NOTE \#6: DEscriptive and Univariate Statistics I

PROC MEANS;

```
PROC MEANS <DATA=mydata> <list of statistics> <options>;
    VAR variable1 variable2, ...;
    OUTPUT OUT=outdataname
            Statistics = variables;
RUN;
```

Mostly used Statistics in PROC MEANS:

```
CLM Lower and Upper 95% confidence interval for mean
LCLM/UCLM 95% Lower/Upper Confidence Limit for mean
KURT Kurtosis
MAX Maximum
MEAN Average
MEDIAN Median
MIN Minimum
N Number of observations without missing
NMISS Number of observations with missings
PROBT Probability of a greater absolute value for t-value
P95 95th percentile (also available P1, P5, P10, P25, P50,P75,
    P90, P99)
Q1 / Q3 25th / 75th percentile
RANGE Range
STD Standard deviation
SUM Sum
T t-test for Ho: mean = 0
VAR Variance
/* Example 5-1 */
DATA Ex5_1;
INPUT Class $ Gender $ Score;
DATALINES;
A Male 96
A Male 87
A Male 89
A Female 98
A Female 82
B Male 65
B Male 85
B Female 63
B Female 93
B Female 77
C Male 62
C Male 94
C Male 80
C Female 99
;
PROC MEANS DATA = ex5_1 ;
BY Class; RUN; * To use BY statement data must be sorted by the variable;
PROC SORT DATA = ex5_1 OUT=ex5_1sort;
by Gender; run;
```

```
PROC MEANS DATA = ex5_1sort MEAN N;
```

 BY Gender; RUN;
 PROC MEANS DATA = ex5_1 chartype; * this option will give you binary _TYPE_;
Class Class Gender; *Class statement doesn't require sorted data;
OUTPUT OUT = ex5_1out
$\mathrm{N}=$ count
Mean = meanscore;
RUN;
Proc Print DATA=ex5_1out; run;
Proc Print DATA=ex5_1out (DROP = _FREQ_) ;
Where _TYPE_ EQ '11'; *note _TYPE $\overline{\text { _ }}$ is a character variable;
RUN;
/* Example 5-2 */
DATA GNP; SET SASHELP.GNP;
Year =year(date);
quarter = qtr(date);
PROC MEANS DATA = GNP chartype;
VAR GNP CONSUMP INVEST EXPORTS GOVT;
CLASS quarter;
OUTPUT OUT = gnp_out
/* (drop = _:) will remove all variable beginning with an underscore */
N (quarter) = count
MEAN (GNP CONSUMP)=
STD (GNP CONSUMP) =
MAX (INVEST EXPORTS) =
LCLM (GNP) $=$ UCLM (GNP) $=/$ autoname;
run;
PROC PRINT data = gnp_out heading=horizontal; RUN;
DATA gnp_CI; SET gnp_out (KEEP=Quarter GNP_Mean GNP_StdDev count);
DO i =1 to 5;
IF _N_=i then
DO;
LL = GNP_Mean - TINV (.975, count-1) * GNP_StdDev/SQRT(count);
UL = GNP_Mean + TINV (.975, count-1) * GNP_StdDev/SQRT(count);
END;
END;
DROP i;
RUN;
Proc Print DATA = gnp_CI heading=horizontal; run;
/* Example 5-3 */
/* This example simulate 100 random samples of each size 30 from N(MU, STD) and
calculate 95% CI for mean for each sample */
DATA Rand_Norm;
Count=100; $\mathrm{N}=30$; MU=5; STD=2; seed=0;
DO I=1 TO Count;
DO K=1 TO N;
X=MU+STD*RANNOR(seed); OUTPUT;
END;
END;
RUN;
PROC PRINT; RUN;

```
PROC MEANS NOPRINT MEAN; BY I; VAR X;
    OUTPUT OUT=mean_out MEAN=Mean STD= SD N= N ;
RUN;
DATA CI; SET mean_out; MU=5;
    LOWER=Mean-TINV(.975, N-1)*SD/SQRT(N);
    UPPER=Mean+TINV(.975, N-1)*SD/SQRT(N);
    IN=0; IF LOWER<MU<UPPER THEN IN=1;
PROC MEANS MEAN SUM;
    VAR Mean SD LOWER UPPER IN;
RUN;
/* IN-CLASS
Generate 100 random samples from Poisson distribution with a mean of your
choice and calculate 90% CI (a) using normal approximation (2) using 5% and 95%
tiles. Count the number of intervals which contain the true mean and compare.
*/
```

Functions for Random Samples:

Distribution	SAS Function
Binomial (n, p)	RANBIN(seed, n, p)
Exponential (lambda)	ranexp(seed)/lambda
Beta (alpha, beta)	beta*rangam(seed, alpha);
Normal (mu, sigma)	mu+sigma*rannor(seed);
Poisson (mean)	RANPOI(seed, mean)
Uniform (b, a+b)	a*ranuni(seed) +b

PROC FREQ; The procedure provides tables (one, two, and three ways) of counting frequencies of both character and numeric variables.

```
/* Example */
/* Consider the data in Example 5-1 */
Proc Format;
    value grade 0 -< 70 = 'C to D'
    70 -< 90 = 'B to C'
    90 - HIGH = 'A to B';
RUN;
PROC FREQ DATA=Ex5_1 order=formatted;
                            *also available order=data, order=freq;
Format Score grade.;
                            *format is used to convert numeric to character category;
Tables Class / nocum nopercent;
                    *One-way table. nocum removes cumulative statistics columns;
                    *nopercent will not give percent;
Tables Gender*Score / Chisq;
                            *Chisq gives test for independence between gender and score;
Table Score * (Class Gender) / nocol norow fisher;
                        *two two-way tables: Score*Class, Score*Gender;
                        *nocol norow will remove conditional prob and ;
```

*fisher also gives Fisher's Exact test for independence;
RUN;

PROC TABULATE : This procedure can be used to generate tabular reports which involve descriptive statistics.

```
PROC TABULATE DATA = Ex5_1;
    CLASS Gender Class;
    var Score;
    table (Class ALL)*(N*f=5.0 PCTN);
    table Score*mean*f=7.1;
    table (Gender ALL)*(Class ALL), Score*(N mean min max)*f=6.2;
    Keylabel ALL = 'Overall'
        MIN = 'Lowest'
        MAX = 'Highest'
        PCTN = 'Percent';
    run;
```

