
Models of Computation

Last Updated September 26th, 2023

1 Introduction

Chances are you’ve already encountered several models of computation. Indeed, programming
languages (such as Python, C, Java, Haskell, and PROLOG) are models of computation, as are digital
circuits and CPU’s in particular. However, the study of theoretical computer science tends to benefit
from models of computation that are as simple as possible. This is because theoretical computing
problems tend to already offer a complex intellectual challenge without additionally bogging down
the mind with a model of computation that yields programs that require a myriad of cases to
analyze. Thus, we desire a model of computation to be as simple as possoble, yet still meet the
computing requirements that are assumed by the problem under investigation. The following are
some approaches to achieving a minimalist-style computing model.

Automata Here, a computation is viewed as a sequence of state changes. A computation begins
with an initial state and a machine has a finite-state controller that determines the next based
on the current state and the current data that is being read. Examples: Finite Automata,
Pushdown Automata, Turing Machines.

Register Machines These models are inspired by the architecture of a CPU where the machine
consists of a finite number of registers along with the ability to perform basic logical and
arithmetic operations on the words stored in each register. Examples: Random-Access Machines
(RAM’s), Unlimited Register Machines (URM’s).

Function Families This approach views the function as the basis for computation and defines rules
for constructing functions that are deemed “computable”. To be in the function family means
to be definable based on the provided rules of construction. Examples: Primitive and General
Recursice Functions, Church’s Lambda Calculus.

Rewriting Systems These models are similar to automata but with both data and state being
combined into a single string of symbols. Examples: Markov Normal Algorithms, Post Production
Systems.

Concurrency These models allow for multiple computation threads to simultaneously occur. Examples:
Boolean and quantum Circuits, Petri Nets, Cellular Automata.

1

1.1 Uniform versus Non-Uniform Models of Computation

Definition 1.1. A problem instance is said to be effectively solvable iff there is some deterministic
step-by-step procedure for solving the problem. In modern terms, we say that one can write a
computer program for solving the problem.

Definition 1.2. A model of computation is said to be uniform iff every instance of the model is
designed to solve all instances of a particular effectively solvable problem. A model of computation
is non-uniform iff solving all instances of an effectively solvable problem requires the use of two or
more instances of the model.

Examples of uniform models include general-purpose programming languages, such as C and Python.
An example of a non-uniform model is a Boolean circuit, since it can handle only a finite number
of different inputs. But computing problems usually have an infinite number of instances, and so an
infinite number of circuits are required to solve all problem instances.

2

This lecture introduces the URM register-machine model along with the primitive recursive and
general recursive function families. URM’s find use in computability theory because their programs
are readily encodable as a single integer. Such an encoding is called a Gödel number and is
fundamental to both the study of computability and complexity theory. Primitive and general
recursive function find use because programs are often easily and succinctly expressed using functions.
Both the URM and general recursive function models are examples of what is called a general model
of computation, meaning that it is a model that is capable of computing any process whose output
is obtained in a deterministic step-by-step fashion with respect to one or more inputs being fed
into the process. Programming languages, such as C, Python, and Java, are also considered general
models of computation.

Regardless of what computing model is being considered, in this and subsequent computability
lectures we make the assumption that the purpose of an instance of the model is to compute a
function that maps one or more nonnegative integers to a nonnegative integer. By making this
assumption, we do not lose any generality since any instance of any problem, including the solution
to that instance, can be encoded with one or more nonnegative integers.

Definition 1.3. N = {0, 1, 2, . . .} denote the set of nonnegative integers.

Unary Function f : N → N means that, for any input x ∈ N , f assigns x to some value f(x) ∈ N .

Multivariate Function For m ≥ 1, f : Nm → N means that for any input vector (x1, . . . , xm) ∈
Nm, f assigns it to some value f(x1, . . . , xm) ∈ N .

In computability theory it’s important to allow for functions that may not be defined on all inputs.

Definition 1.4. A partial function is one that is undefined on zero or more of its inputs. A
function that is defined on all of its inputs is said to be a total function. Note: all total functions
are (technically speaking) partial since they are undefined on zero of their inputs.

Example 1.5. The function f : N → N defined by f(n) equals the value m for which m2 = n is
only defined for n = 1, 4, 9, 16, 25, . . . and is undefined for all other values of n that are not perfect
squares.

3

Administrator
Pencil

Administrator
Pencil

2 The Unlimited Register Machine

The Unlimited Register Machine (URM) first introduced by Shepherdson and Sturgis (See
Chapter 2 of Nigel Cutland’s “Computability”). The purpose of a URM is to compute an m-ary
function f : Nm → N , from the set of m-tuples of nonnegative integers to nonnegative integers.

To begin, a register is a memory component that is capable of storing a nonnegative integer of
arbitrary size. Registers form the basis of URM’s. Indeed, a URM M consists of

1. r registers R1, . . . , Rr,

2. a finite program P = I1, . . . , Is consisting of s instructions that are used for step-by-step
manipulation of the registers, and

3. a program counter, denoted pc, that stores the index of the next program instruction to be
executed.

A URM M takes as input m nonnegative integers x⃗ = x1, . . . , xm, performs a computation on this
input, and outputs a nonnegative integer, denoted M(x⃗), that is ultimately stored in register 1.

Definition 2.1. A machine configuration for an r-register URM is an (r + 1)-dimensional tuple
whose first r components equal the integers currently stored in registers R1, . . . , Rr, and whose final
component, called the program counter (pc), is the index of the next instruction.

Initial Configuration The initial configuration is

σ0 = (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
r−m

, 1),

where (x1, . . . , xm) is the URM input vector.

Final Configuration A final configuration is any configuration whose program counter exceeds
s = |P |.

Computation A computation ofM on input x⃗ is a (possibly infinte) sequence of machine configurations
σ0, σ1, . . . for which

1. σ0 is the initial configuration

2. σk+1 is obtained from σk by executing instruction Ii, where i is the value of σk’s program
counter pc, and updating the value of M ’s registers accordingly.

We writeM(x⃗) ↓ (respectively, M(x⃗) ↑) in case the computation ofM on input x⃗ is finite (respectively
infinite).

4

Administrator
Pencil

2.1 URM Instruction Set

The following is a description of the different types of URM instructions, and how each affects the
current machine configuration.

Zero Z(i), 1 ≤ i ≤ r, assigns 0 to register Ri: Ri ← 0.

Sum S(i), 1 ≤ i ≤ r, increments by 1 the value stored in Ri: Ri ← Ri + 1.

Transfer T(i, j), 1 ≤ i, j ≤ r, assigns to Rj the value stored in Ri: Rj ← Ri.

Jump J(i, j, k), 1 ≤ i, j ≤ r, 1 ≤ k ≤ s, has the effect of setting pc to k in case Ri and Rj store the
same integer. Otherwise pc is incremented by one.

5

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 2.2. Consider a URM M with r = 3 registers and the following program.

I1. J(1, 2, 6)

I2. S(2)

I3. S(3)

I4. J(1, 2, 6)

I5. J(1, 1, 2)

I6. T (3, 1)

The following is the sequence of configurations produced by the computation M(9, 7).

σi R1 R2 R3 pc Instruction
0 9 7 0 1 J(1,2,6)
1 9 7 0 2 S(2)
2 9 8 0 3 S(3)
3 9 8 1 4 J(1,2,6)
4 9 8 1 5 J(1,1,2)
5 9 8 1 2 S(2)
6 9 9 1 3 S(3)
7 9 9 2 4 J(1,2,6)
8 9 9 2 6 T(3,1)
9 2 9 2 7 n/a

What function is being computed? It is worth noting that the above program is said to be standard
form since since the computation will always terminate with the program counter at s+ 1, where s
is the number of instructions. A program is not in standard form in case the program counter can
ever be assigned a value that exceeds s+ 1.

6

Administrator
Pencil

Definition 2.3. An m-ary function f : Nm → N is URM-computable iff there exists a URM M
for which, for all x⃗ ∈ Nm,

1. if f(x⃗) is defined, then M(x⃗) = f(x⃗), and

2. if f(x⃗) is undefined, then M(x⃗) ↑.

If f is defined on all inputs, then it is called total URM-computable. Otherwise, it is called
partially URM-computable. Note: when we say a function is partially computable, it still may be
possible that it is total computable. In other words, totally computable implies partially computable,
but the converse is not necessarily true.

Example 2.4. Show that the function f(x, y) = x+ y is URM-computable.

Solution.

7

Administrator
Pencil

Example 2.5. By designing an appropriate URM M , show that the function

f(x) =

{
⌊x/2⌋ if x is even
↑ otherwise

is URM-computable. Show the computations M(2) and M(3).

Solution.

8

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Definition 2.6. We have the following definitions.

1. A predicate function is any function f : Nm → {0, 1} whose output values are either 0 or 1.

2. A total predicate function is said to be URM-decidable iff there is a URM program that
computes (i.e. decides) f .

3. A total unary predicate function is often referred to as a “property of the nonnegative integers”.

Example 2.7. The property of being even can be represented by the function

Even(x) =

{
1 if x mod 2 = 0
0 otherwise

Example 2.8. Provide a URM M that proves that the predicate function Even(x) from the previous
example is URM-decidable.

Solution.

9

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3 Primitive Recursive Functions

URM’s have the following advantages when studying the theory of computation:

1. as we’ll see in the next lecture, it seems relatively easy to encode a URM program as an integer,

2. the configuration of a URM can be simply described with an r + 1 tuple of integers, and

3. at times a theorem will require a proof that warrants writing a general program, which at times
can seem relatively easy task with the URM model.

On the other hand, writing URM programs for specific computable functions can get complicated in
a hurry. Recursion plays a fundamental role in computation. Moreover, recursion often provides very
elegant solutions to problems. Thus it would seem desirable to study a model of computation that
features the art and beauty of recursion. Indeed, in this section we examine the primitive recursive
functions.

Definition 3.1. Rather than relying on a machine model, we provide a recursive definition for the
set of primitive recursive functions.

For the base case, the following basic functions are primitive recursive.

1. The zero function 0

2. The successor function x+ 1

3. The Identity function f(x) = x for any variable x.

4. The projection functions Un
i (x1, . . . , xn) = xi, where n ≥ 1, and 1 ≤ i ≤ n.

The first recursive case in the definition of primitive recursive functions makes use of function
composition. Namely, suppose g(y1, . . . , ym), f1(x⃗), . . . , fm(x⃗) are all primitive recursive, then so is
g(f1(x⃗), . . . , fm(x⃗)).

Finally, the second recursive case makes use of recursion. Namely, suppose f(x⃗) and g(x⃗, y, z) are
primitive recursive, then h(x⃗, y) is primitive recursive, where

1. h(x⃗, 0) = f(x⃗), and

2. h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y))

10

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

In the next several examples, we show that a given function is primitive recursive.

Example 3.2. x+ y.

a. x+ 0 = x.

b. x+ (y + 1) = (x+ y) + 1. (Apply the successor function to x+ y)

11

Administrator
Pencil

Example 3.3. xy.

a. x · 0 = 0.

b. x(y + 1) = xy + x.

12

Administrator
Pencil

Administrator
Pencil

Example 3.4. xy.

a. x0 = 0 + 1 = 1. (1 is defined as the successor of 0)

b. xy+1 = xy · x.

13

Administrator
Pencil

Administrator
Pencil

Example 3.5. x− 1, where 0− 1 =def 0.

a. 0− 1 = 0.

b. (x+ 1)− 1 = x.

14

Administrator
Pencil

Example 3.6. x− y, where x− y =def 0 in case y > x.

Solution.

15

Administrator
Pencil

Example 3.7. Sgn(x) = 0 if x = 0. Otherwise, Sgn(x) = 1.

Solution.

16

Administrator
Pencil

Example 3.8. Sgn(x) = 1 if x = 0. Otherwise, Sgn(x) = 0

Solution.

17

Administrator
Pencil

Example 3.9. Dist(x, y) = |x− y|.

Solution.

18

Administrator
Pencil

Example 3.10. x!.

Solution.

19

Administrator
Pencil

Example 3.11. Min(x, y).

Solution.

20

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 3.12. Max(x, y).

Solution.

21

Administrator
Pencil

A PR-decidable predicate M(x⃗) is a primitive recursive function whose range is {0, 1}. Predicate
functions are often used to indicate whether or not an integer has some given property. For example,
the predicate

M(x) =

{
1 if x is even
0 otherwise

indicates whether or not an integer x is even.

Note that we may view predicates as Boolean functions if we equate 1 with true, and 0 with false.

Example 3.13. Show that the predicate function x < y is PR-decidable.

Solution.

22

Administrator
Pencil

Theorem 3.14. If M1(x⃗), . . . ,Mk(x⃗) are PR-decidable predicates, and f1(x⃗), . . . , fk(x⃗) are primitive
recursive functions, and, for every x⃗, exactly one of M1(x⃗), . . . ,Mk(x⃗) is true, then

g(x⃗) =

f1(x⃗) if M1(x⃗) is true
...

...
fk(x⃗) if Mk(x⃗) is true

is a primitive recursive function.

Proof. The theorem is true since M1(x⃗)f1(x⃗) + · · ·+Mk(x⃗)fk(x⃗) is primitive recursive.

Theorem 3.15. If P (x⃗) and Q(x⃗) are PR-decidable predicates, then so are P (x⃗), P (x⃗) ∧ Q(x⃗),
P (x⃗) ∨Q(x⃗).

Proof. We have
P (x⃗) = Sub(1, P (x⃗)),

P (x⃗) ∧Q(x⃗) = Mult(P (x⃗), Q(x⃗)),

and
P (x⃗) ∨Q(x⃗) = Max(P (x⃗), Q(x⃗)).

23

Administrator
Pencil

Example 3.16. x mod y is the remainder of x divided by y, where 0 mod y = 0 and x mod 0 = 0.

Solution.

24

Administrator
Pencil

Administrator
Pencil

Example 3.17. x/y is the integer quotient of x divided by y, where x/0 = 0.

Solution.

25

Administrator
Pencil

Administrator
Pencil

Example 3.18. Div(x, y) = 1 if y divides evenly into x. Otherwise, Div(x, y) = 0. Note: assume 0
divides 0, but does not divide any positive integers.

Solution.

26

Administrator
Pencil

3.1 Bounded Primitive Recursive Iterators

An iterator is a function that makes use of at least one index variable an iterates over the domain
of this variable in order to compute the function output. A bounded iterator iterates over the
index-variable domain antil an upper bound is reached is reached. In this section we show that
three iterators commonly used in practice (bounded sum, product, and least satisfying) are primitive
recursive.

Theorem 3.19. If f(x⃗, z) is primitive recursive, then so is the bounded sum function

y∑
z=0

f(x⃗, z) = f(x⃗, 0) + · · ·+ f(x⃗, y).

Proof. First notice that z represents an index variable, and that the bounded sum does not depend
on z, but rather on x⃗ and y. Thus, let

h(x⃗, y) =

y∑
z=0

f(x⃗, z).

Then we have the following recursive definition for h.

Note: an alternative notation for bounded sum is∑
z≤y

f(x⃗, z).

a. h(x⃗, 0) = f(x⃗, 0), which is primitive recursive, since g(x⃗) = f(x⃗, 0) is PR by composition.

b. h(x⃗, y + 1) = h(x⃗, y) + f(x⃗, y + 1).

Therefore, h is PR.

Note: bounded product function

y∏
z=0

f(x⃗, z) = f(x⃗, 0) · · · · · f(x⃗, y)

may be similarly defined.

27

Administrator
Pencil

Theorem 3.20. If f(x⃗, z) is primitive recursive predicate, then the least satisfying function

λ
z≤y

f(x⃗, z) =

{
least z for which f(x⃗, z) = 1 if such z exists
y + 1 otherwise

is primitive recursive, where i.e the least z < y for which the statement f(x⃗, z) = 0 evaluates to true,
or y if no such z exists.

The least satisfying function acts like a for loop, where f(x⃗, y) is a condition for breaking out of the
loop before z is assigned y + 1.

For example, the following procedural code computes λ
z≤y

f(x⃗, z).

for(z=0; z <= y && !f(x,z); z++);

return z;

Proof. Again notice that z is an index variable, and the function only depends on x⃗ and y.

We claim that
λ

z≤y
f(x⃗, z)

is equivalent to the PR function
y∑

i=0

i∏
j=0

Sgn(1− f(x⃗, j)).

Case 1. f(x⃗, j) = 0 for all j ≤ y. Then

y∑
i=0

i∏
j=0

Sgn(1− f(x⃗, j)) =

y∑
i=0

i∏
j=0

1 =

y∑
i=0

1 = y + 1 = λ
z≤y

f(x⃗, z).

Case 2. There is a least z ≤ y, for which f(x⃗, z) = 1. Then

y∑
i=0

i∏
j=0

Sgn(1− f(x⃗, j)) =

z−1∑
i=0

i∏
j=0

Sgn(1− f(x⃗, j)) +

y∑
i=z

i∏
j=0

Sgn(1− f(x⃗, j)) =

z−1∑
i=0

1 +

y−1∑
i=z

0 = z = λ
z≤y

f(x⃗, z).

28

Administrator
Pencil

Administrator
Pencil

Example 3.21. Use bounded least-satisfying to prove that f(x) = ⌊ 3
√
x⌋ is a PR function.

Solution.

29

Administrator
Pencil

3.2 Unbounded Least Satisfying

Notice that every primitive recursive function is total computable. This can be proved by structural
mathematical induction over the set of primitive-recursive functions. Thus, we can conclude that
not all URM-computable functions are primitive recursive, since some URM-computable functions
are not total. Therefore, apparently we need more techniques for defining at least all the URM-
computable functions. It turns out that we need exactly one additional technique, called unbounded
least satifying.

Definition 3.22. Let f(x⃗, y) be a predicate function. Then the unbounded least satisfying
function, denoted

λ
y
f(x⃗, y),

evaluates to the least y for which the predicate function f(x⃗, 0) = 0, f(x⃗, 1) = 0, . . . , f(x⃗, y − 1) = 0
are all defined, and f(x⃗, y) = 1”. If no such y exists, then

λ
y
f(x⃗, y),

is undefined.

We see that unbounded minimalization has the effect of a while loop that may never terminate in
case either i) the computation of f(x⃗, y) does not terminate for some y, or ii) f(x⃗, y) is always zero.

Definition 3.23. Recall Definition 3.1 that recursively defines the set PR of Primitive Recursive
functions. If we use the same definition with the exception of i) replacing the family name with GR,
for the set of General Recursive functions, and ii) add the additional recursive case:

“If f(x⃗, y) is a general-recursive predicate function, then so is

λ
y
f(x⃗, y)”,

Then we have the definition for the set GR of general recursive functions.

30

Administrator
Pencil

Example 3.24. Use unbounded least satisfying to prove that

f(x) =

{
⌊x/2⌋ if x is even
↑ otherwise

is a general recursive (GR) function.

Solution.

31

Administrator
Pencil

Administrator
Pencil

Theorem 3.25. An m-ary function f : Nm → N is URM-computable iff it is general recursive.

The proof of Theorem 3.25 requires two directions. First we must show that an arbitrary general
recursive function is URM-computable. This amounts to showing the following.

1. Each PR basic function is URM computable.

2. The composition of two or more URM-computable functions is also URM computable.

3. If two URM-computable functions f and g are used to recursively define a computable function
h, then h is also URM computable.

4. If predicate function f(x, y) is URM computable, then so is

λ
y
f(x⃗, y).

Since the use of basic functions, composition, recursion, and unbounded least satisfying are the only
tools one can use to define a GR function, from the above four statements it follows that every
definable GR function must also be URM computable. We provide informal programs (that can
readily be converted to URM programs) on the next two pages that establish statements 2, and 3.
For statement 1, and for each basic function, the reader is asked to provide a URM program that
computes it. For statement 4, the reader is asked to provide an informal program (similar to the
ones provided for statements 2 and 3) that establishes the URM computability of the unbounded
least satisfying function.

The second part of the proof seems more challenging: showing that any URM-computable function
is in fact a GR function. This will require the further development of PR functions in a later lecture.

32

Administrator
Pencil

In what follows, we say that a URM register is safe if it is not referenced by any URM instruction
or has been (informally) designated for storing some other previously mentioned quantity.

An Informal URM Program that Supports Composition of Functions (Statement 2)

Let P1, . . . , Pm be URM programs for computing f1(x⃗), . . . , fm(x⃗), respectively, where we assume
that x⃗ = (x1, . . . , xn) is an n-ary vector of natural-number inputs. Let Q be a URM program that
computes g(y1, . . . , ym). Then the following informal program can be used to define a URM program
for computing g(f1(x⃗), . . . , fm(x⃗)).

Input x1, . . . , xn.

Copy x1, . . . , xn to safe registers.

For each i = 1, . . . ,m,

Copy x1, . . . , xn to registers R1, . . . , Rn, respectively.

Execute Pi’s instructions.

Copy the output yi in R1 to a safe register.

Clear all registers used by Pi.

Copy y1, . . . , ym to registers R1, . . . , Rm, respectively.

Execute Q’s instructions.

Return R1.

33

Administrator
Pencil

An Informal URM Program that Supports Recursion (Statement 3)

Recall the definition of recursion.

1. h(x⃗, 0) = f(x⃗), and

2. h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y))

Assume that x⃗ = (x1, . . . , xn) is an n-ary vector of natural-number inputs. Let URM program P
compute f(x1, . . . , xn). Let URM program Q compute g(x1, . . . , xn, y, z).

Input x1, . . . , xn, y.

Copy x1, . . . , xn and y to safe registers.

Rn+1 ← 0. //Clear this register before executing P .

Execute P ’s instructions.

If y = 0, then Return R1. //Base case

Copy R1 = f(x1, . . . , xn) to a safe register R̂.

Clear all registers used by P .

Designate a safe register that is to store the value of counter c initialized as 0.

For each c = 0, . . . , y − 1,

Copy x1, . . . , xn and y to registers R1, . . . , Rn, Rn+1, respectively.

Rn+2 ← R̂. //Rn+2 now holds h(x⃗, c)

Execute Q’s instructions.

R̂← R1. //R̂ now holds h(x⃗, c+ 1)

Clear all registers used by Q.

Return R̂. //R̂ now holds h(x⃗, y), the desired output.

34

Administrator
Pencil

Exercises

Note: for each exercise you may use all lecture examples, theorems, and previous exercises to establish
that a function is primitive/general recursive.

For exercises 1-5 you may find it useful and fun to test your solutions with an online URM simulator:

https://sites.oxy.edu/rnaimi/home/URMsim.htm

1. Provide URM-programs that compute the following functions.

a.

f(x) =

{
0 if x = 0
1 if x ̸= 0

b. f(x) = 4

c.

f(x, y) =

{
1 if x ≤ y
0 if x > y

2. Show that the function

f(x, y) =

{
x− y if x ≥ y
0 otherwise

is URM-computable.

3. Show that the function f(x, y) = min(x, y) is URM-computable.

4. Suppose f(x) and g(x) are both URM-computable via programs P1 and P2 respectively. Provide
an outline of a URM program that computes f(g(x)).

5. Suppose P1 and P2 are two programs, and we desire to make a third program P3 whose behavior
can be described as “Run P1 until it halts. Then run P2 on the final register configuration
produced by P1.” Explain why P1P2 may not have the desired effect, where P1P2 means list
the instructions of P2 immediately after those of P1. Explain the alterations that may need to
be made in order for P1P2 to work as desired.

6. If f(x) is URM-computable via a program that has no jump instructions, then prove that
f(x) = C of f(x) = x+ C, for some constant C ∈ N .

7. Using the definition of a PR function and Examples 3.2 to 3.11, show that the binary relations
= (x, y), (̸= (x, y), < (x, y), ≤ (x, y), > (x, y), ≥ (x, y) are all PR-decidable predicates. For
example, = (x, y) returns 1 if x = y, and returns 0 otherwise.

8. Using the definition of a PR function and Examples 3.2 to 3.11, show that Even(x) is PR,
where Even(x) = 1 iff x is even. Do the same for Odd(x).

9. Using the definition of a PR function and Examples 3.2 to 3.11, show that Min3(x, y, z) is PR.

35

10. If M(x⃗, z) is a PR-decidable predicate, then show that the bounded universal quantifier
function

∀
z≤y

M(x⃗, z)

is also a PR-decidable predicate, where

∀
z≤y

M(x⃗, z)

evaluates to 1 iff M(x⃗, 0) = M(x⃗, 1) = · · · = M(x⃗, y) = 1.

11. If M(x⃗, z) is a PR-decidable predicate, then show that the bounded existential quantifier
function

∃
z≤y

M(x⃗, z)

is also a PR-decidable predicate, where

∃
z≤y

M(x⃗, z)

evaluates to 1 iff M(x⃗, z) = 1 for some z ≤ y.

12. Prove that the following functions are primitive recursive.

a. D(x) equals the number of divisors of x. Hint: D(0) = 1.

b. Prime(x) is the predicate function that evaluates to 1 iff x is a prime number.

c. px denotes the function that, on input x, returns the x th prime number. Here we assume
p0 = 0, p1 = 2, p2 = 3, etc..

d. (x)y is a function of x and y and returns the exponent of py in the prime factorization
of x. For example (24)1 = 3 since the first prime number is 2, and 23 is in the prime
factorization of 24. We assume (x)y = 0 in case either x = 0 or y = 0.

e. ⌊
√
x⌋.

f. LCM(x, y) equals the least common multiple of x and y.

g. GCD(x, y) equals the greatest common divisor of x and y. Hint: GCD(0, 0) = 0.

h. PD(x) equals the number of prime divisors of x.

i. ϕ(x) equals the number of positive integers less than x that are relatively prime to x.

13. Prove that any polynomial function p(x) = anx
n + · · ·+ a1x+ a0 is primitive recursive.

14. Let π(x, y) = 2x(2y+1)−1. Prove that π is total computable, and is a one-to-one correspondence
betweenN 2 andN . Also, show that both π1 and π2 are primitive recursive, where π(π1(x), π2(x)) =
x.

15. Show that the following problems are PR-decidable.

a. M(x) = 1 iff x is odd.

b. M(x) = 1 iff x is a power of a prime number.

c. M(x) = 1 iff x is a perfect cube.

36

16. Show that x/2y is primitive recursive.

17. Define α(i, x) as the function that returns the i th bit in the binary representation of x. Prove
that α(i, x) is primitive recursive. For example α(0, 2) = 0, α(1, 2) = 1, while α(i, 2) = 0 for
all i ≥ 2.

18. Let Len(x) be the function that returns the length of the binary representation of x. Prove
that Len(x) is primitive recursive. Note: Len(0) = 1.

19. Show that the following function is general recursive.

f(x) =

{
1 if x is a perfect square
↑ otherwise

20. Show that the following function is general recursive.

f(z) =

{
1 if ∃x∃y(z = 17x3 − 29x2y2 + 37x2 − 41y2 + 31x+ 1331)
↑ otherwise

where x and y are variables for which dom(x) = dom(y) = N . Hint: use Exercise 14.

21. Let f(x⃗, z) be a primitive recursive predicate. The bounded parity function is defined as

⊕
z≤y

f(x⃗, z) = f(x⃗, 0)⊕ f(x⃗, 1)⊕ · · · ⊕ f(x⃗, y),

and equals the parity of the binary string

f(x⃗, 0) · f(x⃗, 1) · · · · · f(x⃗, y).

Use recursion (on variable y) and one or more PR functions from this chapter to show that
bounded parity is primitive recursive.

22. Let Trunc(x, i) denote the number x with its first i digits cut off. For example, Trunc(958, 0) =
958, Trunc(958, 1) = 95, Trunc(958, 2) = 9, and Trunc(958, i) = 0 for every i ≥ 4. Use recursion
(on variable i) and one or more PR functions from this chapter to show that Trunc is primitive
recursive.

37

Exercise Solutions

1. Provide URM-programs that compute the following functions.

a. J(1, 2, 3), S(2), T (2, 1)

b. Z(1), S(1), S(1), S(1), S(1).

c. J(1, 3, 5), J(2, 3, 6), S(3), J(1, 1, 1), S(4), T (4, 1)

2. 1. J(1, 2, 10), 2. T (1, 3), 3. T (2, 4), 4. S(3), 5. J(2, 3, 10), 6. S(4), 7. S(5), 8. J(1, 4, 12), 9.
J(1, 1, 4), 10. Z(1), 11. J(1, 1, 15), 12. T (5, 1), 13. J(1, 1, 14)

3. 1. J(1, 2, 10), 2. T (1, 3), 3. T (2, 4), 4. S(3), 5. J(2, 3, 10), 6. S(4), 7. J(1, 4, 9), 8. J(1, 1, 4),
9. T (2, 1),

4. First execute the instructions of P2. Let m be the index of the maximum register used by P2.
Next, perform the instructions Z(2), . . . , Z(m). Finally, execute the instructions of P1.

5. Suppose P1 has k instructions, then any jump instruction of P1 that jumps to a value v > k,
should now jump to k + 1, so that the first instruction of P2 executes next. Furthermore, each
jump instruction of P2 should have its jump address incremented by k so that jumps do not
accidentally land back in P1.

6. Case 1: register R1 is written over via either a Z(1) or T (m, 1) instruction, for some m > 1. In
case of a Z(1) instruction, R1 can hold at most a constant C which equals the number of S(1)
instructions that follow the final Z(1) instruction. In case R1 was written over via a transfer
from register Rm, R1 equals C, where C is the number of S(m) instructions that precede the
final T (m, 1) instruction, plus the number of S(1) instructions that follow the final T (m, 1)
instruction.

Case 2: register R1 is never written over. Then R1 will hold the value x + C, where C is the
number of S(1) program instructions.

If f(x) is URM-computable via a program that has no jump instructions, then prove that
f(x) = C of f(x) = x+ C, for some constant C ∈ N .

7. We have the following.

a. (x < y) = sgn(y − x).

b. (x > y) = sgn(x− y).

c. (x = y) = sgn(x− y) ∧ sgn(y − x).

d. (x ≤ y) = 1− (x > y) = sgn(x− y).

e. (x ≥ y) = 1− (x < y) = sgn(y − x).

8. Base case. Even(0) = 1. Recursive case. Even(x + 1) = 1 − Even(x). Odd(x) is defined
similarly, but with the base case Odd(0) = 0.

9. Min3(x, y, z) = Min(Min(x, y), z).

38

10. We have
∀

z≤y
M(x⃗, z) =

∏
z≤y

M(x⃗, z).

Therefore, the function is primitive recursive since M and bounded product are primitive
recursive.

11. We have
∃

z≤y
M(x⃗, z) = sgn(

∑
z≤y

M(x⃗, z)).

Therefore, the function is primitive recursive since M , bounded sum, and sgn are all primitive
recursive.

12. The following functions are primitive recursive.

a. We have
D(x) =

∑
z≤x

Div(z, x),

which is primitive recursive since both bounded sum and Div are primitive recursive.

b. We have
Prime(x) = (x ≥ 2) ∧ (D(x) = 2).

c. Using recursion, we have p0 = 0,

px+1 = λ
z≤px!+1

(z > px ∧ Prime(z)).

d. We have (0)i = 0 for all i. For x ≥ 1 we have

(x)i = λ
z≤x
¬Div(pzi , x)− 1.

e. We have
⌊
√
x⌋ = λ

z≤x+1
(z2 > x)− 1.

f. We have

LCM(x, y) =

{
0 if x = 0 ∨ y = 0
λ

z≤xy
(Div(x, z) ∧Div(y, z) ∧ z > 0) if x > 0 ∧ y > 0

g. We have

GCD(x, y) =

0 if x = 0 ∧ y = 0
y if x = 0 ∧ y > 0
x if x > 0 ∧ y = 0
xy/LCM(x, y) if x > 0 ∧ y > 0

The last case makes use of the identity LCM(x, y)GCD(x, y) = xy.

h. We have

PD(x) =

{
0 if x ≤ 1∑

z≤xDiv(z, x) ∧ Prime(z) if x ≥ 2

39

i. We have

ϕ(x) =

{
0 if x = 0∑

z≤x(GCD(z, x) = 1) if x ≥ 1

13. We use induction. For n = 0, p(x) = a0 is a constant, and hence PR by composing the
successor function with itself a0 times. Now assume that any nth-degree polynomial p(x) =
anx

n + · · · + a1x + a0 is PR, for some n ≥ 0. Consider the (n + 1)-degree polynomial q(x) =
an+1x

n+1 + anx
n + · · ·+ a1x+ a0. Then we can rewrite q(x) as

q(x) = x(an+1x
n + anx

n−1 + · · ·+ a1) + a0 = xp(x) + a0,

where p(x) = an+1x
n + anx

n−1 + · · · + a1 is an n th-degree polynomial, and hence PR by the
inductive assumption. Therefore, q(x) is PR, since it is the sum of a0 with the PR x · p(x).

14. π is primitive recursive since it only uses the power, addition, and multiplication functions, all
of which have been shown to be primitive recursive. To see that π maps onto the nonnegative
integers, consider natural number n, then we need an x and y for which π(x, y) = n, i.e.

2x(2y + 1) = n+ 1.

But n + 1 is a positive integer, and every positive integer has a unique prime factorization.
Thus, there is a unique x for which i) 2x divides n+1 and for which (n+1)/2x is odd, meaning
that there is a unique y for which 2y + 1 = (n + 1)/2x. Hence, π maps onto N and, by the
uniqueness of x and y, we see that the mapping is also one-to-one. Therefore, π is a primitive
recursive bijection.

To see that π1 and π2 are primitive recursive, note that π1(n) = (n+ 1)1, while

π2(n) = (((n+ 1)/2π1(n))− 1)/2.

15. The following are all PR-decidable predicates.

a. ¬Div(2, x).

b. x ≥ 2 ∧ ∃
z≤x

(x = p
(x)z
z).

c. ∃
z≤x

(z3 = x).

16. x/2i is primitive recursive since both division and power are primitive recursive.

17. To obtain α(i, x) we can divide x by 2i which has the effect of shifting x to the right by i bits,
and so the i th bit of x is now bit zero of x/2i. Therefore,

α(i, x) = x/2i mod 2.

18. Define ⌊log x⌋ by
⌊log x⌋ = λ

z≤x
(2z > x)− 1.

Then Len(x) = ⌊log x⌋+ 1. You may want to try some different values of x to verify this.

19.

40

20.

21. We have the following. Base case:

⊕
z≤0

f(x⃗, z) = f(x⃗, 0)

is PR since f is assume PR.

Recursive case:

⊕
z≤y+1

f(x⃗, z) =

(
⊕
z≤y

f(x⃗, z)

)
⊕ f(x⃗, y + 1).

22. We have the following. Base case: Trunc(x, 0) = x. Recursive case: Trunc(x, i + 1) =
Trunc(x, i)/10.

41

