
Sensitive dependence on initial conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 Nonlinearity 6 1067

(http://iopscience.iop.org/0951-7715/6/6/014)

Download details:

IP Address: 134.139.127.202

The article was downloaded on 17/10/2012 at 21:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/6/6
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Nonlinearity 6 (1993) 1067-1075. Printed in the UK 

Sensitive dependence on initial conditions 

Eli Glasnert and Benjamin Weiss$ 
t School of Mathematics, Tel Aviv University, Tel Aviv, 69978, Israel 
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Abstract. It is shown that the property of sensitive dependence on initial wnditions in the 
sense of Guckenheimer follows from the other lwo more technical pans of one of the most 
common recent definitions of chaotic systems. It follows that this definition applies to a broad 
range of dynamical systems, many of which should not be considered chaotic. W e  investigate 
the implications of sensitive dependence on initial wnditions and its relation to dynamical 
properties such as rigidity. ergodicity, dnimal iq  and positive topological entropy. In light of 
these investigaiions and several examples which we exhibit we propose a natural family of 
dynamical systemox-systems-as a better abstract framework for a general theoeoly of chaotic 
dynamics. 

AMs classification scheme numbers: 58F08. 58Fll,54H20,28D05 

Introduction 

The vague notion of chaos has attracted much attention in recent years and several authors 
have tried to formalize it in various ways. One such popular attempt uses the definition of 
'sensitive dependence on initial conditions'. A chaotic system is defined, according to this 
school, to be a compact metric space X ,  together with a continuous self-map T : X + X 
satisfying the following three properties: 

(1) Topological transitivity: there exists a point xo in X whose orbit O(x0) = { F x o  : 
n E W) is dense in X .  (It then follows that O(x) is dense for all x in a dense Gs subset of 
X.)  

(2) The T-periodic points are dense in X .  
(3) Sensitive dependence on initial conditions: there exists a positive E such that for all 

,x E X and all 6 > 0 there is some y which is within a distance 6 of x and for some n, 

As far as we know the first to formulate (3) was Guckenheimer,.[6]. in his study on maps 
of the interval (he required the condition to hold for a set of positive Lebesgue measure). 
The phrase-sensitive dependence on initial conditions-was used by Ruelle [8] (see also 
[l]), to indicate some exponential rate of divergence of orbits of nearby points. This is not 
too far from our suggestion of x-systems below. The above definition of chaos (which, 
we believe, was introduced in [Z]) became standard in several monographs dealing with 
the subject of chaos. In some cases the discussion of various examples of chaotic systems 
is concluded by proving sensitivity (after the usually easy  observation that the system in 
question satisfies conditions (1) and (2) of the definition of chaos). 
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Now it turns out that in fact-unless the system is a cyclic permutation of a finite set 
of points-onditions (1) and (2) actually imply condition (3) (corollary 1.4). 

It is thus clear that some other condition should be added to (1) and (2) if one is to 
capture the notion of chaos. The most natural candidate for this (in the topological category, 
at least) is the requirement that T has positive topological entropy. This quantifies a rate 
for the sensitive dependence and says that many nearby points have orbits that diverge 
exponentially fast. 

Returning to the second condition, that periodic points be dense, we find that it is 
unnecessarily restrictive. In lieu of this we suggest, for reasons to become clear to the 
reader later in this paper, an analogous condition requiring only the existence of a T- 
invariant measure whose support is aJ of X .  We call a topologically transitive system 
satisfying this latter condition E-system and if, in addition, the system has positive 
topological entropy we call it a Xsystem. When the condition 'the periodic points are 
dense' in X is replaced instead by a condition requiring the almost periodic points to be 
dense, we get the intermediate notion of an M-system. Recall that a point xo in a dynamical 
system (X, T) is called 'almost periodic' if its orbit closure is a minimal subset of (X, T). 
Equivalently for any E > 0, the set of n E N such that d(T"x0,xo) -= E has bounded gaps. 

In section 1 we examine the condition (3) of sensitive dependence on initial conditions 
and show that any infinite E-system necessarily satisfies this condition. In the next 
two sections the notions of E- and M-system and their relation to positive entropy are 
considered. Alongside these considerations various examples are exhibited which support 
the view that the notion of X-system is a natural one. To be sure in many physical systems 
such as the ones modelled by the Henon map, the dissipative part of the system precludes 
the possibility that there be an invariant measure with global support. For these kinds of 
systems the chaotic nature lies in the presence of an attractor that is chaotic. 

Remark. After the submission of this paper, we became aware of [IO]. Its main result is 
equivalent to our coroUary 1.4. 

1. Sensitivity 

In the following we call a pair (X, T), where (X, d) is a compact metric space and T 
a continuous map from X to itself a system. We say that a system (X, T) has sensitive 
dependence on initial conditionr or more briefly, has property S, or is sensitive, if there 
exists an E > 0 such that for every x E X and every neighbourhood U of x, there exists 
y E U and n E N with d(T"x, Tay) E .  When ( X ,  T) does not have property S we say 
that it is a - S-system, or that it is not sensitive. Spelling this property out we have: for 
every E > 0 there exist an x E X and a neighbourhood U of x such that for every y E U 
and every n E N, d(T"x, T"y) < E. We observe that eivially ( X ,  T) is - S whenever X 
has an isolated point 

Let (X, T) be a transitive (= topologicaUy transitive) system, we say that the system 
(X, T) is 

(1) a P-system if the periodic points are dense in X ;  
(2) an M-system if the almost periodic points are dense in X; 
(3) an E-system if there exists a T-invariant probability measure on X, which is positive 

on every non-empty open set. 
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Following 141, let us call a point x of X ,  regular if it is a generic point for some invariant 
measure U and u(U)  > 0 for every open neighbourhood U of x. Considering condition (3). 
we see, using the ergodic decomposition of the invariant measure, that when this condition 
is satisfied, the set of regular points is dense in X .  Conversely, when the regular points 
are dense in X ,  it is easy to construct an invariant probability measure which is positive 
on non-empty open seis. Let us call a system ( X .  T )  ergodic if there exists an ergodic 
T-invariant measure f i  on X whose support is all of X .  Thus ( X .  T )  is an E-system iff the 
regular points are dense in X ,  iff the union of the ergodic subsystems of X is dense in X .  
An example in [9] shows that an E-system need not be ergodic. (The example constructed 
there is, in fact, a P-system.) Clearly every minimal system is ergodic. 

It is now clear that (1) + (2)  + (3). Notice that for a transitive system these conditions 
imply that ( X ,  T )  has no isolated points unless it is finite? Since for a transitive system with 
no isolated points T is necessarily onto we conclude that under each of these conditions T 
is onto. 

L.emma 1.1. For a topologically transitive system ( X ,  T )  with no isolated poinis, being - S is equivalent to the following property: for every E > 0 there exists a transitive point 
(i.e. a point with dense orbit) xo E X and a neighbourhood U of xo such that for every 
y E U and every n e N, d(T"x0, T"y) < E .  

Proof. Let E be given and let x and U be as in the definition of the property - S. By 
transitivity there is a point xo in X whose orbit is dense; let no E N with T"Oxo E U .  There 
exists a S > 0 such that BS(T"xo) C U. Denote x, = T"x0, and V = Ba(xt),  then it is 
clear that for every y E V and n E N, d(T"x1, T"y)  < 26. Since X has no isolated points 

Recall that a system ( X ,  T )  is called uniformly rigid if there exists a sequence n k  7 w 

the point x1 is also transitive and the proof is complete. 

such that the sequence [T"*] tends uniformly to the identity map on X .  

Lemma 1.2. 
is uniformly rigid. 

Proof. Given an E > 0 there is, by the previous lemma, a transitive point xo and a 
neighbourhood U of xo such that d(T"x0, T"y)  < E for every n, and every y E U. Let k 
now satisfy Tkxo E U ,  then d(T"+kxo, T"x0) < E for every n, and since xo is transitive 
it follows that d(T'z, z )  < E for every z in X. Applying this observation to a sequence 
of E ~ ' S  that tend ta zero gives a sequence of ki's  such that Tkr tends uniformly to the 

A topologically transitive system without isolated points which is not sensitive 

identity. 0 

We have, in fact, proved more than was stated in the lemma. This additional information 
will be used in the proof of the following theorem. Since an E-system is either finite or 
has no isolated points, it follows that an E-system which is not sensitive is uniformly rigid. 

Theorem 1.3. An E-system which is not sensitive is necessarily a minimal equicontinuous 
system. 

Prooff. Let (X, T )  be a non-sensitive E-system. If X has an isolated point it is finite and 
minimal and we are done. Otherwise, given E > 0, as in the previous proof, there exists 

t We fhank H Furstenberg for his help with this proof. 



1070 

a transitive point xo and a neighbourhood U of xo such that d(T"x0, T"y) < E for every 
n and every y E U. By assumption there exists a point z E U, generic for some ergodic 
measure p on X with @(U) > 0. 

Let A = [n E N : P z  E U). Since z is generic for p, it follows that A 
has positive upper density. A well known fact (see, for example, [5] p 7 3 ,  implies 
now that A - A = (a - a' : a,a' E A) ,  is syndetic (i.e. has bounded gaps). Let 
k , l  E A and suppose k z 1. Then T'z E U implies Vn,d(T"+'z,T"xo) < E and 
z E U implies Vn, d(T""z, T*+'xo) Q E .  Hence Vn, d(Tnt'x0, T"x0) < 26, hence 
Vw E X,d(T'w,  w) < 2 ~ .  Similarly we get Vw E X,d(Tkw, w) < 26. Put together 
these yield 

E Glasner and B Weiss 

Vw, d(Txw,  T'w) ='d(Tk-'T'w, T'w) < 4 ~ .  

Since T is onto we get d(T"b,  w) < 46 for all w E X .  We have now proved that for 
every E > 0 there exists a syndetic subset B of N with 

This is Bohr's almost periodicity condition which is well known to be equivalent to 
0 equicontinuity. Finally, transitivity implies that ( X ,  T) is minimal. 

Corollary 1.4. A P-system which is not sensitive is a cyclic permutation on a finite set. 

Proof. This is an immediate corollary of theorem 1.3. Since, however, a direct proof will 
only take few lines, let us write it down. Let xo be a transitive point and U a neighbourhood 
of xg with d(T"x0, T"y)  < E ,  V y  E U. Vn. There exists a periodic point z E U, say Tkz  = z .  
Then 

Vn, m d(~"+"~xo ,  ~ " x o )  < d ( ~ " + ~ ' x o ,  T"+"~z) + d ( ~ " z ,  ~"xo) < 2 ~ ,  

Hence d(T"'w, w )  c 26 for every w E X , and every m. This implies equicontinuity; 
transirivity implies minimality and since the periodic points are dense, X must be finite. 0 

By lemma 1.2 a transitive - S system with no isolated points is uniformly rigid and 
by theorem 1.3 such systems are already minimal equicontinuous if they are E-systems. A 
natural question to ask is what type of transitive - S uniformly rigid systems can arise. 
Here is a partial answer showing that a wide variety do arise. 

Proposition 1.5. Any transitive uniformly rigid system (X, T )  has an extension (Y, S) that 
is transitive, uniformly rigid, with no isolated points and is not sensitive. 

Proof. We assume that T"' tends uniformly to the identity map and that xo has a dense 
orbit. Define for x, x' E X, p(x ,  x') = S~p,,~d(Z''k. T"x') and notice that by rigidity, the 
sequence p(T"'x, x' )  tends to 0 with i. Let now Q = (X x IQN and let 

Let WO be the point of Q whose nth coordinate is (T"x0, p(T"xo,xo)) and let Y be the 
orbit closure of WO under the shift map S of Q. 



Sensitive dependence on initial conditions 1071 

The points o E Y have the form ( T k x ,  ~ ( k ) )  where we denote by U(. )  the projection 
of w onto RN, and 

(so),, = (T"'-'x, o ( n  + 1)). 

It turns out, as is always the case for a transitive system that in checking the non- 
sensitivity we will be dealing with only one point WO.  Given E > 0, let U be the 
neighbourhood of WO defined by 

U = { ( T K X ,  w(k))  E Y : o(0) < €/IO]. 

ci(S"oo, S"W) < E 

Since WO has a dense orbit, in order to verify that for all w E U and all n 

it suffices to do so for points o of the form S ~ W O .  Suppose then that ( S j 0 x o , o ~ )  E U .  
Since p(TjOx0, X O )  < 6/10 we have d(T'+j@xo, T'xo) < €/IO for all i >, 0. By the triangle 
inequality we find that [p(T'xo,  X O )  - p(T'+j0xo, X O ) ]  < E / 5  for all i 0. For any n we 
therefore have 

ri(S%Jo, S"(Sj%l0)) = ci(S?LJ0, s-+jOoo) 

= 22-'{d(TK+"xo, Tkf"+iox~)  + [p(Tk+"x,,, xo) - p(Tk+"+jnxo, X O ) ~ }  

L O  
m 

< C 2 - K { € / l o + E / 5 )  < E .  
k=O 

We observe that the only reason for requiring ( X ,  T )  to be rigid in the above is to make 
0 

Since there are plenty of uniformly rigid systems which are sensitive-e.g. every 
uniformly rigid wea!dy mixing minimal system, (see [7] e.g. for the existence of these), is 
sensitive according to theorem 1.3-it follows from proposition 1.5 that an extension of a 
sensitive system with no isolated points, need not itself be sensitive (see however corollary 
1.7). 

It is not hard to see that whenever we deal with a transitive system with no isolated 
points, the condition - S is equivalent to the condition: 

sure that the point WO, is not an isolated point. 

~ X V E  > 036 > OVy E Ba(x)Vnd(T"x, T"y)  < E .  I 

A map z : X + Y is called semi-open if the image under n of every non-empty open 
set has a non-empty interior. 

Lemma 1.6. 
TC : X -+ Y be a semi-open homomorphism of systems, then Y is a - S-system. 

Proof. Given E > 0 there exist x E X and 6 > 0 such that for every x' E Bs(x) and for 
every n,  d(T"x,  T"x') < E . The map 7c-l : Y -+ 2' is an upper-semicontinuous map; 
therefore there exists a dense Ga subset YO of Y where 7r-l is continuous. Since JC is semi- 
open it follows that X O  = z-'(Yo) is a dense Ga subset of X. Let xo E X1 f l  X O  fl Bs(x),  
where X I  is the dense Gs subset of transitive points in  X. There exists an > 0 such 
that B,(xo) c & ( x )  and then for every x' E B,(xo) and every n ,  d(T"x0, Tax') < 26. 
Since yo = a(xo)  is a continuity point for z-', yo is in the interior of the set n(B,(xo)). 
Thus there exists a 0 > 0 with &(yo) c int z ( E q ( x 0 ) ) .  If y' E &(yo) then there exists 
x' E B,(xo) with n(x') = y' whence, for every n, d(T"x0, T"x') < 2~ and finally also 

Let ( X ,  T )  be a transitive - S-system with no isolated points and let 

d(T"y', T"y0) < 2 ~ .  U 
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Corollury 1.7. 
no isolated points and Y is sensitive, then so is X. 

E Glnsner and B Weiss 

If n : X 4 Y is a semi-open homomorphism where X is transitive with 

2. Entropy and x-systems 

As was shown in the previous section, a eansitive - S-system with no isolated points is 
uniformly rigid. In particular this implies that it has zero (topological) entropy. Thus if 
(X, T )  is transitive, has no isolated points (e.g. when it is an E-system), and has positive 
entropy then it has sensitive dependence on initial conditions. In the other direction it is 
easy to produce an example of an infinite P-system which is sensitive and of zero entropy. 
One way to build such an example is as follows. 

Example 2.1. The system X will be the orbit closure of a point WO in the shift system 
(IO, l)N, U ) .  To ensure that X has zero topological entropy we insist that for all k > 1, and 
n>O 

wo(n .3'+' + i) = ~ ( n  .3"' + i + 3') 0 < i < 3'. 

By stage k, a&) will be defined for some indices i, and we will have the property that if 
Ak denotes the block w&), 0 6 i < 3k, for some sequence of nj tending to infinity, WO will 
also be defined for nj + m, 0 6 m -= j .3', and will equal Ak . A k . .  . Ak (j-times) there. 
These repetitions do not conflict with the previous requirement and it is easy to see that 
this guarantees property P. There is enough freedom left to construct a non-periodic such 
00 whose orbit closure has then all of the desired properties. In particular the sensitivity 

0 
Let us call an E-system of positive entropy an E+-system or a x-system. Recall that a 

system (X, 2') is ergodic if there exists an ergodic measure on X whose topological support 
is all of X. 

Proposition 2.2. 

follows from the expansiveness of all subshifts of symbolic dynamical systems. 

(1) A product of two E-systems which is transitive is an E-system. 
(2) The product of an E-system and a X-system, when transitive, is a x-system. In 

particular this is the case when at least one of the factors is topologically weakly mixing. 
(3) For a X-system (X, T )  we have 

h(X,  T) = Sup{h(Y, T) : (Y, T) an ergodic subsystem of (X, T)). 

Pmo? (1) and (2) are clear. For (3) we recall that the measure theoretical entropy 
considered as a function on the space of invariant probability measures on X satisfies 
the formula: 

where p, = w dP(w) is the ergodic decomposition of the invariant measure p. Combining 
0 

In the parallelism between topological dynamics and ergodic theory, minimal 
corresponds to ergodic and M-systems correspond to E-systems. In the next section we 
shall examine the possibility of substituting M-systems and minimal systems for E-systems 
and ergodic systems respectively in the above proposition. 

this with the variational principle we get ow result. (See, for example, [3] p 78). 
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3. Entropy and M-systems 

L e m m  3.1. A transitive product of two M-systems is an M-system. 

Proof. It suffices to show that if ( X ,  T )  and (Y, T )  are minimal and (X x Y ,  T x T )  
is transitive then it is an M-system. Let Z c X x Y be an arbitrary minimal subset of 
(X x Y,  T x T).  Clearly Z projects onto all of X and since I x T" commutes with T x T ,  
(I x T")(Z) is also minimal. Since (Y ,  T )  is minimal it follows that U ( I  x T")(Z) is dense 

0 in X x Y as required. 

Let us call an M-system of positive entropy an M+-system. 

Corollary 3.2. 
(1) A transitive product of an M-system and an M+-system is an M+-system. In 

particular this is the case when at least one of the systems is topologically weakly mixing. 
(2) The product of two minimal system of which at least one is of positive entropy 

and at least one weakly mixing, is an M+-system. 

Proof. These statements follow from lemma 3.1 and the fact that the product of a 
0 

Are there examples of M+-systems which are not product of minimal systems and whose 
subset of periodic points is empty? (The shift on (0, I}" is an example of a P-system of 
positive entropy which is not a product of minimal sets.) The answer to this question is 
yes and we next describe an example of such an M+-system which is, moreover, the set of 
non-wandering points of a Cm map. 

E m p l e  3.3. Let (n, U )  be the shift on two symbols, say 0 and 1. Let T be the circle 
group, realized as Rmod 1. Let X = Q x T and let q : Q + T be defined by 

when u ( 0 )  = 0 [ when u(0) = 1 

topologically weakly mixing system with a transitive system is transitive. 

v(u) = 

where a, fl and 1 are rationally independent. Now define the skew product map T : X 3 

X by T(u, t )  = (uu, I +?(U)). Let U be a periodic point of period k .  Suppose the block 
defining U has m zeros and n ones, and let y = ma + n b .  Since U% = U,  we have 
T'(u, t )  = (U, t + y )  and we conclude that {U, U@, . . . ,&'U) x T is a minimal subset 
of (X, T) .  This observation implies that the almost periodic points are dense in X. It now 
follows that for every transitive point 00 of Q, the point (WO, t )  for any i ,  is a transitive 
point of X. We conclude that (X, T )  is an M+-system (hence also a X-system), with no 
periodic points. 

To see that (X. T )  is not a product of minimal systems we observe that if 0 and 1. are 
the fixed points of U ,  then the restrictions of T to the sets a x T and (1) x T form two 
disjoint minimal sets. This implies that no non-trivial minimal system can be a factor of 
(X, TI. 

Finally to exhibit (X, T )  as the subset of non-wandering points of a Cm map, define a 
skew product map T on R x T by T(s,  t )  = ( f ( s ) .  t + q(s)), where f and q are the CDo 
functions given by the following: 

f ( t )  = 2 - 3t* 
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and 

t G - 4  
q(t)  = a Cm interpolation between these values on [-$, i] 1; t > $  

The two-shift (n, U )  satisfies the following relation: 

h(Q,  U )  = Sup[h(Y, U )  : (Y, U )  a minimal subset of (X ,  U ) ] ,  

This formula is true for ~ONS automorphisms, for the horseshoe map and many other 
chaotic systems where finite type subshifts appear as subsystems. Can one hope for it to 
hold for every M-system? The answer is no as the following example shows. 

Example 3.4. We construct a transitive system (X, T )  with (i) positive topological entropy, 
such that (ii) all minimal subsets of (X, T) have zero entropy but none the less (iii) the 
almost periodic points are dense. In fact we construct a single point of IO, 1)" whose orbit 
closure has the desired properties. First let us see how to achieve (i) and (ii). 

Set w(n) = 0 for all n in the set 

m 

A = U u { n .  lO",n. IOk + 1,. . . , n .  lox +k]. 
k=l "#O 

For n @ A let o(n)  be independently equal to either zero or one, and let X denote the 
orbit closure of o under the shift T. Now X is a random set (depending on the outcome 
of the w(n) for n @ A) ,  and it is easy to see that with probability one (X, T )  has positive 
topological entropy. On the other hand, since o(n)  = 0 for n E A ,  it is clear that the only 
minimal set in (X, T )  is the fixed point <(e) 

This construction wil1,now be modified so that the periodic points will be dense. To 
this end ~ ( n )  will be changed to &(n) only,for some n E A.  Thus the positivity of the 
topological entropy will not be affected at all. For each n, we will ensure that we have a 
periodic point p .  that contains the block &(i) for -n < i G n, where & denotes the new 
point that we are constructing In the inductive definition if a, denotes the period of p,,, 
then the basic block of pn+1 will consist of the cennal 2(n + 1) + 1 block of & followed 
by 10. a, zeros. Thus the period of &I,,+, i s  

0. 

a,+l =2(n'+ 1) + 1 + 10.a.. 
We insert longer and longer repetitions of this basic block well inside zero blocks of & . In 
ihis way we can guarantee that the only 'new' points that are obtained in the orbit closure 
of & are the periodic points that we are trying to insert. It is fairly easy to verify now that 
the only minimal sets are the finite orbits of the periodic points which clearly have zero 
enfropy. In fact, the nature of our construction is such that the only blocks in & of length 
greater than 2. a. that do not contain a sub-block of n-consecutive zeros are those arising 
from periodic points pi with i < n. 

We remark in passing that w(n) provides an example showing that sequences with 
positive density may have only tlivial minimal sets in their orbit closure, thus proving 
that Szemeredi's theorem cannot be established using only the dynamical van der Warden 
theorem on arithmetic progressions. 
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