
The Growth of Functions and Big-O Notation

Big-O Notation

Big-O notation allows us to describe the aymptotic growth of a function without concern for i)
constant multiplicative factors, and ii) lower-order additive terms. For example, using big-O notation,
the function f(n) = 3n2+6n+7 is assumed to have the same kind of (quadratic) growth as g(n) = n2.

Why do we choose to ignore constant factors and lower-order additive terms? One kind of function
that we often consider throughout computing is T (n), which represents the worst-case number of
steps required by a an algorithm to process an input of size n. Function T (n) will vary depending
on the computing paradigm that is used to represent the algorithm. For example, one paradigm
might represent the algorithm as a C program, while another might represent it as a sequence of
random-access machine instructions. Now if T1 measures the number of algorithmic steps for the first
paradigm, and T2(n) measures the number of steps for the second, then, assuming that a paradigm
does not include any unnecessary overhead, these two functions will likely be within multiplicative
constant factors of one another. In other words, there will exist two constants C1 and C2 for which

C1T2(n) ≤ T1(n) ≤ C2T2(n).

For this reason, big-O notation allows one to describe the steps of an algorithm in a mostly paradigm-
indepenent manner, yet still be able to give meaningful representations of T (n) by ignoring the
paradigm-dependent constant factors.

Let f(n) and g(n) be functions from the set of nonnegative integers to the set of nonnegative real
numbers. Then

Big-O f(n) = O(g(n)) iff there exist constants C > 0 and k ≥ 1 such that f(n) ≤ Cg(n) for every
n ≥ k.

Big-Ω f(n) = Ω(g(n)) iff there exist constants C > 0 and k ≥ 1 such that f(n) ≥ Cg(n) for every
n ≥ k.

Big-Θ f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).

little-o f(n) = o(g(n)) iff lim
n→∞

f(n)
g(n)

= 0.

1

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

little-ω f(n) = ω(g(n)) iff lim
n→∞

f(n)
g(n)

=∞.

Note that a more succinct way of saying “property P (n) is true for all n ≥ k, for some constant
k” is to say “property P (n) holds for sufficiently large n”. Although this phrase will be used often
throughout the course, nevertheless, when establishing a big-O relationship between two functions,
the student should make the effort to provide the value of k for which the inequality is true.

Given functions f(n) and g(n), to determine the big-O relationship between f and g, we mean
establishing which, if any, of the above growth relationships apply to f and g. Note that, if more
than one of the above relations is true, then we choose the one that gives the most information. For
example, if f(n) = o(g(n)) and f(n) = O(g(n)), then we would simply write f(n) = o(g(n)), since it
implies the latter relation.

Example 1. Determine the big-O relationship between i) f(n) = 6n2 + 2n+ 5 and g(n) = 50n2, and
ii) the same f(n) and g(n) = n3.

2

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Basic Results

In this section we provide some basic results that allow one to determine the big-O growth of a
function, or the big-O relationship between two functions, without having to revert to the definitions.

Theorem 1. Let p(n) be a polynomial of degree a and q(n) be a polynomial of degree b. Then

• p(n) = O(q(n)) if and only if a ≤ b

• p(n) = Ω(q(n)) if and only if a ≥ b

• p(n) = Θ(q(n)) if and only if a = b

• p(n) = o(q(n)) if and only if a < b

• p(n) = ω(q(n)) if and only if a > b

Thus, Theorem 1 could have been invoked to prove that f(n) = o(g(n)), where f and g are the
functions from Example 1.

Theorem 2. Let f(n), g(n), h(n), and k(n) be nonnegative integer functions for sufficiently large
n. Then

• f(n) + g(n) = Θ(max(f, g)(n))

• if f(n) = Θ(h(n)) and g(n) = Θ(k(n)), then f(n)g(n) = Θ((hk)(n))

• Transitivity. Let R ∈ {O, o,Θ,Ω, ω} be one of the five big-O relationships. Then if f(n) =
R(g(n)), and g(n) = R(h(n)) then f(n) = R(h(n)). In other words, all five of the big-O
relationships are transitive.

3

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Example 2. Use the results of Theorems 1 and 2 to give a succinct expression for the big-O growth
of f(n)g(n), where f(n) = n log(n4 + 1) + n(log n)2 and g(n) = n2 + 2n+ 3. Note: by “succinct” we
mean that no constants or lower-order additive terms should appear in the answer.

4

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Theorem 3. If lim
n→∞

f(n)
g(n)

= C, for some constant C > 0, then f(n) = Θ(g(n)).

Proof of Theorem 3. Mathematically,

lim
n→∞

f(n)

g(n)
= C

means that, for every ε > 0, there exists k ≥ 0, such that

|f(n)

g(n)
− C| < ε,

for all n ≥ k. In words, f(n)
g(n)

can be made arbitrarily close to C with increasing values of n. Removing
the absolute-value yields

C − ε < f(n)

g(n)
< C + ε,

which implies
(C − ε)g(n) < f(n) < (C + ε)g(n).

Since C > 0 and ε > 0 are constants, the latter inequalities imply f(n) = Θ(g(n)) so long as C−ε > 0.
Therefore, choosing ε = C/2, the result is proven.

Example 3. Suppose a > 1 and b < 0 are constants, with |b| < a. Prove that an + bn = Θ(an).

5

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

L’Hospital’s Rule. Suppose f(n) and g(n) are both differentiable functions with either

1. lim
n→∞

f(n) = lim
n→∞

g(n) =∞, or

2. lim
n→∞

f(n) = lim
n→∞

g(n) = 0.

Then

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
.

6

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Example 4. Prove that for every ε > 0, log n = o(nε). Note: in general, logk n = o(nε), where k > 0
is any integer constant.

7

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

The following terminology is often used to describe the big-O growth of a function.

Growth Terminology
Θ(1) constant growth
Θ(log n) logarithmic growth

Θ(logk n), for some integer k ≥ 1 polylogarithmic growth
Θ(nk) for some positve k < 1 sublinear growth
Θ(n) linear growth
Θ(n log n) log-linear growth

Θ(n logk n), for some integer k ≥ 1 polylog-linear growth
O(nk) for some integer k ≥ 1 polynomial growth
Ω(nk), for every integer k ≥ 1 superpolynomial growth
Ω(an) for some real a > 1 exponential growth

8

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Example 5. Use the above terminology to describe the growth of the functions from Examples 1
and 2.

9

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Series and Summations

When analyzing a data structure or algorithm, quite often we will encounter a a series, which is an
expression of the form

n∑
i=1

f(i) = f(1) + f(2) + · · ·+ f(n),

for some function f(i). For example, if f(i) = 2i and n = 6, then

n∑
i=1

f(i) =
6∑
i=1

2i = 2 + 4 + 6 + 8 + 10 + 12 = 42.

Note that f is called the summand, i the index variable, and n the summation limit.

In most applications the value of n is not given. Rather, we must determine the growth of the sum
function

S(n) =
n∑
i=1

f(i)

that provides the sum of the series for a given positive integer n. For some series, the value of S(n)
can be given with a formula, such as the ones below.

Constant Sum
n∑
i=1

1 = n

Arithmetic Sum
n∑
i=1

i = 1 + 2 + · · ·+ n = n(n+1)
2

.

Sum of Squares
n∑
i=1

i2 = 1 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

.

Sum of Cubes
n∑
i=1

i3 = 1 + 23 + · · ·+ n3 = [n(n+1)
2

]2.

Geometic Series
n∑
i=0

ari = a+ ar + ar2 + · · ·+ arn = a(rn+1−1)
r−1 .

Linear Combination
n∑
i=1

(af(i) + bg(i)) = a

n∑
i=1

f(i) + b

n∑
i=1

g(i),

where a and b are constants, and f and g are functions that depend on i.

10

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Example 6. Use the above formulas to evaluate the summation expression

n∑
i=1

(7i2 + i+ 8).

The final answer should be an expression that depends only on n.

11

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Example 7. Evaluate the summation expression

n∑
i=1

i∑
j=1

(3i+ 2j).

The final answer should be an expression that depends only on n.

12

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Unfortunately, the sum function S(n) for many important series cannot be expressed using a formula.
However, the next result shows how we may still determine the big-O growth of S(n), which quite
often is our main interest.

Integral Theorem. Let f(x) > 0 be an increasing or decreasing Riemann-integrable function over
the interval [1,∞). Then

n∑
i=1

f(i) = Θ(

∫ n

1

f(x)dx),

if f is decreasing. Moreover, the same is true if f is increasing, provided f(n) = O(
∫ n
1
f(x)dx).

Proof of Integral Theorem. We prove the case when f is decreasing. The case when f is increasing
is left as an exercise. The quantity

∫ n
1
f(x)dx represents the area under the curve of f(x) from 1 to

n. Moreover, for i = 1, . . . , n− 1, the rectangle Ri whose base is positioned from x = i to x = i+ 1,
and whose height is f(i+ 1) lies under the graph. Therefore,

n−1∑
i=1

Area(Ri) =
n∑
i=2

f(i) ≤
∫ n

1

f(x)dx.

Adding f(1) to both sides of the last inequality gives

n∑
i=1

f(i) ≤
∫ n

1

f(x)dx+ f(1).

Now, choosing C > 0 so that f(1) = C
∫ n
1
f(x)dx gives

n∑
i=1

f(i) ≤ (1 + C)

∫ n

1

f(x)dx,

which proves
n∑
i=1

f(i) = O(
∫ n
1
f(x)dx).

Now, for i = 1, . . . , n− 1, consider the rectangle R′i whose base is positioned from x = i to x = i+ 1,
and whose height is f(i). This rectangle covers all the area under the graph of f from x = i to
x = i+ 1. Therefore,

n−1∑
i=1

Area(R′i) =
n−1∑
i=1

f(i) ≥
∫ n

1

f(x)dx.

Now adding f(n) to the left side of the last inequality gives

n∑
i=1

f(i) ≥
∫ n

1

f(x)dx,

which proves
n∑
i=1

f(i) = Ω(
∫ n
1
f(x)dx).

Therefore,
n∑
i=1

f(i) = Θ(

∫ n

1

f(x)dx).

13

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Determine the big-O growth of the series

1

1
+

1

2
+ · · ·+ 1

n
.

14

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Exercises

1. Use the definition of big-Ω to prove that n log n = Ω(n+ n log n2). Provide appropriate C and
k constants.

2. Provide the big-O relationship between f(n) = n log n and g(n) = n+ n log n2.

3. Prove that f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

4. Use the definition of big-Θ to prove that f(n) + g(n) = Θ(max(f(n), g(n))).

5. Prove that (n+ a)b = Θ(nb), for all real a and b > 0. Explain why Theorem 1 and L’Hospital’s
rule be avoided when solving this problem?

6. Prove that if limitn→∞
f(n)
g(n)

= 0, then f(n) = O(g(n)), but g(n) 6= O(f(n)).

7. Prove or disprove: 2n+1 = O(2n).

8. Prove or disprove: 22n = O(2n).

9. Use any techniques or results from lecture to determine a succinct big-Θ expression for the
growth of the function log50(n)n2 + log(n4)n2.1 + 1000n2 + 100000000n.

10. Prove or disprove: if f(n) = O(g(n)), then 2f(n) = O(2g(n)).

11. Prove transitivity of big-O: if f(n) = O(g(n)), then g(n) = O(h(n)), then f(n) = O(h(n)).

12. If g(n) = o(f(n)), then prove that f(n) + g(n) = Θ(f(n)).

13. Use L’Hospital’s rule to prove Theorem 1. Hint: assume a and b are nonnegative integers and
that a ≥ b.

14. Use L’Hospital’s rule to prove that an = ω(nk), for every real a > 1 and integer k ≥ 1.

15. Prove that loga n = Θ(logb n) for all a, b > 0.

16. Simplify each summation to an expression whose only variable is n, and provide the big-O
growth of the expression.

a.
∑n

i=1(n− 2i+ 3)

b.
∑n−1

i=0 (4i2 − 2i+ 7)

c.
∑n

j=10 j

d.
∑n

i=1

∑n
j=1 j

e.
∑n

i=1

∑n
j=i(j − i)

17. Suppose g(n) ≥ 1 for all n, and that f(n) ≤ g(n)+L, for some constant L ≥ 0 and all n. Prove
that f(n) = O(g(n)).

18. Give an example that shows that the statement of Exercise 17 may not be true if we no longer
assume g(n) ≥ 1.

15

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

19. Use the Integral Theorem to establish that 1k + 2k + · · · + nk = Θ(nk+1), where k ≥ 1 is an
integer constant.

20. Use the Integeral Theorem to prove that log 1 + log 2 + · · ·+ log n = Θ(n log n).

21. Show that log(n!) = Θ(n log n).

22. Determine the big-O growth of n+ n/2 + n/3 + · · ·+ 1.

16

Exercise Hints and Solutions

1. Answers may vary. For this solution, n + n log n2 ≤ n log n + 2n log n = 3n log n. Thus,
n log n ≥ (1/3)(n+ n log n2), for all n ≥ 1. So C = 1/3 and k = 1.

2. From the previous exercise we have f(n) = Ω(g(n)). But f(n) = O(g(n)) with C = k = 1.
Thus, f(n) = Θ(n).

3. Set up the inequality for big-O and divide both sides by C.

4. Two inequalities must be established, and C1 = 0.5, k1 = 1, C2 = 2, k2 = 1 are adequate
constants (why?).

5. Use Theorem 3.

6. Since

lim
n→∞

f(n)

g(n)
= 0,

we know that f(n) ≤ g(n) for sufficiently large n. Thus, f(n) = O(g(n)).

Now suppose it was true that g(n) ≤ Cf(n) for some constant C > 0, and n sufficiently large.

Then dividing both sides by g(n) yields f(n)
g(n)
≥ 1/C for sufficiently large n. But since

lim
n→∞

f(n)

g(n)
= 0,

we know that f(n)
g(n)

< 1/C, for sufficiently large n, which is a contradiction. Therefore, g(n) 6=
O(f(n)).

7. True, since 2n+1 = 2 · 2n. C = 2, k = 1.

8. False. 22n = 4n and

lim
n→∞

2n

4n
= lim

n→∞

1

2n
= 0.

Now use Exercise 6.

9. Θ(n2.1 log n).

10. False. Consider f(n) = 2n and g(n) = n.

11. Assume f(n) ≤ C1g(n), for all n ≥ k1 and g(n) ≤ C1h(n), for all n ≥ k2. Therefore,

f(n) ≤ C1g(n) ≤ C1C2h(n)

for all n ≥ max(k1, k2). C = C1C2 and k = max(k1, k2).

12. Use Theorem 2 and the fact that g(n) < f(n) for n sufficiently large.

13. Let f(n) be a nonnegative-valued polynomial of degree a, and g(n) be a nonnegative-valued
polynomial of degree b, with a ≥ b. Since the k th derivative (as a function of n) of f(n) is
equal to Θ(na−k) and that of g(n) is equal to Θ(nb−k) it follows that L’Hospital’s rule applies
to the ratio f [k](n)/g[k](n) for all k < b. Moreover, upon applying the rule for the b th time, the
numerator will equal a polyhomial of degree a− b, while the denominator will equal a constant.
Thus f(n) = Θ(g(n)) if a = b and f(n) = ω(g(n)) if a > b.

17

14. Since the derivative (as a function of n) of an equals (ln a)an, it follows that the k th derivative
of an divided by the k th derivative of nk equals lnk an/k!, which tends to infinity. Therefore,
an = ω(nk).

15. By the Change of Base formula,

loga n =
logb n

logb a
,

and so loga n = C logb n, where C = 1/ logb a. Therefore, loga n = Θ(logb n).

16. Note: the final expressions have been simplified (which the exercise did not require).

a.
∑n

i=1(n− 2i+ 3) = n2 − n(n+ 1) + 3n = 2n = Θ(n).

b.
∑n−1

i=0 (4i2 − 2i+ 7) = 2(n−1)(n)(2n−1)
3

− n(n− 1) + 7n = Θ(n3).

c.
∑n

j=10 j = n(n+1)
2
− 9(10)

2
= Θ(n2).

d.
∑n

i=1

∑n
j=1 j =

∑n
i=1(n

2/2 + n/2) = n3/2 + n2/2 = Θ(n3).

e.
∑n

i=1

∑n
j=i(j − i) =

∑n
i=1(n

2/2 + n/2− i2/2 + i/2− ni+ i2 − i). Then evaluate the outer

sum to get Θ(n3).

17. f(n) ≤ g(n) + L ≤ g(n) + Lg(n) ≤ (1 + L)g(n), for all n ≥ 0, where the second inequality is
true since g(n) ≥ 1. C = 1 + L and k = 1. The result still holds so long as g(n) is bounded
away from zero.

18. Consider f(n) = 1/n and g(n) = 1/n2.

19. By the Integral Theorem,

n∑
i=1

ik = Θ(

∫ n

1

xkdx) = Θ(
xk+1

k + 1

∣∣∣∣n
1

) = Θ(nk+1).

20. By the Integral Theorem,

n∑
i=1

ln i = Θ(

∫ n

1

lnxdx).

Moreover, ∫ n

1

lnxdx = x lnx|n1 −
∫ n

1

1dx =

n lnn− n+ 1 = Θ(n lnn).

21. Since log ab = log a+ log b, we have

log(n!) = log(n(n− 1)(n− 2) · · · 1) = log n+ log(n− 1) + log(n− 2) + · · · log 1.

Therefore, from the previous exercise, we have log(n!) = Θ(n log n).

22. We have
n+ n/2 + n/3 + · · ·+ 1 = n(1 + 1/2 + 1/3 + · · ·+ 1/n).

Therefore, by Example 3, n+ n/2 + n/3 + · · ·+ 1 = Θ(n log n).

18

