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PSEUDO-ORBIT SHADOWING
IN THE FAMILY OF TENT MAPS

ETHAN M. COVEN, ITTAI KAN AND JAMES A. YORKE

ABSTRACT. We study the family of tent maps—continuous, unimodal, piece-

wise linear maps of the interval with slopes ±s, \/2 < s < 2. We show that

tent maps have the shadowing property (every pseudo-orbit can be approxi-

mated by an actual orbit) for almost all parameters s, although they fail to

have the shadowing property for an uncountable, dense set of parameters. We

also show that for any tent map, every pseudo-orbit can be approximated by

an actual orbit of a tent map with a perhaps slightly larger slope.

1. Introduction. Let /: X —► X be a continuous map of compact metric space

to itself. The orbit of x G X is the sequence {x, f(x),f2(x),...}. Thus a sequence

{xo, Xi,... } is an orbit if and only if f(xi) = Xi+y for every i > 0. Given a number

6 > 0, a 6-pseudo-orbit is a sequence {xo,xy,...} such that d(/(xj),x,+i) < 6

for every i > 0. The notion of pseudo-orbit goes back at least to G. D. Birkhoff

[Bi]. Pseudo-orbits arise when noise is introduced into a dynamical system, for

example, when orbits are calculated by a computer. In such cases, and especially

for expanding maps, where errors propagate exponentially, it is important to know

when pseudo-orbits can be approximated by actual orbits.

We say that / has the shadowing property (also known as the pseudo-orbit tracing

property) if for every e > 0, there is a 6 > 0 such that every <5-pseudo-orbit can be

e-shadowed by an actual orbit, i.e., if {xo,xi,...} satisfies d(/(xi),x,+i) < 6 for

every i > 0, then there is an x €E X such that d(fx(x), xt) < e for all i > 0.

The term "shadowing" was introduced by R. Bowen, although the concept had

appeared previously in the work of D. Anosov [A]. The fact that Axiom A diffeo-

morphisms (restricted to the nonwandering set) have the shadowing property is the

key to the analysis of such maps [Bo]. For example, one gets structural stability

from the shadowing property and expansiveness [W].

In this paper, we consider the family of tent maps, i.e., the piecewise linear maps

/s: [0,2] -► [0,2], v/2 < s < 2, defined by

fs(x) = SX, 0 < X < 1,

= s(2-x),        1 < x < 2.

See the figure.

Restricting the parameters to lie in the interval [\/2,2] is a technical convenience.

Using the fact that for 1 < s < y/2, f2 (restricted to an appropriate interval) is
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topologically conjugate to fs2, it can be shown that all the theorems (although not

all the lemmas) of this paper hold for the parameter interval (1,2].

The main results of this paper are a test for the shadowing property in tent maps

(Theorem 4.2), theorems about the size of the set of parameters for which fs has

the shadowing property (Theorems 6.1 and 7.4), and a theorem about shadowing

pseudo-orbits of fs with actual orbits of ft (Theorem 8.1).

Recall that a point x € X is recurrent if for every e > 0, there is a positive

integer n such that d(fn(x),x) < e. Theorem 4.2 says roughly that for s ^ 2, fs

has the shadowing property if and only if the critical point c = 1 is recurrent and

for every e > 0, there is positive integer n such that |/™(c) — c| < e, and either

/"(c) = c or |/"(x) — c| has a local maximum at x = c. The latter condition can be

read off the kneading sequence of fa. In particular, fs has the shadowing property

if the critical point is periodic, e.g., if s = (1 + y/h)/2, the Golden Mean, and does

not if the critical point is preperiodic (i.e., has a periodic point in its orbit), but

not periodic, e.g., if s = \/2.

THEOREM 6.1.   fs has the shadowing property for almost all parameters.

THEOREM 7.4. The set of parameters for which fs does not have the shadowing

property is locally uncountable.

(A set is locally uncountable if its intersection with any open set is uncountable.)

If fs does not have the shadowing property, then there is an e > 0 such that for

every 6 > 0, there is a ^-pseudo-orbit which cannot be e-shadowed by any actual

orbit. In fact, it can be shown that with probability one, a randomly chosen 6-

pseudo-orbit cannot be e-shadowed by any actual orbit. By this we mean that,

with s > 0 as above, for each 6 > 0, there is a natural measure on the collection of

all ^-pseudo-orbits (cf., the uniform diffusion example in [Y]) such that the set of

<5-pseudo-orbits which can be e-shadowed by an actual orbit has measure zero.

Even if /s does not have the shadowing property, pseudo-orbits of /s can be

shadowed by actual orbits of ft for some nearby t > s.
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THEOREM 8.1. Given a parameter s and an e > 0, there is a 8 > 0 and

a parameter t > s such that every S-pseudo-orbit of fs can be e-shadowed by an

actual orbit of ft-

Pseudo-orbit shadowing in more general families of unimodal maps has been

studied by H. Nusse and the third author [NY]. They obtain a variant of Theorem

8.1 using other methods.

2. Shadowing: generalities. In this section, / and g are continuous maps

of a compact metric space X to itself, and B(x,e) = {y G X: d(x,y) < e} is the

closed e-ball about x G X, where d is the metric on X.

Our positive results are based on variants of the following elementary observa-

tion.

LEMMA 2.1. Let e, 8 > 0. If B(f(x),e + 8) C g[B(x, e)] holds for all x G X,
then any 6-pseudo-orbit of f can be e-shadowed by an actual orbit of g.

PROOF. Let {xo, xi,... } be a 5-pseudo-orbit of /. Define sets W0,Wy,... as

follows:

Wo = B(x0,e),    Wk = Wk-yng-k[B(xk),e)},        k > 1.

By induction, gk(Wk) = B(xk,e) holds for all fc > 0.   Hence f]Wk ^ 0, and

{xo, xy,... } can be e-shadowed by the g-orbit of any point in f] Wk.    D

It follows from Lemma 2.1 that

LEMMA 2.2. / has the shadowing property if for every e > 0, there is a 8 > 0

such that B(f(x),e + 8) C f[B(x, e)} holds for all x G X.

It is easy to see that the condition of Lemma 2.2 is satisfied by the map f(z) = z2

of the unit circle, as well as by the tent map f2. However, the condition is not

satisfied by any tent map except f2. It fails at the critical point.

LEMMA 2.3. Let e,8 > 0, A > 1, and let N be a positive integer. Suppose that

for each x G X, there is a positive integer n = n(x) < N satisfying

(2-1) f[B(fn(x),e+8)] C {fn+1(y): d(x,y) < e,d(f(x), fl(y)) <Xe,l<i< n).

Then any 8'-pseudo-orbit can be e'-shadowed by an actual orbit, where e' > Xe +

8 and 8' is small enough so that for any 8'-pseudo-orbit {xo,Xy,...}, we have

d(fk(x0),xk) <8 for l<k<N.

PROOF. For x G X and n a positive integer, write

A(x,n) = {y: d(x,y) < e,d(fl(x), f(y)) < Xe, l<i< n).

Then we can rewrite (2-1) as

(2-2) f[B(r(x),e + 8)]cr+x[A(x,n)}.

Let {xo, xy,... } be a <5'-pseudo-orbit. Define integers mk and nk, and sets Wk,

fc > 0, as follows.

m0 = 0,        n0 = n(x0),        W0 = A(xmo,n0),
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and for fc > 1,

mk = mk-y + nk_y =n0-\-h nk-i,

nk =n(xmk),

Wk = Wk-ynf-m*-1(f[A(xmk,nk)}).

It suffices to show

(2-3) /m*+1 (Wk) = f[A(xmk, nk)\,        fc > 0.

For if (2-3) is true, then {xn,Xi,... } can be e'-shadowed by the orbit of any y G

f]Wk. To see this, fix i > 0.
If i = 0, then y G W0 C B(x0, e). Thus d(f°(y), x0) < e' since e < e'. For t > 1,

write i = mk + j, where fc > 0 and 0 < j < nk. Then

d(P(y),Xi) < d(f3+m^(y),f3(xmk)) + d(f3(xmk),xmk+J).      '

Now

f3+mk[y) = fJ-y{fmk + l{y)) e f3-l[rk + l{Wk)] = p[A(xmk,nk)\,

and therefore d(f3+mk (y), f3 (xmk)) < Xe. By our choice of 8', we have

d(P(xmk),Xmk+j) <8.

Hence, since e' > Ae + 8, we have d(fl(y), xj < e'.

We verify (2-3) by induction on fc. (2-3) holds for fc = 0 by definition. Suppose

that fc > 0 and (2-3) holds for fc. Since

fm^+x(Wk+1) = fm^+x(Wk) n f[A(xmk+„nk+y)},

it suffices to show that /[A(xmt+1,nA:+i)] C fmk+1 + x(Wk). We have

f[A(xmk+1),nk+1] C f[B(xmk+1,e)\ C f[B(fn*(xmk),e + 8)[ C fn*+x[A(xmk,nk)}

= rk(f[A(Xmk,nk)} = r«[fmk+x(wk)} = r^+x(wk).

The first containment is by our choice of 8', and the second is by (2-2).    □

It follows from Lemma 2.3 that

LEMMA 2.4. / has the shadowing property if there is a constant X > 1 such

that for every e > 0, there is a 8 > 0 and a positive integer N such that for each

x G X, there is a positive integer n = n(x) < N satisfying

f[B(fn(x),e + 8)} C {fn+x(y): d(x, y) < e, d(f(x),f(y)) < Xe, l<i< n).

To prove Theorem 8.1, about shadowing pseudo-orbits of fs with actual orbits

of ft, we will use the following lemma. Its proof, which we omit, is similar to those

of Lemmas 2.1 and 2.3.

LEMMA 2.5. Let e,8 > 0 and let N be a positive integer. Suppose that for

each x G X, there is a positive integer n = n(x) < N such that B(fn(x),e + 8) C

gn[B(x,e)}. Then any 8'-pseudo-orbit of f can be e'-shadowed by an actual orbit of

g, where

e'=8+    sup    sup     sup    d(gk(x),gk(y))
i<KJViexjiefl(i,E)

+   sup   supd(/fc(x),0fc(x)),
l<k<N xex
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and 8' is small enough so that for any 8'-pseudo-orbit {xq, xy,... } of f, we have

d(fk(x0),xk) <8 forl<k<N.

3. Tent maps: generalities. We will see in the next section that some of the

information needed to determine whether a tent map has the shadowing property

can be expressed in terms of the kneading sequence [MT] of the map. In this

section, we introduce enough terminology and notation to do just that.

Let v = v(s) = vyv2-- be the kneading sequence of fs, i.e., the (extended)

itinerary of the critical value, defined as follows:

vn=L if/»<c,

un = C if/?(c) = c,

vn = R   iif?(c)>c.

Related to the kneading sequence is what we call the signature sequence a =

a(s) = aya2 ..., defined by

ay = -1,

Vn+l = °~n if Vn = L,

an+1 = -1      if vn = C,

0~n+l — —°n     if Vn = R.

The reader familiar with kneading theory will recognize that a is the sequence

of coefficients of the invariant coordinate of the critical value, repeated infinitely

often if the critical point is periodic.

In the sequel, we shall encounter intervals where we know the endpoints, but

not their order. We introduce the following notation: if x ^ y, then (x, y) denotes

either [x,y[ or [y,x[, whichever make sense.

The following lemma is trivial, yet basic to the analysis which follows. Recall

that c = 1 is the common critical point of all the tent maps.

LEMMA 3.1.   Given a parameter s, if e > 0 is sufficiently small, then:

(1) If\x-c\<e, then fs[B(x,e)} = B(fs(x),se).

(2) Ifze (x,y) andc(£int(x,y), then fs(z) G (fs(x),fs(y)) and[fa(x)-fs(y)\ =

s[x-y\.

(3) If x ^ y, then c G int(/*(x), fk(y)) for some fc > 0.

It follows from Lemma 3.1 that given a parameter s, a positive integer n, and

e > 0 sufficiently small, the endpoints of /™[c - e, c + e] are /"(c) and /"(c) ± sne.

The sign is given by the signature sequence.

LEMMA 3.2. Given a parameter s and a positive integer n, if [x — c\ is small

enough so that c £ int[/^(c,x)] for 1 < k < n, then /"(x) = /"(c)-|-crn|x-c|sn. In

particular, ife > 0 is sufficiently small, then /"[c-e, c+e] = (/"(c), /"(c)+<7ns"e).

4. A test for the shadowing property in tent maps. In this section, we

obtain necessary and sufficient conditions for a tent map to have the shadowing

property (Theorem 4.2). These conditions are that the critical point is recurrent

and returns close to itself on the "correct side", a condition which can be stated in

terms of the kneading and signature sequences.



232 E. M. COVEN, ITTAI KAN AND J. A. YORKE

LEMMA 4.1. Let s ^ 2. Then fs has the shadowing property if and only if

every e > 0, there is a positive integer M such that c G {fsM(y) '■ \fl(y) — fl(c)\ < s,

0<i<M}.

PROOF. Fix s and write / in place of /s.

PART I. Suppose the condition holds, and let e > 0. We verify that the condition

of Lemma 2.4 holds with X = s4, 8 = (s— l)e, and N = Af + 1, i.e., for each x G [0,2],

there is a positive integer n = n(x) < M + 1 such that

(4-1)   f[B(r(x),se)} C {fn+x(y) :[x-y\<e, |/«(x) - f'(y)\ < s4e, l<i< n}.

Note that (4-1) is implied by

(4-2)       B(fn(x), se) C {fn(y) :[x-y[<e, |f (x) - fl(y)[ < s4e, l<i< n}.

Suppose first that f3(c) = c, i.e., s = (1 + \/5)/2, the Golden Mean. Let e > 0

be small enough so that c ^ fl[c — e, c + e] for i = 1 or 2, and also (s + s3)e < 4.

It is easy to verify that (4-2) holds with

n(x) = 1    if |x — c| > e,

n(x) = 2   if e/s <\x - c\ < e,

n(x) = 3   if e/s2 < |x - c| < e/s.

Now suppose that |x — c| < e/s2. Then /3(x) G [c,c + se[, and

{f(y) '■\x-y\<e, \f(x) - f(y)\ < s4e, 1 < i < 3} = [c, /3(x) + s3e].

But /[5(/3(x), se)[ = f[c, /3(x) + se], so (4-1) holds with n(x) = 3. Similarly, the

condition of Lemma 2.4 holds if f4(c) = c.

We may therefore suppose that /3(c) ^ c and f4(c) ^ c, and that e > 0 is small

enough so that c ^ fl[c — s4e, c + s4e[, 1 < t < 4. For n > 1, let

Cn = {fn(y) '■ \f(y) - f(c)[ <e,0<i< n}.

We may also assume that M is the least positive integer such that c G Cm- Our

choice of e insures that M > 5.

If |x - c| > e, then (4-2) holds with n(x) = 1. Now fix x with |x - c| < e. For

n > 1, let

Dn = Un(y): \P(x) - p(y)[ <e,0<i< n},

En = {fn(y) :[x-y\<e, \fl(x) - f*(y)\ < s4e, l<i< n).

With this notation, (4-1) and (4-2) become

(4-1') f[B(fn(x),se)[Cf(En).

(4-2') B(fn(x),se)CEn.

Note that Dn and En are intervals and that

(4-3) if |z-c|sfc < e and c §£ intDi,...,intDfc_i, then

Dk = (fk(c), fk(x) + oke) and fk(c) = fk(x) - ak[x - c[sk.
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Resuming the proof, suppose first that c ^ Dk, 1 < k < M. We claim that

|x-c|sM > e. If not, then by (4-3), DM = (fM(c), fM(c) + aM(\x - c\sM + e)).

Since M is the least positive integer such that c G Cm, we have, as in (4-3),

CM = (fM(c),fM(c)+aMe),

and so c G Cm C Dm, which is a contradiction. Therefore, |x — c|sM > e if c ^ Dk,

1 < k < M.
Let fc be the least positive integer such that |x - c|sfc > e. Thus 1 < fc < M.

From (4-3) and the fact that c£ Dy,...,Dk-y, we get that

Dk-y = (fk~l(x) - ak-y[x - c[sk-x,fk-1(x) + crfc_ie).

Then, since c ^ Dk-y, Dk = [fk(x) — e, fk(x) + e]. Finally, since c £ Dk,

f(Dk) = [fk+x(x) - se,fk+x(x) + se) C Ek+1,

so (4-2') holds with n(x) = fc + 1.
Now suppose that 5 < fc < M is the least positive integer such that c G Dk.

Using (4-3) again, we have (fk(x), fk(x) + ake) C Dk. Suppose for definiteness

that ak = +1. We consider the cases, fk(x) > c, and fk(x) < c, separately.

Let fk(x) > c. By the minimality of fc, c ^ Dy,...,Dk-y, and so fk~x(x) +

ak-y£ G Dk-y. Thus

fk(x) + se = f(fk~x(x) + crfc_i£) G /(Z?fc_i) C Ek.

But c G Ek, and so [c,fk(x) + se] C Ek.   Since c < fk(x) < c + e, we have

/[B(/*(x), se] = f[c, fk(x) + se], and therefore (4-1') holds with n(x) = fc.

Finally, let /*(x) < c. We have chosen e so small that fc > 5. Since c G Ek, we

have c £ £fc_4 U ■ • ■ U Ek-y. As above, fk~4(x) + ak-4e G D/t-4,

/fc(x) + s4e = f4(fk~4(x) + crfc_4£) G /4(L>fc-4) C £fc,

and [c, /fc(x) + s4£] C Ek. But s + 2 < s4 (since s > y/2), and so

/[5(/fc(x), se)] C /[c, /fc(x) + (s + 2)£] C £fc.

Therefore (4-1') holds with n(x) = fc.

PART II. Suppose the condition fails.

Suppose first that the critical point is not recurrent. There is an e > 0 such that

(4-4) |/"(c)-c|>£   foralln>l.

Then, given 0 < 8 < e, let {xo, Xy,... } be the <5-pseudo-orbit defined as follows:

xo = c,

xy = f(c) +8,

Xk = fk-X(Xy), fc>2.

Suppose that {xo, xi,... } can be £-shadowed by the orbit of y. Let n be the least

positive integer such that c G (fn(y), x„). (If no such integer exists, then by Lemma

3.1(3), f(y) = xy, which is impossible since Xi > s, the maximum value of /.) Now

f(c) e (f(y),xy) andci(f(y),xy). Therefore f2(c) G (f2(y),x2). Bntx2 = f(xy),

so (assuming n > 2), c G (f2(y),x2). Continuing, we get c,fn(c) G (f"(y),xn),

and therefore |/n(c) — c[ < e, contradicting (4-4).
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Finally, suppose that the condition fails for e > 0 but that the critical point is

recurrent. Recall from Part I of this proof that

Cn = {fn(y) '■ \f(y) - fl(c)\ <e,0<i< n}.

Since c £ Cn for all n > 1, we have Cn = (fn(c),fn(c)+ane). Thus, if |/"(c)-c| <

£, we must have an = +1 or —1 according as vn = R or L.

Given 0 < 8 < e, we construct a <5-pseudo-orbit {xn,xi,... } as follows. Since c

is recurrent, \fk(c) — c\ < 8 for some fc > 1. Let

xl = fi(c),        0<i<k-l,

= rk(c),        i > fc.

Suppose that {xo, Xi,... } can be £-shadowed by the orbit of y. Then {xfc, xk+l,... }

can be e-shadowed by the orbit of fk(y). Hence fk+3(y) G Cj for all j > 0. In

particular,

(4-5) <Tj = +l    iifk+3(y)> fk(c) and a3 =-1    if fk+3(y) < fk(c).

By Lemma 3.1 again, c G (P(c),fk+3(y)) for some j > 1. Since (f3(c),fk+3(y)) C

Cj, we have \f3(c) — c[ < e. Therefore

(4-6) Oj = +1    if Uj = R,        aj = —1    if Vj = L.

Since c G (P(c),fk+3(y)), (4-5) and (4-6) cannot both hold.    □

THEOREM 4.2. Let s ^ 2. Then fs has the shadowing property if and only if

for every e > 0, there is a positive integer n such that |/"(c) — c| < e, and either

vn — C, or an = +1 or —1, according as vn = L or R.

(In light of Lemma 3.2, the second condition may be thought of as saying that

either /"(c) = c, or |/"(x) — c| has a local maximum at x = c.)

PROOF. Write / and a in place of fs and a(s). Let e > 0, and let n be the least

positive integer such that the condition in the statement of the theorem holds. If

fn(c) = c, then / has the shadowing property by Lemma 4.1. Suppose then that

fn(c) ^ c. By Lemma 3.1,

(4-7)        {/"(x): |f (x) - P(c)\ <e,0<i<n} = </"(c), /"(c) + ane).

But the condition on an and the fact that |/"(c) — c| < e imply that c G (/"(c),

/"(c) -r-cr„e). By Lemma 4.1, / has the shadowing property.

Conversely, suppose that / has the shadowing property and let e > 0. Then, by

Lemma 4.1, there is a least positive integer n such that c G {/"(x): [f%(x) — P(c)\ <

e, 0 < i < n). Then (4-7) holds and hence so does the condition on an.    U

5. Varying the parameter. In order to show that fs has the shadowing

property for almost all parameters, we will need to examine how the orbit of the

critical point c = 1 varies with s. To do this, we introduce the functions ipn,

n > 1, defined on [\/2,2] by <pn(s) = /™(c)- Each <pn is continuous and piecewise

polynomial.

We say that a parameter s is periodic with period n > 1 if /"(c) = c (i.e.,

ipn(s) = c), but fk(c) ^ c for 1 < fc < n. By Lemma 4.1, /s has the shadowing

property whenever s is periodic. The following two statements are immediate.
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LEMMA 5.1. The set of interior endpoints of the polynomial pieces of <p„ is

precisely the set of parameters with period less than n.

LEMMA 5.2.   <pn is differentiable except at parameters with period less than n.

The main result of this section is

LEMMA 5.3. There is a positive constant X such that for every s G [y/2,2] and

every n > 0 such that <p'n(s) exists,

(5-1) As"< \<p'n(a)\ <3s"    and    sgn(<p'n(s)) =-an.

PROOF. First notice that if <p'n+y(s) exists, then

(5-2) <Pn+l(s) = s<Pn(s) + <Pn(s)     if Vn(s) = L,

^» + l(S) = -S<Pn(s) + (2 - <Pn(s))      $ "«(«) = R-

If vn(s) = L, then |pn(s)| < L and if vn(s) = R, then |2 - <pn(s)[ < 1. Hence,

l^'n + lWI < 8\tp'n(8)\ + 1 < S\(s\<p'n_y(s)\) + 1| + 1 < • . .

< Sn<f'y(S) + Sn'X + ■ ■■ + 1 < S"+7(S - 1).

Therefore, since l/(s - 1) < 3, the right-hand inequality of (5-1) holds.

If for some 0 > 0, we have

(5-3) K(s)|>/?+l/(s-l)    and    sgn(^(s)) = -an,

then it follows that

bn+i(s)l >s0 + l/(s-l)    and    sgn(p'n+1(s)) =-an+1.

The patient reader may verify that there is a 0 > 0 such that for all s G [y/2,2],

(5-3) holds with n = 8, that {|^4(s)|: s G [\/2,2], 1 < n < 7} is bounded away from

zero, and that the equality in (5-2) holds for 1 < n < 8. Therefore, the existence

of A follows, and so (5-1) holds.    □

It follows from Lemma 5.3 and the Mean Value Theorem that

LEMMA 5.4. Let \/2 < a < 2. Then any subinterval of [a, 2] of length greater

than 2/Xan contains a periodic parameter with period less than n, where X is the

constant in Lemma 5.3.

LEMMA 5.5.   The periodic parameters are dense.

(Lemma 5.5 is not new. It follows easily from the fact that the map s i—► i/(s)

is one-to-one, and the continuity of the maps <pn.) The Mean Value Theorem and

the fact that ip'n is never zero also yield

LEMMA 5.6. ///"(c) = /"(c) = c, then there is a periodic parameter between

s and t with period less than n. In particular, in any parameter interval, there is

exactly one periodic parameter with smallest period.

6. fs has the shadowing property for almost all parameters. In this

section, we prove that the set of parameters s for which fs has the shadowing

property has full Lebesgue measure (denoted by u) and is residual.
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THEOREM 6.1.   fs has the shadowing property for almost all parameters.

PROOF. For e > 0, let T£ be the set of parameters in [\/2,2] satisfying the

conditions of Theorem 4.2, i.e., s G T£ if and only if there is a positive integer n

such that |/"(c) -c| < e, and either vn = C, or an = +1 or -1 according as vn = L

or R. It suffices to show that T£ has full measure if 0 < e < 3/A, where A is the

constant in Lemma 5.3. Fix such an e > 0 and write T in place of T£.

To show that T has full measure, we show that for every closed interval J C

(v/2,2),

(6-1) p(JHT)/p(J)> Ae/18.

This is sufficient, for then the complement of T can have no point of density

(Lebesgue point). It suffices to prove (6-1) for intervals J = [a,b] such that there

is a positive integer N = N(a, b) > 4 satisfying

(6-2) 2e/3bN+ 2/XaN <b-a<3/XaN,

and

(6-3) (a/b)N > 1/2,

and to prove that for any such interval

(6-4) p(JtlT)>e/3bN.

Any interval contained in (\/2,2) can be decomposed into subintervals (i.e., writ-

ten as a possibly infinite union of subintervals with disjoint interiors) satisfying (6-2)

and (6-3), with different Ws for different subintervals, and if (6-2), (6-3), and (6-4)

hold for J = [a,b], then

p(JHT)/p(J) > (e/3bN)/(3/XaN) = (Xe/9)(a/b)N > Ae/18.

Let J = [a,b] be such an interval, and write 7 in place of e/3bN. By Lemmas

5.2 and 5.3, if s G J has period k < N, then |/*(c) — c| < e for all t G J such that

\t - s\ < 7. Write J = Jy U J2 U J3, where

Ji = [0,0 + 7),        J2 = [a + 7.*>-7],        Js = (b~l,b].

Let so be the periodic parameter in J2 with smallest period, say M. Since the

length of J2 is greater than 2/XaN, we have M < N by Lemma 5.4. Suppose

that there are no periodic parameters in Jy U J3 with period less than M. Then

on [so — 7, So + 7], vm-i and aM are constant, and <p'M does not change sign.

Therefore

om = +1 or — 1     according as    i^m-i = L or R

holds either for all s G [so — 7, so], in which case [so — 7, so] C T, or for all

s G [so, so + 7], in which case [s0, s0 + 7] C T. In either case, p( J fl T) > 7.

Suppose that there are (necessarily finitely many) periodic parameters in Jy U J3

with period less than M. We construct finite sequences {pi,... ,pn}, {91, • • ■, Qn},

and {sy,..., sn}, with Sj G Jy U J3 having period less than M, such that

(6-5) a<pk< pfc+i < qk+1 < qk < b.

(6-6) (o,Pfc)U(ofc,6)CT.
(6-7) If either [sn -7,sn] C (p„,on)nT or [s„,sn + 7] C (pn,qn)nT, then the

sequences have length n.
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(6-8) If the sequences have length n and (6-7) does not hold for n, then there

are no periodic parameters in (p„, qn) D (Jy U J3) with period less than M.

Assuming such sequences exist, if (6-7) holds for some n, then there is nothing

to prove. If not, and the sequences have length n, then by (6-8), so is the periodic

parameter in (pn,<7n) with smallest period. Then either [so — 7, so] PI [Pn.so] Q T

or [so,so + 7] fl [so,<7n] Q T. Without loss of generality, assume the former. If

«o - 7 > Pn, then p,(J D T) > 7, while if so - 7 < Pn, then (a,s0] C T, and so

p(JnT) > s0-a >7.

To construct these sequences, let pi = a and qy = b. Assuming (6-7) does not

hold for n = 1, let si be the periodic parameter in (pi,gi) with smallest period.

We must have either si G Jy and si — 7 < pi, or si G J3 and st + 7 > qy. In the

first case, let p2 = sy and q2 = qy, and in the second case, let p2 = pi and q2 = Sy.

Notice that (6-6) holds for fc = 2. Repeat the procedure on (p2,q2), etc.    □

COROLLARY 6.2. The set of parameters for which fs has the shadowing prop-

erty is residual.

PROOF. In the proof of Theorem 6.1, we showed that given small enough e > 0

and a closed interval J C (v/2,2) there is an open interval J' C J n Te. Therefore,

each Te contains a dense open set.    □

7. fs does not have the shadowing property for a locally uncountable

set of parameters. In this section, we show that the set of parameters s G [\/2,2]

for which fs does not have the shadowing property is locally uncountable, i.e., it

meets every open interval in an uncountable set. By Theorem 4.2, it is sufficient

to exhibit, for each closed interval J C (^/2,2), an uncountable set of parameters

s G J such that for each such s, the critical point c = 1 is not /s-recurrent. To do

this, we go back to the kneading theory.

The shift map r from the space of all sequences over some finite alphabet to itself

is defined by

[t(v)]% = V>i + y, t>l.

LEMMA 7.1.   The critical point is fs-recurrent if and only if u(s) is r-recurrent.

The proof is an easy exercise, using the following combinatorial test for r-

recurrence: v is r-recurrent if and only if every initial word of u appears at least

twice in v.

In the kneading theory, sequences are ordered by the following rules.

(7-1) L<C <R.
(7-2) li v = vyv2 ..., p = P1P2 ■ • •, and n is the least positive integer such that

vn / Pn, then v < p if either vn < un and there are an even number of i?'s in

vy- vn-i, or vn > pn and there are an odd number of R's in vy ■ ■ ■ vn-y.

With this order on sequences, the map s h-» v(s) is increasing, and thus the

kneading sequence of f3 satisfies i/(s) > v(y/2), i.e., v(s) > RLR°°.

A sequence V = V\V%... is strictly maximal if rn(v) < v for all n > 1; it is

primary (i.e., not a *-product) if there is no fc > 1 such that, except for i = 0

modfc, Vi = Vj whenever i = jmodk. Note that a periodic parameter cannot have

a strictly maximal kneading sequence.
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LEMMA 7.2 [DGP, Theorem 2; CE, p. 147 and Lemma III. 1.6]. //
v > RLR°° is strictly maximal and primary, then v is the kneading sequence of fs

for some s G [\/2,2].

We call a parameter s prefixed if the nonzero fixed point of /s is in the /s-orbit

of the critical point. Prefixed parameters are characterized by having kneading

sequences of the form WR°°, where W is a finite word with letters R and L.

LEMMA 7.3.   The prefixed parameters are dense in [\/2,2].

PROOF. Let J C (\/2,2) be an open interval. Choose s G J so that the critical

point is not /s-periodic, and let z be the nonzero fixed point of /s.

There is a positive integer N such that if t G (\/2,2) and v(t) agrees with v(s)

in the first N places, then t & J. There is an e > 0 such that if |x — c| < e, then

the itinerary of fs(x) agrees with v(s) in the first TV places.

Now Un>o fs~n(z) 1S dense in [f2(c),fa(c)], so there exists x G [c - e, c + e] and

n > 0 such that f3(x) = z. We may choose x so that

(7-3) fs(x) ± z.

(7-4) |/*(x) - c\ > [x - c\ for fc = 1,2,....

Let £ be the /^-itinerary of /s(x). We may also choose x so that

(7-5) £ > RLR°°.
(7-6) £ is primary.

(7-5) may be satisfied by choosing x close enough to the critical point, and (7-6)

may be satisfied by choosing x so that GCD{|/ — fc|: £j = £k = L} = 1.

Then £ has the form Wi?00. By (7-3) and (7-4), it is strictly maximal. Then

by (7-5) and (7-6), it satisfies the hypotheses of Lemma 7.2. Therefore there exists

t G (\/2,2) such that £ = v(t). Clearly t is prefixed, and our choice of e and A^

implies that t G J.    □

THEOREM 7.4. The set of parameters for which fs does not have the shadowing

property is locally uncountable.

PROOF. Let J C [\/2,2] be an open interval. By Lemma 7.3, J contains a

prefixed parameter s. The kneading sequence v(s) may be written WR°°, where

W is a finite word with letters R and L. We may choose W to be long enough

so that it contains an odd number of i?'s and so that if v(t) begins with W, then

teJ.
We construct uncountably many sequences v > RLR°° which are strictly max-

imal, primary, begin with W, and are not r-recurrent. Then by Lemma 7.2, any

such v is u(t) for some t G J; by Lemma 7.1, the critical point is not /t-recurrent;

and by Theorem 4.2, ft does not have the shadowing property.

Let n be the length of W. Since u(s) = vyv2- ■ is strictly maximal, for each

fc > 1, there is a least positive integer m = m(k) such that vk ^ uk+m. Since v

begins with RL, m(k) = 2 for fc > n. Let

m = max{m(fc): fc > 1} = max{m(fc): 1 < fc < n - 1}.

Choose ny < n2 < ■ ■ ■ with each n, odd and ni > m. Then u = WRni WRn2 ■ • ■ is

strictly maximal, not r-recurrent, and satisfies u > RLR°°. With the proper choice

of finitely many n,'s, v will be primary. There are uncountably many such v.    D



PSEUDO-ORBIT SHADOWING 239

With a bit more care, it can be shown that each interval contains uncountably

many parameters such that the critical point is /s-recurrent, yet /s does not have

the shadowing property. With notation as in the proof above, define v = "lim"Bfc,

where

By=WRn\      Bk = Bk-yBk-yWRn", fc>2.

Then v is strictly maximal, r-recurrent, primary, and satisfies v > RLR°°. Thus

v = v(t) for some t G J for which the critical point is /(-recurrent. However, it can

be shown that for e > 0 small enough, |/"(c) - c| < e only when n corresponds to

the last entry in an appearance of some Bk. For any such n, vn = R and an = +1.

By Theorem 4.2, ft does not have the shadowing property.    □

8. Shadowing with parameter-shifting. Even if /s does not have the shad-

owing property, pseudo-orbits of fs can be shadowed by actual orbits of ft for some

nearby t > s. In particular, we have

THEOREM 8.1. Given a parameter s and an e > 0, there is a 8 > 0 and

a parameter t > s such that every 8-pseudo-orbit of fs can be e-shadowed by an

actual orbit of ft.

PROOF. Fix s < 2. (If s = 2, choose t = s, for f2 has the shadowing property

by Lemma 2.2.) By Lemma 5.3, there is a positive constant A such that for all

r G [\/2,2], and all n > 0 such that ip'n(r) exists

(8-1) Arn < \<p'n(r)\ < 3r"    and    sgn(<p'n(r)) =-an(r).

Without loss of generality, A < 1. Choose N is so large that

(8-2) SN > 5/A.

If s is a periodic parameter, then by Theorem 4.2, fs has the shadowing property,

and we choose t = s. Otherwise, let e > 0 be small enough so that s + e/4 < 2, and

(8-3) \fk(c) -c\> 2N+2e   for 1 < fc < N,

and there is no periodic parameter in [s, s + e/4] with period less than N. Choose

t = s + e/4 and 8 = e/4.
It suffices to find e',8' > 0 with e' —► 0 as e —> 0 such that every <5'-pseudo-orbit

of fs can be e'-shadowed by an actual orbit of /(. We do this by verifying the

hypothesis of Lemma 2.5 holds with f = fs, g — ft, and e, 8, and N as above. That

is, for each x G [0,2], we find a positive integer n = n(x) > N such that

(8-4) B(f?(x),e + 6)Cf?[B(x,e)].

If |x — c| > e, then (8-4) holds with n(x) = 1. We fix x with |x — c| < e, and

show that (8-4) holds with n(x) = N. By the symmetry of the tent maps about

the critical point, we may assume that x > c.

By Lemma 5.2, ipk is differentiable on [s, t] for 1 < fc < N. Then by the Mean

Value Theorem and (8-1),

(8-5) \fk(c)-fk(c)[<3(t-s)tk<2N-xe.

Then, by (8-3), we have c £ (fk(c),ft(c)) ior 1 < k < N. Also ip'N exists and is

never zero on [s,t], so we have

(8-6) ctjv is constant on [s,t].
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Let y G B(x, e) and 1 < k < N. Then \x - y] < e and [y - c\ < 2e. It follows from

Lemma 3.2 that

(8-7)     [fk(x)-fk(y)\<tke<2N~xe   and    ]fk(y) - fk(c)[ < 2tke < 2N+Xe.

By (8-3), (8-5), and (8-7), we have

(8-8) c £ f?[B(x, £)]        for 1 < fc < N.

Without loss of generality, we may assume that ctjv = +1, and hence that <p'N < 0

on [s,t]. Using (8-6) and (8-8), and the fact that ftN[B(x,e)] = ftN[c,x + e], we

have, by Lemma 3.2, that

ftN[B(x,e)) = [ftN(c),ftN(c) + (x + e-c)tN).

Similarly,

B(fsw(x),e + 8) = [f?(c) + (x - c)sN - be/4, f?(c) + (x - c)sN + 5e/4].

By the Mean Value Theorem, ff*(c) = f^(c) + (t - s)<p'N(r) for some r G [s,t].

But tp'N < 0 on [s,t\. Therefore, using (8-1) and (8-2), we get

(8-9) ftN(c) > f?(c) - 3(* - s)tN > f?(c) - 3tNe/4   and

ftN(c) < /f(c) - (* - s)XsN < f?(c) - be/4.

Since x > c, it follows that

ftN(c) < f?(c) - 5£/4 < f?(c) + (x- c)sN - be/4,

i.e., the left-hand endpoint of f^[B(x,e)] is less than the left-hand endpoint of

B(f^(x), e+8). It remains to check that the right-hand endpoints have the opposite

order, i.e., that

ftN(c) + (x + e- c)tN > /f(c) + (x - c)sN + be/4.

We calculate as follows:

ftN(c) + (x + e - c)tN = ftN(c) + (x- c)tN + tNe

> /f(c) + (x - c)sN + tNe/4    (by (8-9))

>/f(c) + (x-c)sN+5£/4,

the final inequality by (8-2), since A < 1. This completes the proof.     □

ACKNOWLEDGMENTS. The authors thank H. Nusse and W. Reddy for useful

conversations, and an anonymous friend for considerably shortening the proof of

Lemma 7.3. This work was done while the first two authors were at the Institute

for Advanced Study. They thank the Institute for its hospitality and support. The

third author was partially supported by National Science Foundation Grant DMS

84-19910 and Air Force Office of Scientific Research Grant 81-0217.

REFERENCES

[A] D. V. Anosov,   Geodesic flows on closed Riemann manifolds with negative curvature,  Proc.

Steklov Inst. Math. 90 (1967).
[Bi] G. D. Birkhoff, An extension of Poincare's last geometric theorem, Acta Math. 47 (1925),

297-311.



PSEUDO-ORBIT SHADOWING 241

[Bo] R. Bowen, On Axiom A diffeomorphisms, CBMS Regional Conf. Ser. in Math., no. 35, Amer.

Math. Soc, Providence, R.I., 1978.
[CE] P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Progress in

Physics 1, Birkhauser, Boston, Mass., 1980.

[DGP] B. Derrid, A. Gervois, and Y. Pomeau, Iterations of endomorphisms on the real axis and

representation of numbers, Ann. Inst. Henri Poincar6 29 (1978), 305-356.

[MT] J. Milnor and W. Thurston, On iterated maps of the interval, mimeographed notes, 1977.

[NY] J. Yorke and H. Nusse, Is every trajectory of some process near an exact trajectory of a nearby

process?, preprint, 1986.

[W] P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes

in Math., vol. 668, Springer-Verlag, Berlin and New York, 1978, pp. 191-210.

[Y] L.-S. Young, Stochastic stability of hyperbolic attractors, preprint, 1985.

School of Mathematics, Institute for Advanced Study, Princeton, New
Jersey 08540

Department of Mathematics, Wesleyan University, Middletown, Connecti-
cut 06457 (Current address of E. M. Coven)

Institute for Physical Sciences and technology, University of Maryland,
COLLEGE PARK, MARYLAND 20742 (Current address of Ittai Kan and J. A. Yorke)


