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On Devaney's Definition of Chaos 

J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey 

Chaotic dynamical systems have received a great deal of attention in recent years 
(see for instance [2], [3]). Although there has been no universally accepted mathe- 
matical definition of chaos, the popular text by Devaney [1] isolates three com- 
ponents as being the essential features of chaos. They are formulated for a 
continuous map f: X -> X on some metric space X (to avoid degenerate cases we 
will assume in this note that X is not a finite set). The first of Devaney's three 
conditions is that f is transitive; that is, for all non-empty open subsets U and V of 
X there exists a natural number k such that f k(U) n V is nonempty. In a certain 
sense, transitivity is an irreducibility condition. The second of Devaney's conditions 
is that the periodic points of f form a dense subset of X. Devaney refers to this 
condition as an "element of regularity" ([1], p. 50). The final condition is called 
sensitive dependence on initial conditions; f verifies this property if there is a 
positive real number 8 (a sensitivity constant) such that for every point x in X and 
every neighborhood N of x there exists a point y in N and a nonnegative integer 
n such that the nth iterates fW(x) and ff(y) of x and y respectively, are more 
than distance 8 apart. This sensitivity condition captures the idea that in chaotic 
systems minute errors in experimental readings eventually lead to large scale 
divergence. Sensitive dependence on initial conditions is thus widely understood as 
being the central idea in chaos. 

Devaney's Definition of Chaos. Let X be a metric 
space. A continuous map f: X -- X is said to be 
chaotic on X if 

1. f is transitive, 
2. the periodic points of f are dense in X, 
3. f has sensitive dependence on initial conditions. 

The aim of this note is to prove the following elementary but somewhat 
surprising result. 

Theorem. If f: X -- X is transitive and has dense periodic points then f has sensitive 
dependence on initial conditions. 

Before proving this Theorem, let us discuss some of the ideas that motivated it. 
First of all, any definition of chaos must face the obvious question: Is it preserved 
under topological conjugation? That is to say, if f is chaotic and if we have a 
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commutative diagram 

h h 

hi g Ih 
y- y 

where Y is another metric space and h is a homeomorphism, then is g necessarily 
chaotic? Certainly transitivity and the existence of dense periodic points are 
preserved as they are purely topological conditions. However, sensitivity is a metric 
property and in general it is not preserved under topological conjugation, as the 
following simple example shows. Let X be the subset (1,oo) of the real line, 
equipped with the standard metric, let f be multiplication by 2, let Y be the set 
R' of positive reals and let h be log. Clearly f has sensitive dependence on initial 
conditions but g is just a translation and hence is not sensitive for the standard 
metric on R+. In fact, as we leave to the reader to verify, it is not difficult to find 
transitive examples for which sensitivity is not preserved under conjugation. 
Nevertheless, as the above Theorem shows, transitivity and dense periodic points 
together (trivially) assure that sensitivity is preserved. Before closing this paragraph 
on conjugation, let us remark that sensitivity can be regarded as a topological 
concept if one restricts one's attention to compact spaces X (which is often the 
case in practice). Indeed, suppose that X is compact and that f is conjugate to g 
as in the above diagram. Suppose as well that f has sensitive dependence on initial 
conditions, with sensitivity constant 8. Let Da denote the set of pairs (x1, x2) of 
points in X which are separated by distance at least 8. Then D. is a compact 
subset of the Cartesian product X x X and so its image E. in Y x Y under the 
map (x1, x2) - (h(x1), h(x2)) is also compact. Consequently the minimum dis- 
tance Sy > 0 exists between E, and the diagonal in Y X Y. It is easy to verify that 
g has sensitive dependence on initial conditions with sensitivity constant Sy. 

Proof of Theorem: We suppose that f: X -* X is transitive and has dense periodic 
points. 

First observe that there is a number So > 0 such that for all x E X there exists 
a periodic point q E X whose orbit O(q) is of distance at least 80/2 from x. 
Indeed, choose two arbitrary periodic points q1 and q2 with disjoint orbits O(q1) 
and 0(q2). Let So denote the distance between O(q1) and 0(q2). Then by the 
triangle inequality, every point x E X is at distance at least 8o/2 from one of the 
chosen two periodic orbits. We will show that f has sensitive dependence on initial 
conditions with sensitivity constant 8 = 80/8. 

Now let x be an arbitrary point in X and let N be some neighborhood of x. 
Since the periodic points of f are dense, there exists a periodic point p in the 
intersection U = N nl B8(x) of N with the ball Bj(x) of radius 8 centered at x. 
Let n denote the period of p. As we showed above, there exists a periodic point 
q E X whose orbit O(q) is of distance at least 48 from x. Set 

n 

v= nf -(B(f 1(q))). 
i=O 

Clearly V is open and it is non-empty since q E V. Consequently, since f is 
transitive, there exists y in U and a natural number k such that f k(y) E V. 
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Now let j be the integer part of k/n + 1. So 1 < nj - k < n. By construction, 
one has 

f ni(y) = f ni-k(fk(y)) Ef ni-k(V) c B (f ni-k(q)). 

Now f ni(p) = p, and so by the triangle inequality, 

d(f ni(p), fni(y)) = d(p, fni(y)) 
> dxfn-k (q)) -d(f ni-k (q), f ni(y))-(,) 

where d is the distance function on X. Consequently, since p E B6(x) and 
f nf(y) E B6(f ni-k(q)), one has 

d(fn1(p), fni(y)) > 45 -8 - 8 = 28. 

Thus, using the triangle inequality again, either d(fni(X), fni(y)) > 8 or 
d(f ni(x), f ni(p)) > 8. In either case, we have found a point in N whose njth 
iterate is more than distance 8 from f ni(X). This completes the proof. 
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