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Universitat Politècnica de Catalunya (UPC)
Colom 1, 08222 Terrassa, Spain

victor.manosa@upc.edu

Abstract

Given two ellipses, one surrounding the other one, Poncelet introduced a map P

from the exterior one to itself by using the tangent lines to the interior ellipse. This

procedure can be extended to any two smooth, nested and convex ovals and we call

this type of maps Poncelet’s maps. We recall what he proved around 1814 in the

dynamical systems language: In the two ellipses case and when the rotation number of

P is rational there exists a n ∈ N such that Pn = Id, or in other words, the Poncelet’s

map is conjugated to a rational rotation. In this paper we study general Poncelet’s

maps and give several examples of algebraic ovals where the corresponding Poncelet’s

map has a rational rotation number and it is not conjugated to a rotation. Finally, we

also provide a new proof of Poncelet’s result based on dynamical tools.
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1 Introduction and Main Results

Let γ and Γ be two Cr, r ≥ 1, simple, closed and nested curves, each one of them being the

boundary of a convex set. Furthermore we assume for instance that Γ surrounds γ.

Given any p ∈ Γ there are exactly two points q1, q2 in γ such that the lines p q1, p q2 are

tangent to γ. We define the Poncelet’s map, P : Γ → Γ, associated to the pair γ,Γ as

P (p) = Pγ,Γ(p) = pq1 ∩ Γ,
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where p ∈ Γ, pq1∩Γ is the first point in the set {pq1∩Γ, pq2∩Γ} that we find when, starting

from p, we follow Γ counterclockwise, see Figure 1. Notice that P−1(p) = pq2 ∩ Γ.

p

P (p)

P−1(p)

P 2(p)

Γ

γ

q1

q2

FIGURE 1. The Poncelet’s map.

The implicit function theorem together with the geometrical interpretation of the con-

struction of P imply that it is a Cr diffeomorphism from Γ into itself. So P can be seen as

a Cr diffeomorphism of the circle and has associated a rotation number

ρ = ρ(P ) = ρ(γ,Γ) ∈ (0, 1/2).

See for instance [1, 2] for the definition of rotation number. Notice that usually a rotation

number is in (0, 1). Our choice of q1 for the Poncelet’s map implies that indeed ρ < 1/2. It

is also well known that if Φ is any diffeomorphism of the circle of class at least C2 and such

that ρ(Φ) 6∈ Q then Φ is conjugated to a rotation of angle ρ(Φ). So this is the situation for

the Poncelet’s map P when ρ(P ) 6∈ Q and r ≥ 2.

With the above notation the celebrated Poncelet’s Theorem asserts that if γ and Γ are

ellipses, with arbitrary relative positions, and ρ = ρ(γ,Γ) ∈ Q then the Poncelet’s map is

also conjugated to the rotation of angle ρ in S1. In geometrical terms, if starting at some

point p ∈ Γ the Poncelet’s process of drawing tangent lines to γ closes after n steps then

the same holds for any other starting point in Γ. There are several proofs of this nice result

in [10, Sec. 4.3] and a different one, based on a beautiful approach of Bertrand and Jacobi

through differential equations and elliptic integrals in [9, pp. 191-194]. In Section 4 we

give another proof based on dynamical tools, by using the results of [4]. The problem of

determining explicit conditions over the coefficients of the two ellipses to ensure that the

Poncelet’s map is conjugated to a rational rotation was solved by Cayley. An excellent

exposition of this result is given in [7].

A monograph devoted to Poncelet’s theorem and related results it is going to appear

soon, see [6].
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It is clear that in Poncelet’s Theorem it is not restrictive to assume that γ = {x2 + y2 =

1}. The first question that we face in this paper is the following: Is the Poncelet’s result

also true when we consider γ = {x2 + y2 = 1} and Γ given by an oval of an algebraic curve

of higher degree? We prove:

Theorem 1. Fix γ = {x2 + y2 = 1}. Then for any m ∈ N, m > 2, there is an algebraic

curve of degree m, containing a convex oval Γ, such that the Poncelet’s map associated to

γ and Γ has rational rotation number and it is not conjugated to a rotation.

This result will be a consequence of a more general result proved in Section 2, see

Proposition 2. Moreover the full dynamics of the introduced Poncelet’s maps P : Γ → Γ

will be described in that section.

From Theorem 1 it is clear that, in general, Poncelet’s maps with rational rotation

numbers are not conjugated to rotations. It is natural to wonder about this question when

both ovals are level sets of the same polynomial map V : R2 → R. As one of the simplest

cases we consider the homogeneous map V (x, y) = x4 + y4, giving

γ = Γ1 = {x4 + y4 = 1} and Γ = Γk = {x4 + y4 = k},

for k ∈ R, k > 1. As we will see in Section 3 even in this situation the conjugacy with a

rotation is not true.

The Poncelet’s maps also provide a natural way of defining an integrable function from

an open set of R2 into itself as follows: We foliate the open unbounded connected component

U of R2 \ Γ1 as

U :=
⋃

k>1

{x4 + y4 = k}.

Then the Poncelet’s construction gives a new diffeomorphism, also of class Cr, that is defined

from U ⊂ R2 into itself, which simply consists in applying to each point p the corresponding

Poncelet’s map, associated to the level set of V passing trough p. For sake of simplicity we

also call it P. Notice that this map is trivially integrable by means of V (x, y) = x4 + y4,

that is V (P (x, y)) = V (x, y) for all (x, y) ∈ U .

As we will see in Subsection 3.4, this extended Poncelet’s map P will be useful to give

properties of a functional equation that helps to study integrable planar maps.

Finally, in the above context it is natural to introduce the rotation function ρ(k) :=

ρ(Γ1,Γk), as the rotation number of P associated to γ and Γk, and to study some of its

properties.

In the case of two concentric circles

γ = Γ̃1 = {x2 + y2 = 1} and Γ = Γ̃k = {x2 + y2 = k},
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it is easy to prove that the rotation function ρ̃(k) = ρ(Γ̃1, Γ̃k) is the smooth monotonous

function ρ̃(k) = arctan(k − 1)/π. On the other hand, in Section 3 we will show that the

function ρ(k) := ρ(Γ1,Γk), is much more complicated. Indeed all what we prove seems

to indicate that it has the usual shape of the rotation function of generic one-parameter

families of diffeomorphisms: the devil’s staircase, see for instance [3, 8].

2 A Circle and an Oval

We prove a preliminary result that implies Theorem 1.

Proposition 2. Consider

γ = {x2n + y2n = 1} and Γ = {x2m + y2m = 2} with n,m ∈ N,

and let P be the Poncelet’s map associated to them. Then ρn,m(P ) = 1/4. Moreover, the

map is conjugated a rotation if and only if n = m = 1.

Proof. It is easy to check that for any n and m, the Poncelet map P has the periodic orbit of

period 4, given by the points O = {(1, 1), (−1, 1), (−1,−1), (1,−1)}. Hence ρn,m(P ) = 1/4.

When n = m = 1, both ovals are coniques and Poncelet’s Theorem proves one im-

plication of our result. Let us prove the converse. Assume that P is conjugated to a

rotation. Then, since ρ(P ) = 1/4, for each p ∈ Γ, P 4(p) = p. Consider the particular point

p = p1 := (0, 2m

√
2) ∈ Γ. By using the symmetries of the problem, the 4-periodicity of P

forces that p2 := P (p1) = (− 2m

√
2, 0). Thus the line trough p1 and p2 has to be tangent to

the oval x2n + y2n = 1 at some point p̄ = (x̄, ȳ). Putting all the conditions together gives

that p̄ has to be solution of the system





y = x + 2m

√
2,

x2n + y2n = 1,

(2nx2n−1, 2ny2n−1) · (1, 1) = x2n−1 + y2n−1 = 0.

It has a real solution only when

2n =
2m

2m − 1
= 1 +

1

2m − 1
, (1)

and in this case it is p̄ = (− 2m

√
2/2, 2m

√
2/2). It is clear from (1) that the only solution with

natural values of this equation is n = m = 1, as we wanted to prove.
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Proof of Theorem 1. Clearly the proof when m is even is a corollary of the Proposition 2.

The proof when m ≥ 3 is odd follows by noticing that the sets {x2m + y2m − 2 = 0} and

{(x + 10)
(
x2m + y2m − 2

)
= 0} coincide in {x > −10} and so in both cases the Poncelet’s

maps coincide.

For the simplest case studied in Proposition 2, n = 1, we prove the following result that

characterizes the dynamics of P.

Proposition 3. Consider

γ = {x2 + y2 = 1} and Γ = {x2m + y2m = 2} with m ∈ N,m > 1.

and let P be the Poncelet’s map associated to them. Then ρ(P ) = 1/4, the orbit O =

{(1, 1), (−1, 1), (−1,−1), (1,−1)} is a 4-periodic orbit of P and it is the α and the ω limit

of all the orbits of P.

Proof. Set Γ̃ := {x2 + y2 = 2}, and let P and P̃ be the the Poncelet maps associated to Γ

and γ, and to Γ̃ and γ, respectively. As usual given a point p1 ∈ Γ (resp. q1 ∈ Γ̃) we write

pi+1 := P (pi) ∈ Γ (resp. qi+1 := P̃ (qi) ∈ Γ̃), for i ≥ 1. Our goal will be to compare both

maps. In fact, we will use the map P̃ as a kind of Lyapunov function for the map P.

p2

q1 = φ(p1)

Γ

Γ̃

γ

q2 = P̃ (q1)

φ(p2)

p1

FIGURE 2. A comparison between the Poncelet’s maps P and P̃ .

Recall that Poncelet’s Theorem establishes that P̃ is conjugated to a rotation. It is easy

to check that the orbit O = {(1, 1), (−1, 1), (−1,−1), (1,−1)} is a 4-periodic orbit for P̃ .

So, ρ(P̃ ) = 1/4 and then P̃ 4(q) = q for all q ∈ Γ̃.
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Notice that O is also a 4-periodic orbit of P. Hence ρ(P ) = 1/4.

Let us introduce some notation. Fixed γ it is easy to construct a bijection between Γ

and Γ̃ as follows: Given p1 ∈ Γ we define φ(p1) as the point of intersection between Γ̃ and

the half-straight line starting at p2 = P (p1) and passing trough p1, see Figure 2. Notice

that by construction q1 := φ(p1), p1, p2 and q2 = P̃ (q1) are aligned. Given a point r 6= 0,

we denote by Arg(r) the argument modulus 2π of r thought as a point of C \ {0}.
Take any p1 ∈ Γ ∩ {(x, y) : x > 0, y > 0 and y 6= x}, and q1 ∈ Γ̃ given by q1 = φ(p1).

By construction p1, q1, p2 and q2 are aligned. Notice also that Arg(q2) > Arg(φ(p2)) where

both angles are in (0, π]. This can be understood as a “delay” of P with respect to P̃ . This

delay is propagated through the next three iterates giving that P 4 does not complete a tour

around Γ. Hence the lifting of the map P 4 is below the identity except at the four points

corresponding to the 4-periodic orbit of P. Then the result follows.

Remark 4. From the proof of Proposition 2 it is not difficult to construct C1 ovals for which

the dynamic of the Poncelet’s map is different from the one described in Proposition 3. By

using the compatibility condition (1), it is easy to prove that, for instance when n = 2 and

m = 2/3 in the statement of Proposition 2, i.e. when

γ = {x4 + y4 = 1} and Γ = {x4/3 + y4/3 = 2},

the Poncelet’s map P is such that ρ(P ) = 1/4. It has the two 4-periodic orbits O =

{(1, 1), (−1, 1), (−1,−1), (1,−1)}, and O∗ = {(0, a), (−a, 0), (0,−a), (a, 0)} where a = 23/4

and it is not conjugated to a rotation.

3 Two Ovals

This section is devoted to study in more detail the Poncelet’s maps associated to the ovals

γ = {x4 + y4 = 1} and Γk = {x4 + y4 = k}, k > 1.

3.1 How to find periodic orbits

Let us impose which condition has to satisfy an orbit to be n periodic for a Poncelet’s map

associated to the two ovals γ = {g(x, y) = 0} and Γ = {G(x, y) = 0}. Take n counterclock-

wise ordered points on γ, p1, p2, . . . , pn. Draw the n tangent lines to γ, corresponding to

these points, and denote them by ℓ1, ℓ2, . . . , ℓn, respectively. To generate a n-periodic orbit

of P the following assertions must hold:

(i) The lines ℓi and ℓi+1 for i = 1, 2, . . . , n, where ℓn+1 := ℓ1, intersect. We denote these

intersections by: qi,i+1 = ℓi ∩ ℓi+1.
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(ii) The following n equalities are satisfied:

G(q1,2) = G(q2,3) = · · · = G(qn−1,n) = G(qn,n+1) = 0.

Notice that the above set of conditions gives a non-linear system with n unknowns

(corresponding to the n points on γ) and n equations.

On the other hand when we consider the same problem between γ = {g(x, y) = 0}
and Γk = {G(x, y) = k} and we take k also as a free unknown, the problem of searching

n-periodic orbits is equivalent to impose instead of item (ii), the following n − 1 equalities:

G(q1,2) = G(q2,3) = · · · = G(qn−1,n) = G(qn,n+1).

So in this case we get again a non-linear system with n unknowns but now with only

n − 1 equations. Hence, it is natural to believe that either it has no solution or it has a

continuum of them. Notice that this continuum can be interpreted as a continuum of values

k ∈ Jk ⊂ R for which P has a periodic orbit of period n. Observe also that each one of

these continua gives rise to an interval Jk where the rotation function ρ(k) associated to

the Poncelet’s map between γ = {g(x, y) = 0} and Γk = {G(x, y) = k} has a constant value

j/n, for some j ∈ N. Each of these intervals will give rise to one stair in the devil’s staircase

which seems to be associated to P.

In next subsections we study in more detail the case g(x, y) = x4 + y4− 1 and G(x, y) =

x4 + y4, and we will give a geometrical interpretation of the localization of the starting and

the ending points of some of the stairs of ρ(k).

3.2 Some symmetric periodic orbits

Notice that the ovals Γk = {x4 + y4 = k}, k ≥ 1 have several symmetries. These are given

by the two axes and the diagonals {(x, y) ∈ R2 : y = ±x}. In this section we search some

periodic orbits of the Poncelet’s maps P, associated to Γ1 and Γk that share some of these

symmetries. For these type of periodic orbits the order of the system described in the

previous subsection, that has to be solved to find the periodic orbits, can be reduced.

As an example we find a value k for which the corresponding Poncelet’s map has rotation

number 1/3 due to the existence of a symmetric 3-periodic orbit with respect to the Oy−axis.

First we take {(x1, y1), (0, 1)} ∈ γ. The corresponding tangent lines to γ are ℓ1(x, y) =

x3
1x + y3

1y − 1 = 0 and ℓ2(x, y) = y − 1 = 0, see the left picture in Figure 3. We have that

ℓ1 ∩ ℓ2 = ((1 − y3
1)/x

3
1, 1). To give rise to a 3-periodic orbit with the searched symmetry,

the third point has to be (x3, y3) := (−x1, y1). Moreover we get that ℓ1 ∩ ℓ3 = ℓ1 ∩ {x =

0} = (0, 1/y3
1). Hence the conditions that imply that the three intersection points between

7



the tangent lines belong to the same Γk reduce to the single equation
(

1 − y3
1

x3
1

)4

+ 1 =

(
1

y3
1

)4

,

or equivalently to impose that y1 satisfies the equation

R(y) := y12(1 − y4)3 + y12(1 − y3)4 − (1 − y4)3 = 0,

where we have used that x4
1 + y4

1 = 1. Some calculations give that

R(y) = −4y21 + 3y20 + 6y18 − 3y16 − 4y15 + 3y12 − 3y8 + 3y4 − 1 =

−(y − 1)4(y2 + y + 1)R15(y),

where R15 is a polynomial of degree 15 which has only one real root, y = y∗1 ≃ −0.779644.

The value of k corresponding to this solution is k = k∗ := 1/(y∗1)12 ≃ 19.8264. This result

is reflected in Table 1.

k ≃ 19.8264 k ≃ 20.1961 k ≃ 20.5087

FIGURE 3. Three Poncelet’s maps with rotation number 1/3 associated to

γ = {x4 + y4 = 1} and Γ = {x4 + y4 = k}. Notice that the middle one is not symmetric.

k ≃ 1.5588 k ≃ 1.5596

FIGURE 4. Two Poncelet’s maps with rotation number 1/6 associated to

γ = {x4 + y4 = 1} and Γ = {x4 + y4 = k}.
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We have done similar computations to find values of k for which the corresponding

Poncelet’s maps have symmetric periodic orbits (with respect to either the axes or the

diagonals) and have rotation numbers 1/3, 1/4 and 1/6, see Figures 3 and 4. All these

results, together with the fact that

lim
k→1

ρ(k) = 0 and lim
k→∞

ρ(k) =
1

2
,

which simply follows from the geometrical interpretation of P, are collected in Table 1.

k: 1 ≃ 1.5588 ≃ 1.5596 2 8 ≃19.8264 ≃ 20.5087 ∞
ρ(k) 0 1/6 1/6 1/4 1/4 1/3 1/3 1/2

Symmetry : – diagonals axes all all axes diagonals –

Table 1: Some values of k with rational rotation number and symmetric period orbits.

Remark 5. Notice that, once we have a n-periodic orbit for a given Poncelet’s map, then

the six sets obtained by applying to it either a rotation of 0, π/2, π or 3π/2 radians or one of

the symmetries with respect to the diagonals {y = ±x}, are also n-periodic orbits. Moreover,

unless the original periodic orbit has some of the symmetries considered in this subsection,

these six n-periodic orbits are all different.

As a corollary of the above remark we get, for instance, that for k = k∗ the Poncelet

map has four 3-periodic orbits. Similarly, for k ≃ 20.5087 the corresponding Poncelet’s map

has four different periodic orbits, as well. Moreover in both cases it is not difficult to check

that P is not conjugated to the rotation of angle 2π/3.

3.3 On the stairs of the rotation function

Let Φλ be a smooth one-parameter family of diffeomorphism of the circle. Let ρ(λ) be

the rotation number of Φλ. Fix a natural number m. Recall that the existence of an open

interval Im where ρ(λ) ≡ j/m, for some natural j, coprime with m, is a consequence of

the existence of a hyperbolic m-periodic orbit for Φλ for some λ ∈ Im. For this reason it

is said that for generic one-parameter families of diffeomorphims the graph of the rotation

function has a devil’s staircase shape.

The existence of open intervals on which the rotation function ρ(k) for Poncelet’s maps

P associated to γ = {x4 + y4 = 1} and Γk = {x4 + y4 = k} is constant can be interpreted

by using the above facts. Here we discuss how the existence of this type of intervals can

also be interpreted more geometrically.
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Consider for instance the two values of k for which ρ(k) = 1/3 obtained in Subsection 3.2,

k∗ ≃ 19.8264 and k̃ ≃ 20.5087. By using the method described in Subsection 3.1 we have

done a numerical study about the existence of other values of k having as well a 3-periodic

orbit. We have obtained that for any k ∈ [k∗, k̃] such an orbit exists, see for instance the

middle picture in Figure 3. Moreover for any k ∈ (k∗, k̃) the orbit that we have found has

none of the symmetries described in this section. By using Remark 5, we know that for

each of these values of k, the Poncelet’s map has six different periodic orbits. On the other

hand the boundaries of the interval correspond with values of k for which some of these six

3-periodic orbits collide giving rise to some symmetric 3-period orbit, which indeed has to

be a multiple 3-periodic orbit and so no hyperbolic for P.

We have also checked that a similar phenomenon occurs when k ∈ [2, 8]. On this interval

ρ(k) ≡ 1/4.

An open problem is to prove if the situation described for 1/3 and 1/4 holds for any

rational number in (0, 1/2) and also study the same question for other families of convex

ovals.

3.4 A consequence of the behavior of the rotation function

In [4] it is proved the following result:

Theorem 6. Let U ⊂ R2 be an open set and let Φ : U → U be a diffeomorphism such that:

(a) It has a smooth regular first integral V : U → R, having its level sets Γk =: {p ∈ U :

V (p) = k} as simple closed curves.

(b) There exists a smooth function µ : U → R+ such that for any p ∈ U ,

µ(F (p)) = det(DΦ(p))µ(p). (2)

Then the map Φ restricted to each Γk is conjugated to a rotation with rotation number

τ(k)/T (k), where T (k) is the period of Γk as a periodic orbit of the planar differential

equation

ṗ = µ(p)

(
−∂V (p)

∂p2
,
∂V (p)

∂p1

)

and τ(k) is the time needed by the flow of this equation for going from any q ∈ Γk to

Φ(q) ∈ Γk.

Notice that it provides a way to check whether integrable planar maps Φ of the circle

are conjugated to rotations or not. It consists in studying the existence of solutions µ of

the functional equation (2).
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A natural problem in this context is to study under which conditions over an integrable

map F, the functional equation (2) has non-trivial solutions. Let us see that the Poncelet’s

map Φ = P constructed in Section 1 associated to the curves {x4 + y4 = 1} and {x4 + y4 =

k}, k > 1, and defined in the set U = {2 < x4 + y4 < 8}, provides an example of map F for

which equation (2) has no solution. Notice that P is clearly integrable, with first integral

V (x, y) = x4 + y4. If associated to P it would exist a function µ satisfying the functional

equation (2) then, by the results of the previous subsection and Theorem 6, P 4 = Id on U ,

result that is trivially false.

4 A new proof of Poncelet’s Theorem

This section is devoted to give a new proof of Poncelet’s Theorem based on Theorem 6.

To do this it is more convenient to take coordinates in such a way that the outer ellipse is

given by the circle Γ = {x2 + y2 = 1} and the inner one is given by the set γ = {g(x, y) :=

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0}. Moreover it is not restrictive to assume that g

is positive on the exterior of the ellipse. Following our point of view we will consider the

Poncelet’s map P defined from the region U = {(x, y) ∈ R2 : |(x, y)| > d0} into itself, where

d0 is the maximum distance between γ and the origin. Hence Γ ⊂ U . Some tedious but

straightforward computations, done with an algebraic manipulator, give that the Poncelet’s

map writes as:

P (x, y) =

(
−N1N2 − 4N3

√
∆

M
,
−N1N3 + 4N2

√
∆

M

)
(3)

where
N1 = 4AF + 4CF − D2 − E2 + 2 (2CD − BE)x + 2 (2AE − DB) y

+
(
4AC − B2

) [
x2 + y2

]
,

N2 =
(
4CF + D2 − 4AF − E2

)
x + 2 (DE − 2BF ) y

+
[
2 (2CD − BE) +

(
4AC − B2

)
x
] [

x2 + y2
]
,

N3 = 2 (DE − 2BF ) x +
(
E2 − D2 − 4CF + 4AF

)
y

+
[
2 (2AE − BD) +

(
4AC − B2

)
y
] [

x2 + y2
]
,

11



M = E4 + D4 + 16F 2A2 − 16EFBD + 16F 2C2 + 16F 2B2 + 2D2E2 − 8FAD2

+8FAE2 − 8FE2C + 8FCD2 − 32F 2AC +
(
−12D2EB − 16AEFB

−32FCAD + 4BE3 + 16DAE2 + 8CD3 − 8CDE2 − 16FEBC

+32FC2D + 16DB2F
)
x +

(
−32FACE − 8AD2E + 16CD2E + 16B2EF

+32FA2E + 4BD3 + 8E3A − 16FADB − 16BCDF − 12BDE2
)
y

+
(
16C2D2 + 6E2B2 + 8FAB2 − 8FB2C − 32FA2C + 32FC2A

+2B2D2 + 16A2E2 − 16DBEC − 8AE2C + 8ACD2 − 16ABDE
)
x2

+
(
32ACDE − 8DB2E − 64BCAF + 16B3F

)
yx +

(
−16DBEC + 16A2E2

+ 2E2B2 − 8FAB2 − 32FC2A + 6B2D2 + 16C2D2 + 8AE2C − 16ABDE

+8FB2C + 32FA2C − 8ACD2
)
y2

+4(4AC − B2) [(2CD − BE)x + (2AE − BD)y]
[
x2 + y2

]

+
(
4AC − B2

)2 [
x2 + y2

]2
,

and

∆ =
(
AE2 − BDE + CD2 + F (B2 − 4AC)

) [
Ax2 + Bxy + Cy2 + Dx + Ey + F

]
.

In Figure 5 we show some points of two orbits generated by this map corresponding to

different ellipses. Recall that by construction the map P given in (3) is a diffeomorphism

on U and V (x, y) = x2 + y2 is a first integral for it.

Then in order to apply Theorem 6 we only need to find a smooth function, defined on

U , such that the functional equation (2) with Φ = P holds. It can be seen, again by using

an algebraic manipulator, that a function satisfying this equality is given by

µ(x, y) =
√

(x2 + y2)g(x, y) =
√

(x2 + y2) (Ax2 + Bxy + Cy2 + Dx + Ey + F ).

Hence Poncelet’s Theorem follows. Notice that our proof also works when the rotation

number of the Poncelet’s map is irrational.

We end this section with some comments of how we have got the above function µ. By

using the Change of Variables Theorem it is not difficult to check that the existence of a

positive function µ satisfying equality (2) implies that the absolute continuous measure

ν(B) :=

∫∫

B

1

µ(x, y)
dxdy,

is an invariant measure for P , that is ν(P−1(B)) = ν(B) for any measurable set B ⊂ U .

On the other hand, one of the proofs given in [10] –the one of [5]– geometrically constructs

an invariant measure on the outer circle to prove Poncelet’s Theorem. Inspired on this

construction we have been able to extend this mesure to the whole U and as a consequence

we have got a suitable µ.
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FIGURE 5. Thirty points of two Poncelet’s orbits.

The dot corresponds to the initial condition.
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