mathrm{o}, \Theta, \Omega, \omega\}$ be one of the five big-O relationships. Then if $f(n)=$ $R(g(n))$, and $g(n)=R(h(n))$ then $f(n)=R(h(n))$. In other words, all five of the big-O relationships are transitive.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
Example 2. Use the results of Theorems 1 and 2 to give a succinct expression for the big-O growth of $f(n) g(n)$, where $f(n)=n \log \left(n^{4}+1\right)+n(\log n)^{2}$ and $g(n)=n^{2}+2 n+3$. Note: by "succinct" we mean that no constants or lower-order additive terms should appear in the answer.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
Theorem 3. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C$, for some constant $C>0$, then $f(n)=\Theta(g(n))$.
Proof of Theorem 3. Mathematically,

for all $n \geq k$. In words, $\frac{f(n)}{g(n)}$ can be made arbitrarily close to C with increasing values of n. Removing the absolute-value yields
which implies

$$
\int^{V}
$$

Since $C>0$ and $\epsilon>0$ are constants, the latter inequalities imply $f(n)=\Theta(g(n))$ so long as $C-\epsilon>0$. Therefore, choosing $\epsilon=C / 2$, the result is proven.

Example 3. Suppose $a>1$ and $b<0$ are constants, with $|b|<a$. Prove that $a^{n}+b^{n}=\Theta\left(a^{n}\right)$.

L'Hospital's Rule. Suppose $f(n)$ and $g(n)$ are both differentiable functions with either

1. $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$, or
2. $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=0$.

Then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

The following terminology is often used to describe the big-O growth of a function.

Growth	Terminology
$\Theta(1)$	constant growth
$\Theta(\log n)$	logarithmic growth
$\Theta\left(\log ^{k} n\right)$, for some integer $k \geq 1$	polylogarithmic growth
$\Theta\left(n^{k}\right)$ for some positve $k<1$	sublinear growth
$\Theta(n)$	linear growth
$\Theta(n \log n)$	log-linear growth
$\Theta(n \log k n)$, for some integer $k \geq 1$	polylog-linear growth
$\mathrm{O}\left(n^{k}\right)$ for some integer $k \geq 1$	polynomial growth
$\Omega\left(n^{k}\right)$, for every integer $k \geq 1$	superpolynomial growth
$\Omega\left(a^{n}\right)$ for some real $a>1$	exponential growth

Example 5. Use the above terminology to describe the growth of the functions from Examples 1 and 2.

Series and Summations

When analyzing a data/structure or algorithm, quite often we will encounter a a series, which is an expression of the form

$$
\sum_{i=1}^{n} f(i)=f(1)+f(2)+\cdots+f(n)
$$

for some function $f(i)$. For example, if $f(i)=2 i$ and $n=6$, then

$$
\sum_{i=1}^{n} f(i)=\sum_{i=1}^{6} 2 i=2+4+6+8+10+12=42
$$

Note that f is called the summand, i the index variable, and n the summation limit.
In-most applications the value of n is not given. Rather, we must determine the growth of the sum function

that provides the sum of the series for a given positive integer n. For some series, the value of $S(n)$ can be given with a formula, such as the ones below.

Constant Sum $\sum_{i=1}^{n} 1=n$
Arithmetic Sum $\sum_{i=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2}$.
Sum of Squares $\sum_{i=1}^{n} i^{2}=1+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Sum of Cubes $\sum_{i=1}^{n} i^{3}=1+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

Geometic Series $\sum_{i=0}^{n} a r^{i}=a+a r+a r^{2}+\cdots+a r^{n}=\frac{a\left(r^{n+1}-1\right)}{r-1}$.

Linear Combination

$$
\sum_{i=1}^{n}(a f(i)+b g(i))=a \sum_{i=1}^{n} f(i)+b \sum_{i=1}^{n} g(i)
$$

where a and b are constants, and f and g are functions that depend on i.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
Example 6. Use the above formulas to evaluate the summation expression

$$
\sum_{i=1}^{n}\left(7 i^{2}+i+8\right)
$$

The final answer should be an expression that depends only on n.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
Example 7. Evaluate the summation expression

Unfortunately, the sum function $S(n)$ for many important series cannot be expressed using a formula. However, the next result shows how we may still determine the big-O growth of $S(n)$, which quite often is our main interest.

Integral Theorem. Let $f(x)>0$ be an increasing or decreasing Riemann-integrable function over the interval $[1, \infty)$. Then

$$
\sum_{i=1}^{n} f(i)=\Theta\left(\int_{1}^{n} f(x) d x\right)
$$

if f is decreasing. Moreover, the same is true if f is increasing, provided $f(n)=\mathrm{O}\left(\int_{1}^{n} f(x) d x\right)$.

Proof of Integral Theorem. We prove the case when f is decreasing. The case when f is increasing is left as an exercise. The quantity $\int_{1}^{n} f(x) d x$ represents the area under the curve of $f(x)$ from 1 to n. Moreover, for $i=1, \ldots, n-1$, the rectangle R_{i} whose base is positioned from $x=i$ to $x=i+1$, and whose height is $f(i+1)$ lies under the graph. Therefore,

$$
\sum_{i=1}^{n-1} \operatorname{Area}\left(R_{i}\right)=\sum_{i=2}^{n} f(i) \leq \int_{1}^{n} f(x) d x
$$

Adding $f(1)$ to both sides of the last inequality gives

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n} f(x) d x+f(1)
$$

Now, choosing $C>0$ so that $f(1)=C \int_{1}^{n} f(x) d x$ gives

$$
\sum_{i=1}^{n} f(i) \leq(1+C) \int_{1}^{n} f(x) d x
$$

which proves $\sum_{i=1}^{n} f(i)=\mathrm{O}\left(\int_{1}^{n} f(x) d x\right)$.
Now, for $i=1, \ldots, n-1$, consider the rectangle R_{i}^{\prime} whose base is positioned from $x=i$ to $x=i+1$, and whose height is $f(i)$. This rectangle covers all the area under the graph of f from $x=i$ to $x=i+1$. Therefore,

$$
\sum_{i=1}^{n-1} \operatorname{Area}\left(R_{i}^{\prime}\right)=\sum_{i=1}^{n-1} f(i) \geq \int_{1}^{n} f(x) d x
$$

Now adding $f(n)$ to the left side of the last inequality gives

$$
\sum_{i=1}^{n} f(i) \geq \int_{1}^{n} f(x) d x
$$

which proves $\sum_{i=1}^{n} f(i)=\Omega\left(\int_{1}^{n} f(x) d x\right)$.

Therefore,

$$
\sum_{i=1}^{n} f(i)=\Theta\left(\int_{1}^{n} f(x) d x\right)
$$

$$
\begin{aligned}
& S(n)=\sum_{i=1}^{n} \frac{1}{1}=\theta\left(\int_{1}^{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}} \frac{f(1)=\frac{1}{x}}{d} d x\right)+O((n n) \\
& S_{1}^{n} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{n}=\ln n-\ln n=
\end{aligned}
$$

$\ln n$

$$
\max (f, g) \leq(f+g)(n) \leq 2 \max (f f f)
$$

Ω

$$
(f+g)(n) \geq(1) \ln a x(f, g)(n)
$$

$$
20+30 \leq 2 \cdot 30
$$

$$
(f+g)(n) \leq C \operatorname{mox}(f, g)(n)
$$

$$
(f+g)(n)=O_{n}(\max (f, g)(n))
$$

Exercises

1. Use the definition of big- Ω to prove that $n \log n=\Omega\left(n+n \log n^{2}\right)$. Provide appropriate C and k constants.
2. Provide the big-O relationship between $f(n)=n \log n$ and $g(n)=n+n \log n^{2}$.
3. Prove that $f(n)=\mathrm{O}(g(n))$ if and only if $g(n)=\Omega(f(n))$.
4. Use the definition of big- Θ to prove that $f(n)+g(n)=\Theta(\max (f(n), g(n)))$.
5. Prove that $(n+a)^{b}=\Theta\left(n^{b}\right)$, for all real a and $b>0$. Explain why Theorem 1 and L'Hospital's rule be avoided when solving this problem?
6. Prove that if $\operatorname{limit}_{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, then $f(n)=\mathrm{O}(g(n))$, but $g(n) \neq \mathrm{O}(f(n))$.
7. Prove or disprove: $2^{n+1}=\mathrm{O}\left(2^{n}\right)$.
8. Prove or disprove: $2^{2 n}=\mathrm{O}\left(2^{n}\right)$.
9. Use any techniques or results from lecture to determine a succinct big- Θ expression for the growth of the function $\log ^{50}(n) n^{2}+\log \left(n^{4}\right) n^{2.1}+1000 n^{2}+100000000 n$.
10. Prove or disprove: if $f(n)=\mathrm{O}(g(n))$, then $2^{f(n)}=\mathrm{O}\left(2^{g(n)}\right)$.
11. Prove transitivity of big-O: if $f(n)=\mathrm{O}(g(n))$, then $g(n)=\mathrm{O}(h(n))$, then $f(n)=\mathrm{O}(h(n))$.
12. If $g(n)=o(f(n))$, then prove that $f(n)+g(n)=\Theta(f(n))$.
13. Use L'Hospital's rule to prove Theorem 1. Hint: assume a and b are nonnegative integers and that $a \geq b$.
14. Use L'Hospital's rule to prove that $a^{n}=\omega\left(n^{k}\right)$, for every real $a>1$ and integer $k \geq 1$.
15. Prove that $\log _{a} n=\Theta\left(\log _{b} n\right)$ for all $a, b>0$.
16. Simplify each summation to an expression whose only variable is n, and provide the big-O growth of the expression.
a. $\sum_{i=1}^{n}(n-2 i+3)$
b. $\sum_{i=0}^{n-1}\left(4 i^{2}-2 i+7\right)$
c. $\sum_{j=10}^{n} j$
d. $\sum_{i=1}^{n} \sum_{j=1}^{n} j$
e. $\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i)$
17. Suppose $g(n) \geq 1$ for all n, and that $f(n) \leq g(n)+L$, for some constant $L \geq 0$ and all n. Prove that $f(n)=\mathrm{O}(g(n))$.
18. Give an example that shows that the statement of Exercise 17 may not be true if we no longer assume $g(n) \geq 1$.
19. Use the Integral Theorem to establish that $1^{k}+2^{k}+\cdots+n^{k}=\Theta\left(n^{k+1}\right)$, where $k \geq 1$ is an integer constant.
20. Use the Integeral Theorem to prove that $\log 1+\log 2+\cdots+\log n=\Theta(n \log n)$.
21. Show that $\log (n!)=\Theta(n \log n)$.
22. Determine the big-O growth of $n+n / 2+n / 3+\cdots+1$.

Exercise Hints and Solutions

1. Answers may vary. For this solution, $n+n \log n^{2} \leq n \log n+2 n \log n=3 n \log n$. Thus, $n \log n \geq(1 / 3)\left(n+n \log n^{2}\right)$, for all $n \geq 1$. So $C=1 / 3$ and $k=1$.
2. From the previous exercise we have $f(n)=\Omega(g(n))$. But $f(n)=\mathrm{O}(g(n))$ with $C=k=1$. Thus, $f(n)=\Theta(n)$.
3. Set up the inequality for big-O and divide both sides by C.
4. Two inequalities must be established, and $C_{1}=0.5, k_{1}=1, C_{2}=2, k_{2}=1$ are adequate constants (why?).
5. Use Theorem 3.
6. Since

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

we know that $f(n) \leq g(n)$ for sufficiently large n. Thus, $f(n)=\mathrm{O}(g(n))$.
Now suppose it was true that $g(n) \leq C f(n)$ for some constant $C>0$, and n sufficiently large. Then dividing both sides by $g(n)$ yields $\frac{f(n)}{g(n)} \geq 1 / C$ for sufficiently large n. But since

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

we know that $\frac{f(n)}{g(n)}<1 / C$, for sufficiently large n, which is a contradiction. Therefore, $g(n) \neq$ $\mathrm{O}(f(n))$.
7. True, since $2^{n+1}=2 \cdot 2^{n} . C=2, k=1$.
8. False. $2^{2 n}=4^{n}$ and

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{4^{n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

Now use Exercise 6.
9. $\Theta\left(n^{2.1} \log n\right)$.
10. False. Consider $f(n)=2 n$ and $g(n)=n$.
11. Assume $f(n) \leq C_{1} g(n)$, for all $n \geq k_{1}$ and $g(n) \leq C_{1} h(n)$, for all $n \geq k_{2}$. Therefore,

$$
f(n) \leq C_{1} g(n) \leq C_{1} C_{2} h(n)
$$

for all $n \geq \max \left(k_{1}, k_{2}\right) . C=C_{1} C_{2}$ and $k=\max \left(k_{1}, k_{2}\right)$.
12. Use Theorem 2 and the fact that $g(n)<f(n)$ for n sufficiently large.
13. Let $f(n)$ be a nonnegative-valued polynomial of degree a, and $g(n)$ be a nonnegative-valued polynomial of degree b, with $a \geq b$. Since the k th derivative (as a function of n) of $f(n)$ is equal to $\Theta\left(n^{a-k}\right)$ and that of $g(n)$ is equal to $\Theta\left(n^{b-k}\right)$ it follows that L'Hospital's rule applies to the ratio $f^{[k]}(n) / g^{[k]}(n)$ for all $k<b$. Moreover, upon applying the rule for the b th time, the numerator will equal a polyhomial of degree $a-b$, while the denominator will equal a constant. Thus $f(n)=\Theta(g(n))$ if $a=b$ and $f(n)=\omega(g(n))$ if $a>b$.
14. Since the derivative (as a function of n) of a^{n} equals $(\ln a) a^{n}$, it follows that the k th derivative of a^{n} divided by the k th derivative of n^{k} equals $\ln ^{k} a^{n} / k!$, which tends to infinity. Therefore, $a^{n}=\omega\left(n^{k}\right)$.
15. By the Change of Base formula,

$$
\log _{a} n=\frac{\log _{b} n}{\log _{b} a}
$$

and so $\log _{a} n=C \log _{b} n$, where $C=1 / \log _{b} a$. Therefore, $\log _{a} n=\Theta\left(\log _{b} n\right)$.
16. Note: the final expressions have been simplified (which the exercise did not require).
a. $\sum_{i=1}^{n}(n-2 i+3)=n^{2}-n(n+1)+3 n=2 n=\Theta(n)$.
b. $\sum_{i=0}^{n-1}\left(4 i^{2}-2 i+7\right)=\frac{2(n-1)(n)(2 n-1)}{3}-n(n-1)+7 n=\Theta\left(n^{3}\right)$.
c. $\sum_{j=10}^{n} j=\frac{n(n+1)}{2}-\frac{9(10)}{2}=\Theta\left(n^{2}\right)$.
d. $\sum_{i=1}^{n} \sum_{j=1}^{n} j=\sum_{i=1}^{n}\left(n^{2} / 2+n / 2\right)=n^{3} / 2+n^{2} / 2=\Theta\left(n^{3}\right)$.
e. $\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i)=\sum_{i=1}^{n}\left(n^{2} / 2+n / 2-i^{2} / 2+i / 2-n i+i^{2}-i\right)$. Then evaluate the outer sum to get $\Theta\left(n^{3}\right)$.
17. $f(n) \leq g(n)+L \leq g(n)+L g(n) \leq(1+L) g(n)$, for all $n \geq 0$, where the second inequality is true since $g(n) \geq 1 . C=1+L$ and $k=1$. The result still holds so long as $g(n)$ is bounded away from zero.
18. Consider $f(n)=1 / n$ and $g(n)=1 / n^{2}$.
19. By the Integral Theorem,

$$
\sum_{i=1}^{n} i^{k}=\Theta\left(\int_{1}^{n} x^{k} d x\right)=\Theta\left(\left.\frac{x^{k+1}}{k+1}\right|_{1} ^{n}\right)=\Theta\left(n^{k+1}\right)
$$

20. By the Integral Theorem,

$$
\sum_{i=1}^{n} \ln i=\Theta\left(\int_{1}^{n} \ln x d x\right)
$$

Moreover,

$$
\begin{gathered}
\int_{1}^{n} \ln x d x=\left.x \ln x\right|_{1} ^{n}-\int_{1}^{n} 1 d x= \\
\quad n \ln n-n+1=\Theta(n \ln n)
\end{gathered}
$$

21. Since $\log a b=\log a+\log b$, we have

$$
\log (n!)=\log (n(n-1)(n-2) \cdots 1)=\log n+\log (n-1)+\log (n-2)+\cdots \log 1
$$

Therefore, from the previous exercise, we have $\log (n!)=\Theta(n \log n)$.
22. We have

$$
n+n / 2+n / 3+\cdots+1=n(1+1 / 2+1 / 3+\cdots+1 / n)
$$

Therefore, by Example $3, n+n / 2+n / 3+\cdots+1=\Theta(n \log n)$.

