Devaney's chaos revisited[∗]

Xiaoyi Wang and Yu Huang†

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China

Abstract

Let X be a metric space, and let $f: X \to X$ be a continuous transformation. In this note, a concept *indecomposability* of f is introduced. We show that transitivity implies indecomposability and that Devaney's chaos is equivalent to indecomposability together with density of periodic points. Moreover, we point out that the indecomposability and the periodic-points density are independent of each other even for interval maps (i.e., neither implies the other).

AMS classification: 54H20; 37D45

Keywords: Transitivity; Indecomposability; Devaney's chaos

1 Introduction

Throughout this note, we let $f: X \to X$ be a continuous transformation of a metric space X. Devaney [\[5\]](#page-7-0) called it to be *chaotic* if it satisfies the following three conditions:

- (i) f is transitive.
- (ii) the periodic points of f are dense in X .
- (iii) f has sensitive dependence on initial conditions.

As the concepts entropy and Li-Yorke's chaos, Devaney's chaos is an important tool to discover the complexity of the dynamical system (X, f) . These three concepts have intrinsic relations each other [\[1,](#page-7-1) [4,](#page-7-2) [7\]](#page-7-3).

It is well known that in Devaney's chaos, conditions (i), (ii) and (iii) are not independent of each other; see, for examples, Banks et al. [\[3\]](#page-7-4), Assaf IV and Gadbois [\[2\]](#page-7-5), Vellekoop and Berglund [\[9\]](#page-7-6), Crannell [\[6\]](#page-7-7), and Touhey [\[8\]](#page-7-8).

In this note, we further study Devaney's chaos by introducing the concept—*indecomposability*. Two f-invariant closed subsets A, B are *independent* if they have no common interior points; that is, Int(A) ∩ Int(B) = ∅. Now (X, f) is called *indecomposable* if any two f-invariant closed subsets having nonempty interiors are not independent.

[∗] Supported in part by the National Natural Science Foundation of P. R. China (11071263)

[†]Corresponding author: Y. Huang, E-mail: stshyu@mail.sysu.edu.cn

Since transitivity is equivalent to the fact that the only f -invariant closed subset of X having nonempty interior is X itself, transitivity implies indecomposability. The converse however is not true even in the case of $X = [0, 1]$, as shown by Example [3.1](#page-5-0) below.

Our main result proved in this note can be stated as follows:

Main Theorem. *For the topological dynamical system* (X, f)*, the following two statements are equivalent to each other:*

- (1) f *is Devaney chaotic.*
- (2) f *is indecomposable and the periodic points are dense in* X*.*

We will prove this in Section [2.](#page-1-0) An interesting point is that the indecomposability and the periodic-points density are independent of each other even for interval maps (i.e., neither implies the other), as shown by Example [3.2](#page-6-0) below.

2 Several equivalent definitions for Devaney's chaos

Let (X, f) be a topological dynamical system as in Section [1.](#page-0-0) To avoid the trivial case, we assume that X has at least infinitely many elements.

We denote respectively the recurrent points set, orbit and ω -limit points set of f by

$$
R(f) = \{x \in X \mid \exists n_k \uparrow \infty \text{ s.t. } f^{n_k}(x) \to x\},\
$$

$$
\text{Orb}_f(x) = \{f^n(x)|n \ge 0\},\
$$

$$
\omega(x) = \bigcap_{n \ge 0} \overline{\{f^k(x)|k \ge n\}}.
$$

Given a subset $A \subset X$, we denote the interior of A by Int(A) and the closure of A by A in X. A is invariant if $f(A) \subset A$. A subset S of X is residual if it contains a dense G_{δ} set. A Baire space is a topological space such that every nonempty open subset is of second category.

Recall that f is transitive if for any two nonempty open subsets U and V in X there exists $n \in \mathbb{Z}_+$ such that $f^n(U) \cap V \neq \emptyset$. A point $x \in X$ is called a transitive point if $\overline{\mathrm{Orb}_f(x)} = X$. By Tr_f we mean the set of all transitive points of f. It is well known that Tr_f is a dense G_{δ} set if X is a Baire separable metric space.

Definition 2.1. Let $f: X \to X$ be a continuous transformation on the metric space X. f is said to be

- (i) *strongly indecomposable* if for any sequence of f-invariant closed subsets $\{A_n\}_{n=1}^{\infty}$ of X with $\text{Int}(A_n) \neq \emptyset$, $\text{Int}(\bigcap_{n=1}^{\infty} A_n) \neq \emptyset$;
- (ii) *indecomposable* if for any two f-invariant closed subsets $A, B \subset X$ with $Int(A) \neq \emptyset$ and $Int(B) \neq \emptyset$, $Int(A \cap B) \neq \emptyset$;

(iii) *weakly indecomposable* if there exists a residual subset $S \subset X$ such that for any two points $x, y \in S$, $\omega(x) = \omega(y) \neq \varnothing$.

It is easily seen that the following implication relations hold:

 $transitivity \Rightarrow strongly\ indecomposability \Rightarrow indecomposability$

We will show that indecomposability implies weakly indecomposability provided that X is a compact space (see Theorem [3.1](#page-3-0) below). And we will give examples in Section [3](#page-3-1) to show all the converses are not true.

Lemma 2.2. Let $f: X \to X$ be a continuous transformation on the metric space X such that $X = R(f)$ *. Then the following conditions are equivalent:*

- (1) f *is transitive.*
- (2) f *is strongly indecomposable.*
- (3) f *is indecomposable.*

Proof. Obviously, $(1) \Rightarrow (2) \Rightarrow (3)$. Now we prove $(3) \Rightarrow (1)$. It suffices to show that for any closed invariant subset A of X with nonempty interior, we have $A = X$, under the condition $X = R(f)$. In fact, as f is indecomposable, for any nonempty open set $V \subset X$, we have $\overline{\bigcup_{n\geq 0} f^n(V)} \cap A$ has nonempty interior. Then there exist nonempty open set $V_1 \subset V$ and $n \in \mathbb{Z}_+$ such that $f^{n}(V_1) \subset \text{Int}(A)$. Since the recurrent points of f are dense in V_1 and A is an invariant closed set, we have $V_1 \subset A$. By the arbitrariness of V, we get $X \subset A$. Thus, f is transitive.

This proves Lemma [2.2.](#page-2-0)

 \Box

Lemma 2.3. Let $f: X \to X$ be a continuous transformation on a Baire separable metric space X *such that* $X = \overline{R(f)}$ *. Then the following conditions are equivalent:*

- (1) f *is transitive.*
- (2) f *is strongly indecomposable.*
- (3) f *is indecomposable.*
- (4) f *is weakly indecomposable.*

Proof. According to Lemma [2.2,](#page-2-0) we need only prove $(1) \Leftrightarrow (4)$. Since X is a Baire separable metric space, Tr_f is a dense G_δ set. For any two points $x, y \in \text{Tr}_f$, $\omega(x) = \omega(y) = X$. Thus $(1) \Rightarrow (4)$ holds. Conversely, assume f is weakly indecomposable. Let S be the residual set such that for any two points $x, y \in S$, $\omega(x) = \omega(y)$. since $R(f)$ is a dense G_{δ} set, $S \cap R(f)$ is residual. For any points $x, y \in S \cap R(f)$, y is recurrent and $y \in \omega(y) = \omega(x)$. As ω -limit set of x is closed, we have $\omega(x) = X$. Thus f is transitive.

This proves Lemma [2.3.](#page-2-1)

From the statements of Lemmas [2.2](#page-2-0) and [2.3,](#page-2-1) we easily get the following two results.

Theorem 2.4. Let $f: X \to X$ be a continuous transformation on the metric space X. Then the *following conditions are equivalent:*

- *1.* f *is Devaney chaotic.*
- *2.* f *is transitive and has a dense set of periodic points.*
- *3.* f *is strongly indecomposable and has a dense set of periodic points.*
- *4.* f *is indecomposable and has a dense set of periodic points.*

Theorem 2.5. Let $f: X \to X$ be a continuous transformation on a Baire separable metric space X*. Then the following conditions are equivalent:*

- *1.* f *is Devaney chaotic.*
- *2.* f *is weakly indecomposable and has a dense set of periodic points.*

Thus Theorem [2.4](#page-3-2) implies our Main Theorem stated in Section [1.](#page-0-0)

3 Indecomposability and periodic-points density

Let $f: X \to X$ be a continuous transformation on the metric space X. From now on, we let $U^* = \overline{\bigcup_{n\geq 0} f^n(U)}$ for any $U \subset X$, which is an invariant closed set of f. Firstly we show that indecomposability implies weakly indecomposability provided that X is compact.

Theorem 3.1. *Suppose* X *is compact. If* f *is indecomposable, then* f *is weakly indecomposable.*

Proof. Let $\mathbb{B} = \{U_i\}_{i=1}^{\infty}$ be a topology basis of X. As f is indecomposable, for any $k \in \mathbb{Z}_+$, $\bigcap_{i=0}^k U_i^* \neq \emptyset$. It follows from the compactness of X that $E = \bigcap_{i=0}^{\infty} U_i^*$ is nonempty, closed and invariant. Let $\mathbb{B}_E = \{U \in \mathbb{B} | U \cap E \neq \emptyset\}$. Then for any $U \in \mathbb{B}_E$, $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is open and dense in X. Thus $V_1 = \bigcap_{U \in \mathbb{B}_E} \bigcup_{n=0}^{\infty} f^{-n}(U)$ is a dense G_{δ} set of X. Taking any $x \in V_1$, we have $Orb_f(x) \supset E$.

For any positive integer k, let $L_k = \text{Int}(\bigcap_{i=1}^k U_i^*)$ and $\Delta_k = \bigcup_{i=0}^\infty f^{-i}(L_k)$. As f is indecomposable, we have $L_k \neq \emptyset$. Thus Δ_k is open and dense in X, and $\omega(x) \subset \bigcap_{i=1}^k U_i^*$ for any $x \in \Delta_k$. By Baire's theorem, it follows that $V_2 = \bigcap_{k=1}^{\infty} \Delta_k$ is a dense G_{δ} set. Therefore for any point $x \in V_2$, $\omega(x) \subset \bigcap_{i=1}^{\infty} U_i^* = E.$

We know that $V_1 \cap V_2$ is a dense G_δ set from its construction. We also have $\omega(x) \subset E \subset \overline{\mathrm{Orb}_f(x)}$ for any $x \in V_1 \cap V_2$. There are the following two cases.

Case 1, Int(E) $\neq \emptyset$. Take $x \in \text{Int}(E) \cap V_1 \cap V_2$ and $y \in V_1 \cap V_2$. If x is an isolate point, then $f^{n}(y) = x$ for some n and $\omega(x) = \omega(y)$. Otherwise x must be a recurrent point of f, then $E \supset \omega(y) \supset \omega(x) = E$, which implies $\omega(x) = \omega(y)$. Thus f is weakly indecomposable.

Case 2, $\text{Int}(E) = \emptyset$. Let $E_0 = \{e \in E | e$ is isolate in $E\}$. That is, E_0 is the set of all points e in E with $B_{\varepsilon}(e) \cap E = e$ for some $\varepsilon > 0$, where $B_{\varepsilon}(e)$ stands for open ball of center e and radius ε . E_0 must be countable. We claim that $f^{-n}(e)$ has empty interior for each $n > 0$ and $e \in E$. If not, let *n* be the smallest positive integer such that $f^{-n}(e)$ has nonempty interior. When $f^{-n}(e)$ is a singleton, $f^{-n}(e) \in U_i^*$ for each i since $\overline{\bigcup_{i \geq -n} f^i(e)}$ is an invariant closed subset with its interior being $f^{-n}(e)$ and f is indecomposable. Therefore $f^{-n}(e) \in E$ which contradicts $Int(E) = \emptyset$. When $f^{-n}(e)$ is not a singleton, taking two disjoint nonempty open subset $\alpha, \beta \subset f^{-n}(e)$, we have Int $(\alpha^* \cap \beta^*) = \varnothing$ which contradicts to the indecomposability of f.

Since $f^{-n}(e)$ is a closed set with empty interior for $n > 0$ and $e \in E$, we have that $V_3 =$ $\bigcup_{e\in E_0}\bigcup_{n=0}^{\infty}f^{-n}(e)$ is of first category and so $V_1\cap V_2-V_3$ is a residual set. Take a point $x\in$ $V_1 \cap V_2 - V_3$, if $Orb_f(x) \cap E = \emptyset$, then $E \subset \overline{Orb_f(x)} - Orb_f(x) \subset \omega(x) \subset E$. Otherwise there exists the smallest nonnegative integer n such that $f^{n}(x) \in E$. Then we have

$$
\omega(x) \subset E \subset \overline{Orb_f(x)} - \{x, f(x), \cdots, f^{n-1}(x)\} = \overline{Orb_{f^n}(x)}.
$$

And $f^{n}(x)$ must be a cluster point of E because $x \notin V_3$. Thus $f^{n}(x)$ is a recurrent point and

$$
\omega(x) \subset E \subset \overline{Orb_{f^n}(x)} = \omega(f^n(x)) = \omega(x).
$$

Therefore, in both cases we always have $\omega(x) = E$. This means that f is weakly indecomposable. \Box

This completes the proof of Theorem [3.1.](#page-3-0)

Secondly, we show that strongly indecomposability is nearly transitivity.

Theorem 3.2. If X is a Baire separable metric space with no isolate point, $f: X \to X$ is strongly *indecomposable, then there exist an invariant closed set* E with nonempty interior such that $f|_E$ is *transitive.*

Proof. Let $\mathbb{B} = \{U_i\}_{i=1}^{\infty}$ be a topology basis of X and $E = \bigcap_{i=1}^{\infty} U_i^*$. Then $Int(E) \neq \emptyset$ by the strongly indecomposability of f. Let $\mathbb{B}_E = \{U \in \mathbb{B} | U \cap E \neq \emptyset\}$. Then for any $U \in \mathbb{B}_E$, $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is open and dense in X, which implies that $\bigcap_{U \in \mathbb{B}_E} \bigcup_{n=0}^{\infty} f^{-n}(U)$ is a dense G_{δ} set of X. Every point x in $Int(E) \cap \bigcap_{U \in \mathbb{B}_E} \bigcup_{n=0}^{\infty} f^{-n}(U)$ is a transitive point of $f|_E$. Therefore, $f|_E$ is transitive since X has no isolate point. 口

Finally, we consider one-dimensional system (I, f) , where I is an interval and f is a continuous map of I. We need a lemma.

Lemma 3.3 ([9]). *Suppose* $f : I \to I$ *is an interval map. If* $J \subset I$ *is a subinterval containing no periodic point and* $z, f^{m}(z), f^{n}(z) \in J$ with $0 < m < n$, then either $z < f^{m}(z) < f^{n}(z)$ or $z > f^{m}(z) > f^{n}(z).$

Theorem 3.4. An interval map $f: I \to I$ is strongly indecomposable, then there exist a positive *integer* n and disjoint closed non degenerate subintervals $J_0, J_1, \ldots, J_{n-1}, J_n = J_0$ such that $f(J_i) =$ $J_{i+1}, i = 0, \ldots, n-1$ and f is Devaney chaotic on n−1
∪ $i=0$ Ji *. Furthermore,* f n *is Devaney chaotic on* $J_i, i = 0, \ldots, n - 1.$

Proof. Assume that f is strongly indecomposable. By Theorem [3.2,](#page-4-0) there exists a closed subset E which contains a non degenerate interval J such that $f|_E$ is transitive. Let (a, b) be any non degenerate subinterval of J. Suppose (a, b) contains no periodic point. By the transitivity of $f|_E$, there exist a transitive point $x \in (a, b)$ and $0 < p < q$ such that $a < f^q(x) < x < f^p(x) < b$, which contradicts with Lemma [3.3.](#page-4-1) Thus the periodic points are dense in J. Since $f|_E$ is transitive, the periodic points are dense in $E, f|_E$ is Devaney chaotic.

Let J_0 be the longest subinterval of E. It must be closed because E is closed. Since $f|_E$ is transitive, there exists the smallest positive integer n such that $f^{n}(J_0) \cap J_0 \neq \emptyset$. We have $f^{n}(J_0) \subset J_0$ as J_0 is the longest subinterval. The transitivity of $f|_E$ ensures $f^{n}(J_0) = J_0$. Let $J_i = f^i(J_0), i = 0, \ldots, n-1$. We claim that $J_i, i = 0, \ldots, n-1$ are disjoint. If not, there exist integers $0 \leq l < m \leq n-1$ such that $J_l \cap J_m \neq \emptyset$, which follows $J_0 \cap J_{m-l} \supset f^{n-l}(J_l \cap J_m) \neq \emptyset$. A contradiction.

n−1
∪ Since J_0 is closed and $f^{n-i}(J_i) = J_0$, J_i is closed for $i = 0, \ldots, n-1$. It follows that J_i is $i=0$ \bigcup^{n-1} J_i . It's not difficult to check that $f^n|_{J_i}$ is transitive and chaos in invariant and closed. So $E =$ $i=0$ the sense of Devaney. \Box

At the end of this note, we give two examples to illustrate that

indecomposability \Rightarrow strongly indecompossability \Rightarrow transitivity.

Example 3.1. Let $I = [0, 1]$ and f be defined as

$$
f(x) = \begin{cases} -2x + 1, & x \in [0, \frac{1}{6}], \\ 2x + 1/3, & x \in [\frac{1}{6}, \frac{1}{3}], \\ -3x + 2, & x \in [\frac{1}{3}, \frac{2}{3}], \\ x - 2/3, & x \in [\frac{2}{3}, 1]. \end{cases}
$$

See Figure [3.1.](#page-5-1) Then f is strongly indecomposable but not transitive.

Figure 3.1: The profile of f in Example [3.1](#page-5-0)

Proof. We show that f is strongly indecomposable. On interval $[0, \frac{1}{3}]$ $\frac{1}{3}$, f^2 can be expressed as

$$
f^{2}(x) = \begin{cases} -2x + \frac{1}{3}, & x \in [0, \frac{1}{6}], \\ 2x - \frac{1}{3}, & x \in [\frac{1}{6}, \frac{1}{3}]. \end{cases}
$$

It is clear that $f^2|_{[0,\frac{1}{3}]}$ is mixing. For any non degenerate subinterval $J \subset [0,1]$, there exists an integer $n \geq 0$ such that $f^{n}(J) \cap (0, \frac{1}{3})$ $(\frac{1}{3}) \neq \emptyset$. Since $f^{n}(J)$ is non degenerate, $\overline{\bigcup_{n\geq 0} f^{n}(J)} \supset [0, \frac{1}{3}]$ $\frac{1}{3}$, f is strongly indecomposable on [0, 1]. On the other hand, for $x \in \left(\frac{3}{9}\right)$ $\frac{3}{9}, \frac{4}{9}$ $(\frac{4}{9})$, $f^{n}(x)$ never comes back into $\left(\frac{1}{3}, \frac{2}{3}\right)$ $\frac{2}{3}$) any more for $n > 0$. Thus f is not transitive. \Box

Figure 3.2: The profile of f on [0,1] in Example [3.2.](#page-6-0)

Example 3.2. Let $I = [0, 1]$ and $f : I \rightarrow I$ be defined as

$$
f(0) = 0; f(1) = 1;
$$

$$
f(1 - \frac{1}{2^n}) = 1, \quad n = 1, 2, ...,
$$

$$
f(1 - \frac{3}{2^{n+2}}) = 1 - \frac{1}{2^{n+1}}, \quad n = 1, 2,
$$

f is linear between $1-\frac{1}{2^n}$ and $1-\frac{3}{2^{n+2}}$, $n=1,2,\ldots$. See Figure [3.2.](#page-6-1) Then f is indecomposable but not strongly indecomposable. Furthermore, f has only two periodic points 0 and 1.

Proof. To show that f is indecomposable, let $A, B \subset X$ be two invariant closed subsets with non degenerate intervals $I \subset A, J \subset B$, respectively. If I covers at least 2 critical points, then $f(I) \supset [1 - \frac{|I|}{4}]$ $\frac{I_1}{4}$, 1. Here |I| denotes the length of the interval I. If I covers less than two critical points, we have $|f(I)| \geq |I|$ by the fact that the absolute value of slope of f is 2 everywhere except the critical points. Thus there exists the smallest positive integer n such that $f^{n}(I)$ covers at least two critical points. We have $f^{n+1}(I) \supset [1 - \frac{|I|}{4}]$ $\frac{I}{4}$, 1]. Hence $A \supset [1 - \frac{|I|}{4}]$ $\frac{I_1}{4}$, 1]. Similarly, we have $B \supset [1 - \frac{|J|}{4}]$ $\frac{J_1}{4}$, 1]. Therefore, $A \cap B$ contains a non degenerate interval and f is indecomposable.

But f is not strongly indecomposable. In fact, let $J_n = [1 - \frac{1}{2^n}, 1], n = 1, 2, \ldots$. Then J_n is invariant with nonempty interiors and \bigcap $\bigcap_{n} J_n = \{1\}$ which contains no interior point.

It is easily seen that the periodic points of f are $\{0,1\}$ and the point $\{1\}$ attracts all the points except the origin. f is far from chaos. 口 **Remark 3.1.** For interval maps $f: I \to I$, strongly indecomposability does not imply periodicpoints density on I, but it ensures Devaney's chaos on some subintervals of I.

Remark 3.2. Even for interval maps, indecomposability does not imply periodic-points density. Example [3.2](#page-6-0) demonstrates that an indecomposable interval map can be far from chaos.

Remark 3.3. Weakly indecomposability is the weakest concept among the three ones on compact space. Such system has a topologically "large" set of points, each of which has the same ω -limit set. An indecomposable map can have very simple dynamics. For example, any constant map on a metric space X (a map which maps all points of X into a common fixed point) is indecomposable.

Acknowledgment

The authors would like to thank Professor Xiongping Dai for some valuable discussion.

References

- [1] E. Akin and J.D. Carlson, Conceptions of topological transitivity, Topology Appl., 159 (2012), 2815–2830.
- [2] D. Assaf, IV and S. Gadbois, Definition of chaos, Amer. Math. Monthly, 99(1992) 865.
- [3] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
- [4] F. Blanchard, E. Glasner, S. Kolyada, and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51–68.
- [5] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989.
- [6] A. Crannell, The role of transitivity in Devaney's definition of chaos, Amer. Math. Monthly, 102 (1995),788-793.
- [7] W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117 (2002), 259–272.
- [8] P. Touhey, Yet another definition of chaos, Amer. Math. Monthly, 104 (1997), 411-414.
- $[9]$ M. Vellekoop and R. Berglund, On interval, transitivity $=$ chaos, Amer. Math. Monthly, 101 (1994),352-355.