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Abstract Due to the nonlinear feature of a ozone pro-
cess, regression based models such as the autoregressive
models with an exogenous vector process (ARX) suffer
from persistent diurnal behaviors in residuals that cause
systematic over-predictions and under-predictions and
fail to make accurate multi-step forecasts. In this article
we present a simple class of the functional coefficient
ARX (FARX) model which allows the regression coef-
ficients to vary as a function of another variable. As a
special case of the FARX model, we investigate the
threshold ARX (TARX) model of Tong [Lecture notes
in Statistics, Springer-Verlag, Berlin, 1983; Nonlinear
time series: a dynamics system approach, Oxford Uni-
versity Press, Oxford, 1990] which separates the ARX
model in terms of a variable called the threshold vari-
able. In this study we use time of day as the threshold
variable. The TARX model can be used directly for
ozone forecasts; however, investigation of the estimated
coefficients over the threshold regimes suggests polyno-
mial coefficient functions in the FARX model. This
provides a parsimonious model without deteriorating
the forecast performance and successfully captures the
diurnal nonstationarity in ozone data. A general linear
F-test is used to test varying coefficients and the port-
manteau tests, based on the autocorrelation and partial
autocorrelation of fitted residuals, are used to test error
autocorrelations. The proposed models were applied to
a 2 year dataset of hourly ozone concentrations ob-
tained in downtown Cincinnati, OH, USA. For the

exogenous processes, outdoor temperature, wind speed,
and wind direction were used. The results showed that
both TARX and FARX models substantially improve
one-day-ahead forecasts and remove the diurnal pattern
in residuals for the cases considered.

Keywords Ozone forecast Æ Nonstationary Æ
Functional coefficient autoregressive Æ Threshold
model Æ Exogenous process

Introduction

Air pollution is a widespread problem in the US, with
over 100 million individuals in 114 different areas ex-
posed to levels of air pollution that exceed one or more
health-based ambient air quality standards. Ground-le-
vel ozone, which is a major element of urban smog, is
one of the most complex, difficult to control, and per-
vasive pollutants. Ozone concentrations can reach
unhealthful levels when the weather is hot and sunny
with very low wind speed or calm condition. The po-
tential environmental impacts of ground level ozone
include human health injury and harmful affects to
vegetation and material (e.g. Meng et al. 1997; Seinfeld
1998).

Air pollution forecasts, if reliable and accurate, could
play an important role as part of a local air quality
management system working along with traditional
emission/concentration based control approaches. The
critical periods are determined from the air pollution
forecasts using weather related data in the area. From a
technical point of view near real time forecasts and, at
least, a forecast to be available for one day in advance
are needed. The purpose of this research is to develop
operational statistical models and their inferences for
short-term forecasts of ozone concentrations.

Due to the simple structure and the robustness in
forecast, time series models have been widely used in
environmental modeling (e.g. Merz et al., 1972; Simpson
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and Layton 1983; Hui 1992; Damon and Guillas 2002).
For a review of the univariate time series models Milli-
onis and Davies (1994) can be consulted. Meteorological
adjustments in various ozone modeling have been con-
sidered in a number of articles (e.g. Fiester and Balzer
1991; Bloomfield et al. 1996; Davis and Deistler 1998). It
is known that hourly ozone concentrations are closely
related to meteorological conditions such as ambient
temperature, wind speed, wind direction, dew point
temperature, and radiation. The lagged meteorological
variables in time series models are important to improve
the prediction performance.

A frequently encountered problem during the
application of an autoregressive type model to envi-
ronmental data is a persistent diurnal behavior in
model residuals. This indicates that there exists non-
linearity in the urban ozone dynamics. For this a
nonlinear model can be considered. However, nonlinear
modeling is rather complex with too many possible
structures and is not suitable for multi-step forecasts. In
order to account for the seasonal nonstationarity
within the linear dynamic model, we consider the
functional coefficient model which allows the regression
coefficients to vary with another variable such as ‘time
of day’. As a special case, we first investigate the
threshold autoregressive model of Tong (1983, 1990)
which separates the autoregressive model in terms of
predetermined threshold regimes. In this study we use
time of day to define the threshold regimes so that
ozone data can be modeled linearly within each of 24 h
of day. Functional changes of regression coefficients
over the threshold regimes are investigated and finally a
functional coefficient model where the coefficient func-
tions are polynomial functions of time of day is de-
rived. The model, in comparison with the threshold
model, contains only a few parameters without deteri-
orating the forecast performance.

The data are described in Sec. 2 and the model classes
and test statistics for nonlinearity are presented in Sec. 3.
Model evaluation parameters are given in Sec. 4. Section
5 presents an empirical application of the proposed
models to the Cincinnati ozone data. Model identifica-
tion, comparison, and the performance of short-term
(one-day-ahead) forecast are given in Sec. 5. Concluding
remarks are given in Sec. 6.

Data

The Greater Cincinnati area is currently not in compli-
ance with National Ambient Air Quality Standard
(NAAQS) for ozone, which was set in 1997. The Ham-
ilton County Department of Environmental Service
(HCDOES) monitors ozone levels in the Greater Cin-
cinnati area from seven monitoring stations in the
southwest Ohio covering four counties. Data used in
model fitting are based on hourly ozone records (in parts
per billion) from the monitoring station (Taft station,
AIRS code 39-061-0040) near downtown Cincinnati

from April 1 to October 31, 2001. Ambient temperature,
wind speed, and wind direction are also available from
the station. Ozone records are only available since 1999
and meteorological data since 2001. For the purpose of
evaluating the performance of short term ozone forecast,
2002 data from the same station are used. Thus, the
evaluation uses an independent data set.

Notice that data are of high-quality with ignorable
number (0.8%) of missing measurements. There is no
evidence of a systematic pattern in missingness. The
missing values are replaced with immediate past obser-
vations. As we discuss in Sect. 5 the forecast perfor-
mance of the proposed model is consistent even with
highly missing data cases.

Time Series Models

Reference Model

The reference model presented in this paper is an auto-
regressive model with an exogenous vector process
(ARX). The hourly observed time series yt with mean l
can be modeled as a regression form:

yt ¼ lþ
Xp

j¼1
/jyt�jþ b0xt þ wt; t ¼ qþ 1; :::; n ð1Þ

with /p „ 0 where p, the order of the autoregressive
part in (1), is a positive integer and error process wt is
assumed to be zero mean white noise process. The
exogenous vector xt ¼ ðx1t; :::; xltÞ0 contains l exogenous
processes with lags r1, r2, ..., rl, respectively, xkt ¼
ðxt; xt�1; :::; xt�rkÞ; k ¼ 1; 2; :::; l and q=max (p,r1,...,rl).
The order r1, r2, ..., rl may involve seasonal components.
The parameter vector b are denoted by b ¼
ðc1; c2; :::; clÞ0, where ck ¼ ðck0; ck1; :::; ckrk

Þ; k ¼ 1; :::; l.
The model can be written as a multiple regression form
in which the vector of predictor is

zt ¼ ð1; z1t; z2t; :::; zMtÞ0 ¼ ð1; yt�1; :::; yt�p; x1t; :::; xltÞ0

ð2Þ

with the corresponding parameter vector of

h ¼ ðh0; h1; :::; hM Þ0 ¼ ðl;/1; :::;/p; bÞ0; ð3Þ

where M denotes the number of predictors.
For a comparison purpose we also consider the

model without exogenous processes (AR model). The
order p can be estimated using the iterative procedure of
Box and Jenkins (1976) and the order r1, r2, ..., rl can be
obtained from the cross-correlation functions (CCF)
between the pre-whitten response and each of the pre-
whitten exogenous processes (see Box and Jenkins 1976
for detailed discussions). Some alternative optimality
criteria, e.g. Akaike’s AIC (Akaike 1974) and Schwarz’s
SIC (Schwarz 1978), can be also used. However, in order
to avoid overfitting problems, the procedure by Box and

242



Jenkins has been suggested in air pollution modeling
(Millionis and Davies 1994).

Functional Coefficient ARX Model (FARX)

Prior studies (e.g. Bauer et al. 2001; Fasso and Negri
2002) argued that even with use of high dimensional
predictor vectors, the ARX model shows diurnal pat-
terns in residuals that cause systematic over- and under-
predictions (see Fig. 2 in Sect. 5). One obvious way to
take into account the nonlinearity in the time series is to
include time of day, weekend-weekday, and month as
nonlinear predictor variables in the model together with
other exogenous variables. However, as shown in Sect.
5, this is not very effective for the ozone data used in this
study.

A useful class of approach for modeling nonlinear
time series is the functional coefficient (or varying coef-
ficient) model by Cleveland et al. (1991) and Hastie and
Tibshirani (1993). The model assumes the form

yt ¼ gðutÞ0zt þ wt; ð4Þ

where gð�Þ ¼ g0ð�Þ; g1ð�Þ; :::; gMð�Þð Þ0 are unknown coeffi-
cient functions of interest. This model enables one to
model the nonlinearity in time series by replacing the
constant coefficients, h0, h1, ..., hM, in (3) with some
smooth functions, g0ð�Þ; g1ð�Þ; :::; gM ð�Þ; of a carefully
chosen variable ut. In this application we use time of day
ut 2{1,2,...,24}, due to the reason mentioned above. This
model is called the functional ARX (FARX) model
(Chen and Tsay 1993). In recent years, various non-
parametric methods have been studied to estimate the
coefficient functions; for example, smoothing splines
(Hastie and Tibshirani 1993), iterative local constant
fitting (Chen and Tsay 1993), local polynomial (Fan and
Zhang 1999), and local linear (Cai et al. 2000). However,
due to the computational burden and difficulties in cal-
culating multi-step forecasts, the nonparametric meth-
ods aforementioned have not taken much attention in
environmental monitoring studies. In this paper we
consider a simple regression procedure to estimate the
functional forms of gð�Þ. For this, we first fit the least
squares regressions

yt ¼ h jð Þ0zt þ w
ðjÞ
t ; ð5Þ

conditioned on ut=j, j=1,2,...,24, where hðjÞ ¼
ðhðjÞ0 ; h

ðjÞ
1 ; :::; h

ðjÞ
M Þ
0 is the vector of regression coefficients

at time j. This is the threshold ARX model (TARX)
considered in Tong (1983, 1990) with the threshold re-
gimes defined in 24 h of day. The TARX model is a
special case of the FARX model (4) where gm
(ut)=hm

(j), m=0,1,...,M conditioned on ut=j and the
ordinary least squares estimate of hm

(j) is an estimate of
the coefficient function gm (ut). The TARX model is
flexible and very effective when the threshold regimes are
well defined such that a ozone process can be modeled
linearly within each regime of the threshold variable.

Bauer et al. (2001) also used immediate past ozone
concentrations to define the threshold regimes. As dis-
cussed in Sec. 5, by plotting the estimates of hm

(j) against j,
the TARX model provides a useful insight into the
functional form of the coefficient functions in (4) (see
Fig. 4).

Testing hypothesis

For practical purpose the TARX model in (5) can be
written as

yt ¼ ~h0zt þ
X24

k ¼ 1

k 6¼ j

h0kztdkt þ wt; dkt ¼ I ut ¼ kð Þ; ð6Þ

where, I(Æ) is the indicator function. Conditioned on ut ¼
j; ~h in (6) is equal to hðjÞ in (5) and the model can be fitted
easily using 24 regression runs for j=1,2,...,24. The
hypothesis for testing varying coefficients can then be
formulated as H0 : hk ¼ 0; for all k 2{1,2,...,24} and
k „ j. For given q=max (p,r1,...,rl), the effective num-
ber of observations in the regression in (6) is n�q. The
number of parameter is 24 (M+1) for the full model (6)
and (M+1) for the reduced model under H0. Then,
when the model under H0 is correct, the general linear
test statistic

F ¼ RSS0 � RSS1ð Þ
RSS1

n� q� 24ðM þ 1Þ
23ðM þ 1Þ

� �
; ð7Þ

has a central F-distribution with 23(M+1) and
n�q�24(M+1) degrees of freedom. Here, RSS0 and
RSS1 are the residual sum of squares under the reduced
model and the full model, respectively. Once the test
rejects the null hypothesis, it indicates that not all
regression coefficients are constant and thus the func-
tional coefficient regression is suggested.

For each fitted model, we also consider two versions
of the portmanteau test of goodness of fit. Let q̂2

k be the
kth sample autocorrelation coefficient of the residuals
from the fitted model, then in the case of white residuals,
Ljung and Box (1978) showed that the statistic

QLB ¼ n0ðn0 þ 2Þ
Xh

k¼1
ðn0 � kÞ�1q̂2

k ; ð8Þ

has an approximate v2 distribution with h degrees of
freedom. Here n¢ denotes the number of sample used to
calculate q̂2

k . Monti (1994) proposed a similar statistic
which replaces the autocorrelation q̂2

k with the partial
autocorrelation p̂2

k :

QMT ¼ n0ðn0 þ 2Þ
Xh

k¼1
ðn0 � kÞ�1p̂2

k : ð9Þ

Under white errors, this statistic also has an approxi-
mate v2 distribution with h degrees of freedom.
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Model evaluations parameters

Several model evaluation parameters are considered.
The consideration is based on their use in air pollution
model evaluation studies. If we denote yt the observed
values, ŷt the predicted values, �y the sample mean of
observed values, ŷ the sample mean of predicted values,
and p the number of parameters in the model, one can
compute:Root Mean Square Error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
ðyt � ŷtÞ2

n� p

vuut
ð10Þ

Coefficient of Determination (R2)

R2 ¼

P
t
ðŷt � �yÞ2

P
t
ðyt � �yÞ2

ð11Þ

Fraction Bias (FB)

FB ¼ 2ðy � ŷÞ
ðy þ ŷÞ

ð12Þ

Normalized Mean Square Error (NMSE)

NMSE ¼ ðy � ŷÞ2

y ŷ
ð13Þ

Factor of two(Fa2)

Fa2 ¼ fraction of data which satisfy 0:56
ŷt

yt
62:0

ð14Þ

RMSE is an unbiased estimator of the regression error
variance and most commonly used statistic in cross-
validation schemes. It takes the number of parameters
p into account through n-p in the denominator. R2 is
the proportionate reduction of total variation in the
time series associated with the use of the model. The
remaining three parameters are also introduced to as-
sess the performance of air quality models (e.g. Kumar
et al. 1999). FB is the normalized mean bias varying
between �2 and +2 and has a value of zero for an
ideal model. NMSE emphasizes the scatterness of
residuals in the entire data set. The normalization by
the product in the denominator assures that the sta-
tistic will not be biased towards over-predictions or
under-predictions. Smaller values of NMSE denote
better model performance. Fa2 is defined as the per-
centage of the predictions within a factor of two of the
observed values. The ideal value for Fa2 should be 1.
In addition, the percentage of the predicted values
within ±5 and ±10 ppb of the observed values are
calculated to get an idea of the forecasting ability of
the models.

Ozone Prediction in Downtown Cincinnati

Model Identification

To identify an initial ARX model, the iterative proce-
dure by Box and Jenkins (1976) is applied to 2001
(April–October) hourly ozone data observed at Taft
station. The partial autocorrelation function of the
ozone process shows two dominant peaks at lag one and
two. This suggests AR with order two (AR(2)) for an
initial model. The obvious 24 h correlation shown in the
autocorrelation function (ACF) of the AR residuals
further suggests the inclusion of the seasonal component
of lag 24. For the exogenous processes, the ambient
temperature (t) in �F, the wind speed (s) in km/h, and
wind direction (w) in degree from north were used. For
better physical meaning, the wind direction was incor-
porated using the west–east component (u) and the
south–north component (v) of wind as follows:

u ¼ s� sinð2pw=360Þ;
v ¼ s� cosð2pw=360Þ: ð15Þ

To reduce multicollinearities among the predictors and
to balance the units, each of the predictor variables was
standardized; centered by sample mean and scaled by
unit of standard deviation.

The cross-correlation functions (CCF) between the
pre-whitten response and each of the pre-whitten exog-
enous processes have dominant peaks at lag 0 and 2 for
both t and s and lag 0 for both u and v. Following model
is used as the reference model:

(M1) ARX model with the predictor vector:

zt ¼ 1; yt�1; yt�2; yt�24; tt; tt�2; st; st�2; ut; vtð Þ: ð16Þ

The AR(2) model is also added for comparison. The
following two models are also considered within model
(M1).

(M2) Polynomial regression with the predictor vector:

zt ¼ 1; yt�1; yt�2; yt�24; tt; tt�2; st; st�2; ut; vt; t2t ; t
3
t ; s

2
t ; s

3
t

� �
:

ð17Þ

This model is considered based on the curvilinear
relations as shown in Figure 1. A third-order model with
temperature and wind speed was found based on the
minimum RMSE criterion.

(M3) Periodic regression with the predictor vector:

zt ¼
�
1; yt�1; yt�2; yt�24; tt; tt�2; st; st�2; ut; vt; t2t ; t

3
t ; s

2
t ; s

3
t ; ht;

h2t ; h
3
t ;m

;
tm

2
t ;m

3
t ;wt

�
: ð18Þ

Here, ht denotes hour in day, mt month in year, and
wt a binary weekend indicate variable (1 for weekends, 0
for weekdays). Figure 2 shows that both AR(2) and
ARX (M1) models have similar diurnal bias; systemat-
ically under-predict during the ascent period and over-
predict during the descent period. The ACF plots in
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Fig. 3a, b pronounce the diurnal behavior of residuals.
Note that model (M3) is expected to take into account
the diurnal pattern in the time series.

An ANOVA (Analysis of Variance) table of models is
given in Table 1.

It seems clear from RMSE and R2 that the AR(2)
model is clearly inferior to others; this shows the
importance of exogenous variables in ozone modeling.
Model (M3) shows slightly the better fit than (M1) and
(M2) models, but R2 is increased only by 0.5% and
0.3% respectively. A direct use of the polynomials is not
very effective to model the nonlinear relationship be-
tween ozone and meteorological variables for (M2) and

(M3) models. Based on the results from the portmanteau
tests ((8) and (9)) in Table 1, all four models discussed
above reject the null hypothesis of white errors. For
subsequent modeling we have chosen to focus on ARX
model (M1).

The threshold model discussed in Sect. 3.2 is applied
to the ARX model (16) to account for the nonlinearity
and the diurnal bias in residuals. As shown in Fig. 2 and
3a, b, the residuals of both AR and ARX models show
biases which have diurnal patterns. This motivates the
use of time of day as the threshold regimes in the TARX
model. The test statistic (7) is F = 4.557 with degrees of
freedom 230 and 4872. The p-value is less than 0.0001,
which strongly rejects the null hypothesis of constant
coefficients. The result from the fitted TARX model is
summarized in Table 1. The model fits the data signifi-
cantly better than the ARX model and the diurnal
autocorrelation in residuals is almost removed (Fig. 3c).
Both portmanteau tests (8) and (9) support this result
with the p-values 0.421 and 0.472, respectively.

Figure 4 gives the least squared estimates of the
coefficients and their 95% confidence limits under the
TARX model for each of 24 h of day. The plots well
exhibit the curvilinear trends of the coefficient estimates
over 24 h of day. The fitted polynomial curves (solid
line) with the order of up to four are very close to the
lowess (locally weighted scatterplot smoothing) lines
(dotted line) and well reside within the 95% confidence
limits. This suggests the use of the functional coefficient
model with polynomial coefficient functions:

gðxÞ ¼ a0 þ a1xþ a2x
2 þ :::þ amx

m: ð19Þ

Here, aj; j ¼ 1; :::;m are the coefficient vectors to be
estimated. A stepwise model selection procedure is ap-
plied to fit the final model which allows different order of

Fig. 1 Curvilinear relation
between ozone concentration
and meteorological variables
with lowess lines superimposed

Fig. 2 Hourly mean observed and mean predicted from non-
threshold (AR and ARX) models (top) and the corresponding
residuals (bottom)
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the polynomial for different predictor. Using the final
FARX model we can reduce the number of parameters
from 240 in the TARX model to only 31, without much
deteriorating the prediction performance (Table 2). The
ACF in Fig. 3d indicates that the diurnal bias is almost
removed. The p-values of both portmanteau tests of
0.133 and 0.160 also show that the residuals are white. In
the following section, the proposed models are com-
pared in terms of the one-day-ahead forecast perfor-
mance.

Forecasting

To explore the forecast performances of the models in
Sect. 5.1, the 2002 data at the same station are used. To
avoid further complications, it is assumed that meteo-
rological processes are observable or at least predictable
from a weather forecasting system. In this sense, fore-
casting procedures discussed in this section is condi-
tional to known exogenous processes. Due to the
autoregressive structure of the models, forecasts can be
computed recursively. Table 2 summarizes a comparison
of one-day-ahead forecast performances. All models
have FB and NMSE values close to zero showing that
they are acceptable in terms of unbiasness and scatter-
ness of the mean residuals. Both TARX and FARX

models clearly outperform the AR and the ARX model.
As regard the TARX and the FARX models, the FARX
model is slightly better in terms of R2 and RMSE, and
the TARX model is slightly better in terms of Fa2, ±5,
and ±10. However, considering the number of param-
eters, the FARX model is preferred; the extremely large
number of parameters in the TARX model results in an
overfitting problem by occasionally forecasting negative
ozone levels.

Figure 5 draws the hourly profile of one-day-ahead
forecasts from various models for the second week of
August, 2002; during 2002 the highest peak (120 ppb)
was observed at the hour count 3137, which corresponds
to 5 p.m., August. 9. Both TARX and FARX models
give similar results, so the hourly forecasts from the
TARX model is omitted from the plot. The FARX
model clearly outperform the constant coefficient models
and seems to give a satisfactory forecasting perfor-
mance. The model well forecasts most of the ozone
levels, but still under-predicted the highest peak at
120 ppb. The forecasted daily ozone averages (Fig. 6)
from the FARX model appear to agree very well with
the observed average on most days. On about 93% (199
out of 213 days) of days there are errors within ±10 ppb
(65% within ±5 ppb). The temporal pattern of the daily
ozone averages is well captured by the model.

To verify the forecast performance of FARX in cases
of highly missing data, a portion of 2001 data is removed
at random and replaced with immediate past observa-
tions. Then, FARX model is fitted for the reconstructed
data and the one-day-ahead forecast performance of the
fitted model is explored using 2002 data. It appears that
FARX model is satisfactory in forecast even with highly
missing data cases. With 10% missing data, the forecast
error in terms of RMSE increases only by 7.7% (from
10.04 to 10.81). The RMSE value for 20 and 30%
missing data increases slightly to 10.96 and 11.26,
respectively.

Fig. 3 ACF of residuals from
fitting various models at Taft
station

Table 1 Comparison of fitted models

Model R2 RMSE df QLB (p-val) QMT(p-val)

AR(2) 0.865 6.79 5108 77.7 (.000) 42.4 (.000)
M1 (ARX) 0.911 6.00 5102 47.0 (.000) 30.0 (.003)
M2 0.913 5.92 5098 34.1 (.001) 25.9 (.011)
M3 0.916 5.82 5091 98.8 (.000) 44.6 (.000)
TARX 0.927 5.57 4872 12.3 (.421) 11.7 (.472)
FARX 0.921 5.70 5081 17.5 (.133) 16.7 (.160)
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Conclusion

For regional ozone level forecast, a simple AR model
with exogenous variables is reconsidered. Although re-
duced by introducing lagged meteorological variables
(temperature, wind speed, wind direction) in the model,
the seasonal nonstationarity in errors is still evident.
Direct inclusion of time of day, weekend-weekday, and
month as nonlinear predictor variables in the model
together with the other exogenous variables failed to

remove the nonstationarity. In this paper, a periodic
threshold autoregressive models with the 24 threshold
regimes defined in 24 h of day (TARX) have been

Fig. 4 Coefficient estimates
(empty circle) from TARX
model with 95% confidence
limits (vertical line) against
hour in day with polynomial
(solid line) and lowess (dotted
line) lines superimposed

Table 2 Model evaluation parameters for one-day-ahead forecasts
of 2002 hourly ozone level at Taft for different model classes

AR(2) ARX TARX FARX

R2 .411 .643 .769 .775
RMSE 17.189 12.82 11.02 10.04
FB .0231 .0121 .0108 .0119
NMSE .0005 .0002 .0001 .0001
Fa2 .702 .757 .821 .806
±5 .232 .314 .391 .387
±10 .454 .595 .674 .667 Fig. 5 One-day-ahead forecasts of hourly ozone level for the

second week of August, 2002 at Taft station using various models
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proposed to enhance fitting and to remove unexplained
seasonal autocorrelation in residuals. Application of the
proposed model to hourly ozone data in downtown
Cincinnati indicates that the TARX model almost re-
moved the persistent diurnal behavior of residuals in the
non-threshold models. The model also substantially
improved the day-ahead forecasts. Investigation of
changing coefficients over 24 h regimes in the TARX
model suggests the use of the functional coefficient
autoregressive model (FARX) where the coefficient
function is a polynomial function of 24 h of day. By
using the FARX model, it is possible to drastically re-
duce the number of parameters without deteriorating the
forecast performance. A simple recursive procedure for
multi-step forecast requires prior knowledge in current
and past values of meteorological variables. In this pa-
per it is assumed that the next 24 h meteorological val-
ues are available from a weather forecasting model. The
use of forecasted meteorological data may or may not
introduce additional error into the ozone forecasts.
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