
ar
X

iv
:1

00
3.

60
36

v1
 [

cs
.N

A
]

 3
1

M
ar

 2
01

0

Computational Complexity of Iterated Maps on the

Interval

Christoph Spandl

Computer Science Department

Universität der Bundeswehr München

D-85577 Neubiberg, Germany

Abstract

The exact computation of orbits of discrete dynamical systems on
the interval is considered. Therefore, a multiple-precision floating point
approach based on error analysis is chosen and a general algorithm is
presented. The correctness of the algorithm is shown and the compu-
tational complexity is analyzed. As a main result, the computational
complexity measure considered here is related to the Ljapunow expo-
nent of the dynamical system under consideration.

Keywords: Discrete dynamical systems, Ljapunow exponent, mul-
tiple-precision floating point arithmetic.

1 Introduction

Consider a discrete dynamical system (D, f) on some compact interval D ⊆
R, called the phase space, given by a function f : D → D, a recursion relation
xn+1 = f(xn) and an initial value x0 ∈ D. The sequence (xn)n of iterates
is called the orbit of the dynamical system in phase space corresponding to
the initial value x0. If such a dynamical system is implemented, that is a
computer program is written for calculating a finite initial segment of the
orbit for given x0, care has to be taken in choosing the appropriate data
structure for representing real numbers. Traditionally, IEEE 754 double

floating point numbers [8] are used. However, if the dynamical system shows
chaotic behavior, a problem arises. The finite and constant length of the
mantissa of a double variable causes round off errors which are magnified
after each iteration step. Only after a few iterations, the error is so big
that the computed values are actually useless [10]. To put things right,
multiple precision floating point libraries providing floating point numbers

1

http://arxiv.org/abs/1003.6036v1

Computational Complexity of Iterated Maps on the Interval 2

with arbitrary high mantissa length have to be used. In the following, it
is analyzed how the needed mantissa length behaves in multiple-precision
computations of iterates of discrete dynamical systems. The mantissa length
needed for floating point numbers such that any computed point of the
orbit has a specified and guaranteed accuracy is examined. Therefore, a
precise mathematical framework for floating point computations has to be
established. The main result shows that the ratio of mantissa length to
iteration length in the limit of iteration length to infinity is related to the
Ljapunow exponent. This result also gives some advice for economically
designing exact algorithms simulating one-dimensional discrete dynamical
systems.

2 Roundoff Error, Error Propagation and Dyna-

mic Behavior

In this section, the discrete dynamical system (D, fµ) with D = [0, 1] and
fµ : D → D, fµ(x) := µx(1 − x) for some control parameter µ ∈ (0, 4]
is investigated. In the literature, the recursion relation xn+1 = fµ(xn) is
called the logistic equation [3]. When implementing the logistic equation on
a real computer and demanding to obtain exact values for the orbit (xn)n,
the analysis of roundoff errors and of error propagation requires some care.
This is due to the fact that for some values of µ the dynamics is highly
chaotic and therefore inaccuracies are magnified exponentially in time [4, 7].

In the following, for a given initial value x0, the true orbit is denoted
by (xn)n, whereas the really computed orbit, suffering from roundoff errors
and error propagation, is denoted by (x̂n)n. Note that even x̂0 may differ
form x0 since the conversion to a floating point number may cause the very
first roundoff error. One goal of this section is to give a rigorous estimation
of the total error in dependence of the iteration step n.

Calculating the orbit (x̂n)n, two types of error are present. First, error
propagation due to the iteration scheme and second the roundoff error caused
by the calculation of fµ. Now, let x̂n for some n ∈ N be given. Then the
true error after one iteration step is x̂n+1−xn+1. Since in reality not fµ(x̂n)

is calculated but some erroneous approximation f̂µ(x̂n), the true error can

be written as x̂n+1 − xn+1 = f̂µ(x̂n)− fµ(xn). Hence, the true error can be
written as a sum

x̂n+1 − xn+1 = (fµ(x̂n)− fµ(xn)) + (f̂µ(x̂n)− fµ(x̂n)) (1)

of two terms. The first term describes solely the error propagation while the

Computational Complexity of Iterated Maps on the Interval 3

second term gives exactly the newly produced error due to the approximate
calculation of fµ.

To handle the exact values of both errors computationally, interval arith-
metic can be used [1]. Interval arithmetic can be seen in the setting here as
a special case of the computational model of TTE [13], which gives a precise
notion for describing computations over the real numbers. Another strongly
related model, which in some sense reflects the situation here more adequate
is the Feasible Real RAM model [2]. For the sake of simplicity however, an
interval setting is used here. For any time step n, let the phase point xn
together with its error be represented by two floating point numbers xln and
xun (xun ≥ xln) with given mantissa length mn forming an interval [xln, x

u
n].

The interval is an enclosure of the real value xn, that is xn ∈ [xln, x
u
n]. It

is straightforward to transform the interval to a floating point value x̂n of
mantissa length mn by setting

x̂n := gl

(

xln + xun
2

)

(2)

where gl(.) performs the rounding to nearest floating point number. The
absolute error en := |x̂n−xn| of x̂n can be estimated via the interval length
dn := xun − xln by

en ≤
1

2
dn + rn (3)

where rn is an error introduced by the rounding operation gl(.) in Equation
2. An upper bound on rn will be discussed later, for now it suffices to say
that in general it is small compared to dn.

For doing an error analysis of the logistic equation analytically, some
idealizing assumptions are made. First, the value of µ is assumed to be
given with such a high precision that no interval representation is needed.
Second, only the error propagation is considered caused by the initial error
due to rounding x0 to some floating point number of mantissa length m.
Third, the value of rn in Equation 3 is neglected. The recursion relation
then reads in natural interval extension

xln+1 = µxln(1− xun)

xun+1 = µxun(1− xln)

with the interval length dn given by the recursion relation

dn+1 = xun+1 − xln+1 = µ(xun − xunx
l
n − xln + xunx

l
n)

= µdn

Computational Complexity of Iterated Maps on the Interval 4

with the obvious solution dn = µnd0. Finally the absolute error en of x̂n
according to Equation 2 can be bounded from above by

en ≤
1

2
dn =

1

2
µnd0. (4)

The aim now is to calculate, for given N ∈ N, p ∈ Z and mantissa length
m, the orbit up to time N with relative error 10−p. That is, for (x̂n)0≤n≤N

should hold
en = |x̂n − xn| ≤ 10−pxn ≤ 10−p. (5)

The ideal assumptions require the somewhat unreal setting that the mantissa
length has to be set to some finite, but big enough value m for representing
x0 and a virtually infinite value m∞ for doing the iteration. Finally, some
upper bound on d0 is needed. The value of d0 is given as the roundoff error
by representing x0 as a floating point number of mantissa length m. For
that, the well known estimate

d0 ≤ 2−m+1x0 ≤ 2−m+1 (6)

exists. Combining (5), (4) and (6) gives as a sufficient condition

µn · 2−m ≤ 10−p (7)

for n = 0, . . . , N .
The minimal m, fulfilling the precision requirement (5) on the relative

error of xn, which depends on x0, N and p, is denoted by mmin(x0, N, p).
So, the sufficient condition (7) gives an upper bound on mmin(x0, N, p) by

mmin(x0, N, p) ≤ ⌈p · ld(10) +N ·max(0, ld(µ))⌉ (8)

where ld(.) is the logarithm to base 2. At that stage, a central quantity of
this work is introduced which is a kind of complexity measure. The loss of
significance rate σ(x, p), which may depend on the initial value x = x0 and
the precision p is defined by

σ(x, p) := lim sup
N→∞

mmin(x,N, p)

N
.

This quantity describes the limiting amount of significant mantissa length
being lost at each iteration step. Significant means here the part of the places
being exact. A general treatment of this complexity measure is given in the
next section. Roughly speaking, ⌈σ(x0, p)N+p·ld(10)⌉ is the mantissa length

Computational Complexity of Iterated Maps on the Interval 5

for any floating point number needed in an algorithm doing the iteration
starting with x0 and calculating up to xN , if the output should be precise
up to p decimal places. Formula 8 gives an upper bound for the loss of
significance rate by σ(x, p) ≤ max(0, ld(µ)).

It is interesting to see whether the upper bound calculated analytically,
which needed strong idealizations, is in the region of the real value. So, the
logistic equation was implemented using a multiple-precision interval library.
For that purpose, the interval library MPFI [12] based on the multiple-
precision floating point number library MPFR [6], both written in C, was
used. For each control parameter µ ranging from 0.005 to 4 and a step
size of 0.005, the orbit for initial condition 0.22 was calculated up to N =
2000. For each µ, the minimum mantissa length mmin needed to guarantee
en ≤ 10−6xn for n = 0, . . . , N was searched. Then, σest := mmin/N was
calculated. The result is shown in Figure 1.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

σ
e
s
t

µ

Figure 1: Estimated loss of significance rate for the logistic equation.

The curve shows that σest exceeds the analytical bound max(0, ld(µ))
only slightly. So, the above made ideal assumptions seem to be valid. In
[10], the logistic equation was also investigated for µ = 3.75 using the exact

Computational Complexity of Iterated Maps on the Interval 6

real arithmetic package iRRAM based on the Feasible Real RAM model [2].
In the paper, also the precision needed to guarantee the exactness of the
first 6 decimal places are reported up to N = 100000. The values are in full
agreement with the simulation results performed here.

Figure 1 show that for µ > 1, the interval length dn increases exponen-
tially in time n. This result should be interpreted in terms of the dynamical
behavior of the logistic equation. So, at this point is worth having an ana-
lytical look at the behavior of the dynamical system. Despite the fact that
these results are well known [7, 5], they are reviewed here for the sake of self
containment. First, the equation possesses in the range D = [0, 1] exactly
one fixed point xo = 0 if µ ∈ (0, 1] and exactly two fixed pints xo = 0 and
x(µ) = 1 − 1

µ
if µ ∈ (1, 4]. Since f ′

µ(0) = µ and f ′
µ(x

(µ)) = 2 − µ, xo is a

stable fixed point (an attractor, |f ′
µ(x

o)| < 1) for µ ∈ (0, 1) and an unstable
fixed point (a repeller, |f ′

µ(x
o)| > 1) for µ ∈ (1, 4]. If µ = 1, the only fixed

point xo is hyperbolic (|f ′
1(x

o)| = 1) and a bifurcation occurs at that value
of the control parameter µ. If µ ∈ (1, 3), xo becomes unstable and the newly
occurring fixed point x(µ) is stable. Finally, limn→∞ fn

µ (x) = x(µ) for µ > 1
and limn→∞ fn

µ (x) = xo if µ ≤ 1 holds for all x ∈ (0, 1). If µ ∈ (0, 1), this
is a direct consequence of the contraction mapping principle. If µ = 1, ob-
serve that f1(x) < x holds for all x ∈ (0, 1). Hence, any sequence (fn

1 (x))n,
x ∈ (0, 1), is strictly decreasing and bounded from below. So it converges
to the only fixed point xo. For the case µ ∈ (1, 3), the interested reader is
referred to the literature: [5], Proposition 5.3. At µ = 3 a second bifurcation
occurs and for µ > 3 the system goes into a region of periodic behavior with
period doubling bifurcations. Finally, for some µ < 4, chaotic behavior is
reached.

This analysis shows that in the parameter range µ ∈ (0, 3), the orbit
converges to the stable fixed point for any initial value x0 ∈ (0, 1). Fur-
thermore, there exists some closed interval I ⊆ D, which depends on µ,
containing the stable fixed point such that fµ(I) ⊆ I holds and fµ is a con-
traction on I. The interval computation using a natural interval extension
of the recursion function, on the other hand, is not very compatible with this
picture. While for µ ∈ (0, 1), the results shown in Figure 1 are in agreement
with the dynamical analysis, the calculations for µ ∈ (1, 3) are not handled
very well by the interval arithmetic since the interval approach would sug-
gest an exponential divergence of initially nearby orbits which is not true
in reality. The reason is that the natural interval approach implicitly takes
account only of the global behavior of fµ in the form of a global Lipschitz
constant max{|f ′

µ(x)| : x ∈ D} = µ. However, a local Lipschitz constant

Computational Complexity of Iterated Maps on the Interval 7

max{|f ′
µ(x)| : x ∈ [xln, x

u
n]} governs the real error propagation at time step n

and also describes the dynamic behavior. This notion can be made precise
and finally leads to a more efficient algorithm for computing orbits.

Let us return to Equation 1. The true error is the sum of the error
propagation (first term) according to the iteration and the roundoff error due
to the computation of fµ (second term). The first term of Equation 1 can be
handled using the mean value theorem, |fµ(x̂n)−fµ(xn)| = |f ′

µ(yn)|·|x̂n−xn|
with yn ∈ [x̂n − en, x̂n + en]. This gives directly the bound

|fµ(x̂n)− fµ(xn)| ≤ sup(|f ′
µ([x̂n − en, x̂n + en])|)en.

The second term can be estimated the following way. As discussed in [14],
the roundoff error produced in calculating fµ can be estimated by

|f̂µ(x̂)− fµ(x̂)| ≤ 1.06K2−m|fµ(x̂)|

where K is the number of rounding operations performed in computing f̂µ
andm is the mantissa length of x̂. In the case considered here, K = 4 follows
since there are 3 arithmetic operations and the rounding of µ. It is further
crucial to mention that the factor 1.06 is only valid if K ≤ 0.1 · 2m holds so
that the mantissa length must not be chosen too small. Using the fact that
fµ(x) ≤ µ

4 holds and fµ(x) < x if µ ≤ 1, the unknown value |fµ(x̂)| can be
eliminated. This calculation shows that there exists a recursive equation on
an upper bound en on en for all n:

en+1 = L(x̂n, en)en + 1.06K2−mEµ(x̂n), e0 = 2−m (9)

with L(x, e) := sup(|f ′
µ([x− e, x+ e])|) and

Eµ(x) :=

{

x if µ ≤ 1
µ
4 if µ > 1

.

The approach now is not to calculate intervals, but pairs of values x̂n and
corresponding guaranteed error bounds en. The difference to the interval
concept is not to compute the errors implicitly but to compute them ex-
plicitly and independent of the values of interest. It should be mentioned
that the approach described here is compatible with an interval approach
using special centered forms, namely mean value forms [11]. However, the
approach here explicitly devises values and errors, describes an automated
error analysis, whereas an interval approach primarily does not disclose any
error. The rounded values x̂n are calculated as usual in floating point arith-
metic except that multiple-precision floats are used. The guaranteed error

Computational Complexity of Iterated Maps on the Interval 8

bounds are also calculated using floating point according to (9), where inter-
val arithmetic is used for calculating L. Only standard precision is needed
for calculating the error bounds. Implementing this improved algorithm us-
ing MPFR and MPFI, the setting as given in the interval case produces the
result shown in Figure 2.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

σ
e
s
t

µ

Figure 2: Estimated loss of significance rate for the logistic equation using
the improved algorithm.

The curve reflects in the parameter range µ ∈ (0, 3) well the dynamic
behavior. Furthermore, in the range µ ∈ [3, 4], the curve suggests a relation
between the loss of significance rate and the Ljapunow exponent λ(x) for
the logistic map (for a curve of the Ljapunow exponent of the logistic map
see [3]): σ(x) = max(0, λ(x))/ ln(2) for all µ ∈ (0, 4]. To be complete, the
definition of the Ljapunow exponent reads

Definition 2.1. Let (D, f) be a dynamical system, D ⊆ R compact and
f : D → D continuously differentiable on the interior of D. Then the

Computational Complexity of Iterated Maps on the Interval 9

Ljapunow exponent at x is defined by

λ(x) := lim
n→∞

1

n

n−1
∑

k=0

ln
∣

∣

∣
f ′(fk(x))

∣

∣

∣
(10)

if the limit exists.

The Ljapunow exponent may depend on x. However, the following prop-
erties hold:

(a) If (D, f) has an invariant measure ρ, then the limit in Equation 10
exists ρ-almost everywhere.

(b) Furthermore, if ρ is ergodic then λ(x) is ρ-almost everywhere constant
and equal to

∫

D

ln
∣

∣f ′(x)
∣

∣ ρ(dx).

These properties are a direct consequence of the Birkhoff ergodic theorem,
see [9], Theorem 4.1.2 and Corollary 4.1.9.

3 The General Algorithm and its Complexity

Let D be a compact real interval and f : D → D a self mapping. In the
following, f is assumed to be continuous on D, continuously differentiable
on the interior of D and f ′ is bounded. Furthermore, f and f ′ are assumed
to be computationally feasible. The precise definition of “computationally
feasible” is given below.

In this section, a general algorithm for computing the iteration

xn+1 = f(xn), x0 ∈ D (11)

is presented. To be more precise, for given N ∈ N and p ∈ Z, this algorithm
computes a finite part of the orbit, (xn)0≤n≤N , exact in the sense that the
relative error at each point xn does not exceed 10−p. The correctness of the
algorithm and its computational feasibility is shown. Finally, its complexity
is examined.

3.1 Syntax, Semantics and the Algorithm

The set of all computationally accessible real numbers are the floating point
numbers of arbitrary mantissa length denoted by R̂. In the following, by a

Computational Complexity of Iterated Maps on the Interval 10

floating point number any real number is meant which can be expressed by
normalized scientific notation. Hence, the set R̂ ⊆ R of all floating point
numbers is countable infinite and therefore a natural basis for standard com-
putability considerations. Let x̂ ∈ R̂ be some floating point number, then
x̂ has as an essential property, its mantissa length denoted by x̂.m. Any
real number x is represented in an algorithm concerning real computation
by a pair [x] ∈ R̂

2 consisting of a floating point number [x].f l approximat-
ing x and an upper bound on the relative error, [x].err ≥ 0, also being a
floating point number. Furthermore, the inequality |[x].f l − x| ≤ [x].err
holds. The pair [x] is called a finite precision representation of x. Although
[x].err has the property mantissa length, it is irrelevant in what follows.
So, the mantissa length of [x].err can be assumed to be some big enough
constant value. Analogously, a function f : D → D, D ⊆ R, is called com-
putationally feasible if a pair [f] exists of a computable (partial) function
[f].f l : R̂ → R̂ approximating f on D and a computable (partial) function
[f].erf : R̂

2 → R̂ giving an upper bound on the absolute error of [f].f l
in the sense |[f].f l([x].f l) − f(x)| ≤ [f].erf([x]). Here, a partial function
f̂ : R̂ → R̂ is called computable if f̂ is computable as a string function over
some finite alphabet where the floating point numbers are interpreted as fi-
nite strings. Finally, computability over integers, computability of functions
with mixed arguments and computable predicates are defined in a standard
way.

The algorithm with the above described specification reads

1 Input parameter: x̂0, N , p
2 Initialize mantissa length m← m0

3 do

4 Initialize value and error [x]← gl(x̂0,m)
5 for n = 0 to N do

6 If prec([x], p) is true then

7 If not printed print n, [x].f l, [x].err
8 else break

9 [x]← [f]([x])
10 [x].f l.m← [x].f l.m+ 1
11 while prec([x], p) is false

To initialize [x], a rounding function gl : R̂ × N → R̂
2 is needed where

gl(x̂0,m0).f l is a floating point number of mantissa length m0 being the
exactly rounded value of x̂0 for some rounding convention. Clearly, the
value gl(x̂0,m0).err is an upper bound on the absolute rounding error, e.g.
gl(x̂0,m0).err = 1

2ulp(x̂0) if the rounding mode is to nearest. The predicate

Computational Complexity of Iterated Maps on the Interval 11

prec : R̂2 × Z → {true, false} is a test whether the relative error of [x],
|[x].f l − x|/|x| if x 6= 0, is bounded by 10−p. The semantics reads: If
[x] ∈ R̂

2 is a finite precision representation of x ∈ R and prec([x], p) = true

holds, the |[x].f l − x| ≤ 10−p|x| follows.
In the following, some abbreviations are used occasionally. The floating

point numbers and functions are indicated by a hat: x̂ := [x].f l and f̂ :=
[f].f l. An over-bar indicates an error bound: e := [x].err and erf := [f].erf .
Hence, [x] is equivalent to (x̂, e) and [f] is equivalent to (f̂ , erf).

Finally a remark on optimization. The algorithm is not optimized in
the performance. Otherwise, in Line 10 something like m ← 2m should be
used. Here, the aim is to find the minimal m to guarantee some given upper
bound on the relative error of xn.

3.2 Feasibility and Correctness

It is clear, that the rounding function gl is computationally feasible. So lets
begin with the predicate prec.

Proposition 3.1. The computationally feasible formula

prec((x̂, e), p) :=

{

true if e ≤ 10−p

1+10−p |x̂|
false else

(12)

fulfills the above described semantics.

Proof. Let (x̂, e) be a finite precision representation of x. So, if e ≤ 10−p|x|
holds, then also |x̂−x| ≤ 10−p|x| holds. If (x̂−e)(x̂+e) ≥ 0, then |x̂|−e ≤ |x|
holds. Hence, if (x̂ − e)(x̂ + e) ≥ 0 and e ≤ 10−p(|x̂| − e) holds, then also

|x̂−x| ≤ 10−p|x|. Finally, if e ≤ 10−p

1+10−p |x̂| holds, then also (x̂−e)(x̂+e) ≥ 0.
Formula 12 only uses the accessible floating point values x̂ and e, basic

arithmetics and finite tests. Hence, this formula is computationally feasible.

Note that the definition of the predicate this way also gives true in the
singular case where x̂ = 0 and e = 0 and hence x = 0.

A computable formula for f̂ is by assumption possible. To derive a
computable formula for erf on the absolute error, return to Equations 1
and 9.

Proposition 3.2. Assume that f̂(x̂) computes f(x̂) up to a correctly rounded
last bit in mantissa according to rounding convention. Then there exists a

Computational Complexity of Iterated Maps on the Interval 12

constant K > 0 such that the absolute error of f(x) of the computation
[f]([x]) is bounded from above by

L(x̂, e) · e+ K2−m

1−K2−m
|f̂(x̂)| (13)

if K2−m < 1. Here, L(x̂, e) := sup(|f ′([x̂−e, x̂+e])|) and m is the mantissa
length of x̂: x̂.m.

Furthermore, this bound is computable.

Proof. Using Equation 1 and following the calculations leading to Equation
9, |f̂(x̂) − f(x)| ≤ L(x̂, e) · e + |f̂(x̂) − f(x̂)| follows. According to the
assumption on f̂ , |f̂(x̂)−f(x̂)| ≤ K2−m|f(x̂)| holds, with a value K ∈ {1, 2}
depending on the rounding convention. However, f(x̂) is unknown, only f̂(x̂)
is accessible. To overcome this, set f̂(x̂) − f(x̂) = δf(x̂) with |δ| ≤ K2−m.
Since |δ| < 1 holds, resolve to f(x̂) = 1

1+δ
f̂(x̂). Hence,

|f̂(x̂)− f(x̂)| =
∣

∣

∣

∣

δ

1 + δ

∣

∣

∣

∣

· |f̂(x̂)| ≤ K2−m

1−K2−m
|f̂(x̂)|

follows. Since an upper bound on L(x̂, e) can be computed using global
optimization techniques, e.g. with interval arithmetic, the above described
bound is computable.

To summarize, the mathematical iteration (11) is performed in the al-
gorithm by iterating a value x̂n approximating xn with an upper bound on
its absolute error en according to

x̂n+1 = f̂(x̂n) x̂0 = gl(x0,m) (14)

en+1 = L(x̂n, en)en +
K2−m

1−K2−m
|x̂n+1| e0 =

K2−m

1−K2−m
|x̂0| (15)

where L(x̂n, en) is computable upper bound on L(x̂n, en) as described in the
preceding proposition. This is Line 9 in the inner for-loop of the algorithm
which is executed with successively increasing mantissa length m, controlled
by the outer do-while-loop. Finally, it has to be shown that this outer loop
eventually terminates. Therefore, two more propositions are needed.

Proposition 3.3. Let x be a real number, x 6= 0 and ([x]m)m≥m0
a sequence

of finite precision representations of x with increasing mantissa lengths obey-
ing ([x]m).f l.m ≥ m such that limm→∞([x]m).err = 0 holds and conse-
quently limm→∞([x]m).f l = x. Then limm→∞ prec([x]m, p) = true follows
for all p ∈ Z.

Computational Complexity of Iterated Maps on the Interval 13

Proof. Since x 6= 0 and limm→∞([x]m).err = 0, there exists some M ∈ N

such that for all m ≥ M , 1
2 |x| ≤ |([x]m).f l| and ([x]m).err ≤ 10−p

2(1+10−p) |x|
holds for all m ≥M . Then, prec([x]m, p) = true holds for all m ≥M .

The next proposition makes the link to Line 9 in the algorithm.

Proposition 3.4. Let xn be the n-th element of the orbit of Equation
11 and ([xn]m)m≥m0

a sequence given according to the recursion equations
(14) and (15) with increasing mantissa length ([xn]m).f l.m ≥ m. Then
limm→∞([xn]m).err = 0 holds and consequently limm→∞([xn]m).f l = xn.

Proof. Let L := sup(f ′(D)) and L ≥ L be some computationally acces-
sible value using some global optimization technique. Then Equation 15
leads to en+1 ≤ Len + K2−m

1−K2−mM where M ≥ sup{|x| : x ∈ D} such that

|x̂n| ≤M holds for all n. Iteration gives en ≤ L
n
e0 +

K2−m

1−K2−mM
∑n−1

k=0 L
k ≤

K2−m

1−K2−mM
∑n

k=0 L
k
. Hence, for n fixed, limm→∞([xn]m).err = 0 follows.

These two propositions finish the correctness proof of the algorithm.
They show that, if xn 6= 0 for n = 0, . . . , N , the outer loop eventually
terminates for any p ∈ Z.

3.3 Computational Complexity

After having presented the preliminary work, the main issue of the paper is
addressed - the computational complexity of the presented algorithm. The
complexity measure of interest here is the loss of significance rate already
introduced informally in the last section. Here is the formal definition.

Definition 3.1. The minimal mantissa length, for which the described al-
gorithm eventually halts is denoted by mmin(x0, N, p), where x0, N and p
are the corresponding input parameters. Then, the loss of significance rate
σ : R̂ ∩D × Z→ R is defined by

σ(x, p) := lim sup
N→∞

mmin(x,N, p)

N
. (16)

However, to achieve bounds on the loss of significance rate, a technical
difficulty has to be circumvented. Therefore, one more assumption on the
dynamical system (D, f), additional to the ones already mentioned in the
beginning of this section, has to be made.

Computational Complexity of Iterated Maps on the Interval 14

Assumption 3.1. The dynamical system (D, f) is assumed to have the
properties already mentioned in the beginning of this section and addition-
ally 0 6∈ D.

It was already seen in the last subsection that xn = 0 makes difficulties
such that it cannot be proven that the algorithm eventually halts. However,
the restriction 0 6∈ D is no loss of generality. If all other conditions are ful-
filled except that D contains zero, consider the following dynamical system
(D̃, f̃) instead. Choose some M > min(D) and set D̃ := {x+M | x ∈ D} as
well as f̃(x) := f(x−M)+M for all x ∈ D̃. Then (D̃, f̃) fulfills all required
properties. Furthermore f̃ ′(x) = f ′(x −M) holds and therefore there is no
substantial difference in the complexity analysis of the algorithm between
the original system and the modified system.

First, the boundedness of σ(x) is shown.

Proposition 3.5. Let (D, f) be as in Assumption 3.1 and mmin(x0, N, p)
as in Definition 3.1. Then, for given p ∈ Z, there exist some C1, C2 ≥ 0,
dependent of f , such that mmin(x0, N, p) ≤ C1N + C2 holds for all N ∈ N,
x ∈ R̂ ∩D.

Proof. According to the requirements made on (D, f), there are some con-

stants L > 0 and M > 0 such that en+1 ≤ Len + K2−m

1−K2−mM holds for all
n ∈ N and all mantissa lengths m. Without loss of generality assume L 6= 1,
otherwise set L > 1. Analogous to the treatment in the proof of Propo-
sition 3.4, iteration gives eN ≤ K2−m

1−K2−mM
∑N

n=0 L
n = K2−m

1−K2−mM LN+1−1
L−1 .

Since there exists some B > 0 with B ≤ |x̂n| for all n, eN/|x̂N | ≤ eN/B ≤
C2−mLN+1 follows with C := MK/(B(1 − K2−m0)(L − 1)) where m0 is
the initial mantissa length, Line 2 in the algorithm. Then, if C2−mLN+1 ≤
10−p

1+10−p holds, prec((x̂n, en), p) = true for all n = 0, . . . , N . This leads to
mmin(x0, N, p) ≤
max(0, ld(L))N +max(m0, ld(L) + ld(C) + p · ld(10) + ld(1 + 10−p)).

Corollary 3.1. Let (D, f) be as in Assumption 3.1 and σ(x, p) the loss of
significance rate. Then, for given p ∈ Z, there exists some constant C ≥ 0
such that σ(x, p) ≤ C holds for all x ∈ R̂ ∩D.

The treatment has now come to a stage that the main statements of
this paper can be formulated. A lower and an upper bound for the loss of
significance rate is given. Furthermore, these bounds are strongly related to
the Ljapunow exponent λ(x) defined in the previous section.

Computational Complexity of Iterated Maps on the Interval 15

Theorem 3.1. Let (D, f) be as in Assumption 3.1, σ(x, p) the loss of sig-
nificance rate and λ(x) the Ljapunow exponent of (D, f). Then σ(x, p) ≥
λ(x)/ln(2) holds for all x ∈ R̂ ∩D, p ∈ Z if λ(x) exists.

Proof. First there are two constants B,M > 0 such that |x̂n| ≥ B and
|x̂n| ≤ M holds for all n. According to Equation 15 and Proposition

3.2, en+1 ≥ |f ′(xn)|en holds. Iteration gives eN ≥ BK2−m

1−K2−m

∏N−1
n=0 |f ′(xn)|.

Hence, eN
|x̂N | ≥

BK2−m

M(1−K2−m)

∏N−1
n=0 |f ′(xn)| follows. A necessary condition for

the algorithm to terminate is therefore BK
M

2−m
∏N−1

n=0 |f ′(xn)| ≤ 10−p

1+10−p

which gives mmin(x0, N, p) ≥ ∑N−1
n=0 ld(|f ′(xk)|) + p · ld(10) + ld(BK

M
) +

ld(1 + 10−p). Following the definitions of the loss of significance rate and
the Ljapunow exponent, σ(x0, p) ≥ λ(x0)/ ln(2) follows.

Before a realistic upper bound on the loss of significance rate can be
presented, one more definition is needed.

Definition 3.2. Let α > 0 then define a function ηα : (0,∞)→ R by

ηα(x) :=

{

ln(x) if x ≥ α

ln(α) if x < α
.

Furthermore, for any α > 0 define

λα(x) := lim sup
n→∞

1

n

n−1
∑

k=0

ηα(|f ′(fk(x))|)

Proposition 3.6. For all α > 0 there exists some constant C ≥ 0 such that
λα(x) ≤ C holds for all x ∈ D. Furthermore, if the Ljapunow exponent λ(x)
exists, λ(x) ≤ λα(x) holds.

Proof. Let L be a Lipschitz constant of f and α > 0. Then for all n ∈ N,
1
n

∑n−1
k=0 ηα(|f ′(fk(x))|) ≤ ln(max(α,L)) holds. Hence it follows the up-

per bound lim supn→∞
1
n

∑n−1
k=0 ηα(|f ′(fk(x))|) ≤ ln(max(α,L)). The sec-

ond assertion follows from the fact that ln(x) ≤ ηα(x) holds for all x > 0,
α > 0.

Proposition 3.7. Let x ∈ D be given. If λ(x) exists, then also the limit

lim
αց0

λα(x) =: λ(x) (17)

exists and λ(x) ≥ λ(x).

Computational Complexity of Iterated Maps on the Interval 16

Proof. Since ln(x) ≤ ηα(x) ≤ ηβ(x) holds for all x > 0, 0 < α ≤ β, also
λ(x) ≤ λα(x) ≤ λβ(x) follows. So if α converges in a monotonic decreasing
way to 0, αց 0, the assertion follows.

Theorem 3.2. Let (D, f) be as in Assumption 3.1, σ(x, p) the loss of sig-
nificance rate and λ(x) as in (17). Let x ∈ R̂ ∩ D be given, then for any
ε > 0 there is some p0 ∈ Z such that for all p ≥ p0, σ(x, p) ≤ λ(x)/ln(2)+ ε
holds if λ(x) exists.

Before the proof can be presented, the following lemma is needed.

Lemma 3.1. Let ε ≥ 0 and α >
√
ε. Then for all x > 0,

ln(x+ ε) ≤ ηα(x) +
√
ε

holds.

Proof. There is nothing to prove in the case ε = 0. So let ε > 0. The proof
is split into two cases.

1. case: x ≥ α. Then the inequality reads ln(x+ ε) ≤ ln(x) +
√
ε which

is equivalent to x ≥ ε
exp(

√
ε)−1

. Since ε
exp(

√
ε)−1

≤ ε√
ε
< α ≤ x, the assertion

follows.
2. case: x < α. Then the inequality reads ln(x+ε) ≤ ln(α)+

√
ε which is

equivalent to x ≤ α exp(
√
ε)−ε. A sufficient condition to proof the assertion

is α ≤ α exp(
√
ε)− ε which is equivalent to α ≥ ε

exp(
√
ε)−1

. This was already

proven in the first case.

Now one is able to proof Theorem 3.2.

Proof of Theorem 3.2. Let N ∈ N be given and 0 < B ≤ |x̂n| ≤ M for all
n ∈ N. Starting with Equation 15 and iterating gives

eN = e0

N−1
∏

n=0

L(x̂n, en) +
K2−m

1−K2−m

N
∑

k=1

N−1
∏

n=k

L(x̂n, en)|x̂k|

=
K2−m

1−K2−m

N
∑

k=0

N−1
∏

n=k

L(x̂n, en)|x̂k|

≤ MK2−m

1−K2−m0

N
∑

k=0

N−1
∏

n=k

L(x̂n, en) = C2−m
N
∑

k=0

N−1
∏

n=k

L(x̂n, en)

Computational Complexity of Iterated Maps on the Interval 17

with C := MK
1−K2−m0

. Define Kmax
N ∈ {0, . . . , N} by

∏N−1
n=Kmax

N
L(x̂n, en) =

max{∏N−1
n=k L(x̂n, en) : k = 0, . . . , N}. Then,

eN ≤ C2−m(N + 1)

N−1
∏

n=Kmax
N

L(x̂n, en)

follows. Consider the sequence (Kmax
N)N∈N. There are 2 cases.

1. case: (Kmax
N)N∈N is not bounded. Observe that (Kmax

N)N∈N is an
increasing sequence and if Kmax

N+1 > Kmax
N , then Kmax

N+1 = N + 1. Therefore,
there exists a constant P > 0 such that for all N ∈ N and k = 0, . . . , N ,
∏N−1

n=k L(x̂n, en) ≤ P holds. Then, eN ≤ C2−m(N + 1)P follows. A suf-
ficient condition for the algorithm to terminate is CP

B
· 2−m(N + 1) ≤

10−p

1+10−p . This lead to the bound mmin(x0, N, p) ≤ ld(N + 1) + p · ld(10) +
ld(1 + 10−p) + ld(CP/B) and hence σ(x0, p) = 0 follows. On the other
hand,

∑N−1
n=0 ln |f ′(xn)| ≤

∑N−1
n=0 ln(L(x̂n, en)) ≤ ln(P) holds and therefore

λ(x0) = 0.
2. case: (Kmax

N)N∈N is bounded. Then there exists some N0 ∈ N

such that Kmax
N = Kmax

N0
=: K0 holds for all N ≥ N0. Then, for N ≥

N0, a sufficient condition for the algorithm to terminate is C
B
2−m(N +

1)
∏N−1

n=K0
L(x̂n, en) ≤ 10−p

1+10−p . Hence,

mmin(x0, N, p) ≤ C ′ + ld(N + 1) + max(0,

N−1
∑

n=K0

ld(L(x̂n, en)))

follows with C ′ := p · ld(10) + ld(1 + 10−p) + ld(C/B). Let L′ be a Lips-

chitz constant of f ′, then there exists some L
′ ≥ L′ such that L(x̂n, en) ≤

|f ′(xn)|+L
′
2en holds for all n. This inequality leads to L(x̂n, en) ≤ |f ′(xn)|+

2L
′
M 10−p

1+10−p ≤ |f ′(xn)|+ 2L
′
M · 10−p. Putting the terms together gives

σ(x0, p) ≤
1

ln(2)
max(0, lim sup

N→∞

1

N

N−1
∑

n=0

ln(|f ′(xn)|+ 2L
′
M · 10−p)).

Now let ε > 0 be given. Then choose α small enough such that λα(x0) ≤
λ(x0)+

ε
2 holds. Next choose p0 ∈ N with

√

2L
′
M · 10−p0 < min(α, ε

2) holds.
Then for all p ≥ p0, with the above lemma, σ(x0, p) ≤ 1

ln(2) max(0, λ(x0) +

ε
2 +

√

2L
′
M · 10−p0) ≤ 1

ln(2) max(0, λ(x0)) + ε follows.

Computational Complexity of Iterated Maps on the Interval 18

4 Conclusions

In this paper, two main issues are addressed. First it is shown that a mathe-
matically precise treatment of multiple-precision floating point computabil-
ity including automated error analysis is far away from being a difficult and
confusing task. Also, this treatment is in a manner which is familiar to
people working in the field of numerical analysis or scientific computing and
also for theoretical computer scientists. Furthermore, the formalism does
not only allow exact answers concerning the existence of a computationally
feasible algorithm, but is also allows a treatment of its complexity. As a
consequence, the described algorithm is formulated not only in an exact and
guaranteed way, but also enables a motivated reader the real implementation
and gives a practical performance analysis.

Second, the results show that the Ljapunow exponent, a central quantity
in dynamical systems theory, also finds its way into complexity theory, a
branch in theoretical computer science. In dynamical systems theory, the
Ljapunow exponent describes the rate of divergence of initially infinitesimal
nearby points. For two points having a small but finite initial separation,
the Ljapunow exponent has only relevance for short time scales [4]. The
reason is that due to the boundedness of D, any two different orbits cannot
separate arbitrarily far away. However, the loss of significance rate shows
that the Ljapunow exponent has on long time scales not only an asymptotic
significance but also a concrete practical one.

Acknowledgments

The author wishes to express his gratitude to Peter Hertling for helpful
discussions and comments.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations.
Academic Press, New York, 1983.

[2] V. Brattka and P. Hertling. Feasible real random access machines.
Journal of Complexity, 14(4):490–526, 1998.

[3] P. Collet and J.-P. Eckmann. Iterated Maps on the Interval as Dynam-
ical Systems. Progress in Physics. Birkhäuser, Boston, Massachusetts,
1980.

Computational Complexity of Iterated Maps on the Interval 19

[4] P. Collet and J.-P. Eckmann. Concepts and Results in Chaotic Dynam-
ics. Theoretical and Mathematical Physics. Springer-Verlag, Berlin,
Heidelberg, 2006.

[5] R. L. Devaney. An Introduction to Chaotic Dynamical Systems.
Addison-Wesley, Redwood City, California, 2nd edition, 1989.

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Transactions on Mathematical Software, 33(2):13:1–
13:15, June 2007.

[7] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations,
Dynamical Systems and an Introduction to Chaos. Elsevier Academic
Press, Amsterdam, 2004.

[8] IEEE 1987. IEEE Standard 754-1985 for Binary Floating-Point Arith-
metic. IEEE, New York, 1987.

[9] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of
Dynamical Systems. Cambridge University Press, Cambridge New York
Melbourne, 1995.

[10] N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blanck,
V. Brattka, and P. Hertling, editors, Computability and Complexity in
Analysis, volume 2064 of Lecture Notes in Computer Science, pages
222–252, Berlin, 2001. Springer. 4th International Workshop, CCA
2000, Swansea, UK, September 2000.

[11] H. Ratschek and J. Rokne. Computer Methods for the Range of Func-
tions. Ellis Horwood Limited, Chichester, 1984.

[12] N. Revol and F. Rouillier. Motivations for an Arbitrary Precision Inter-
val Arithmetic and the MPFI Library. Reliable Computing, 11(4):275–
290, 2005.

[13] K. Weihrauch. Computable Analysis. Springer-Verlag, Berlin Heidel-
berg New York, 2000.

[14] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, N.J., 1963.

	1 Introduction
	2 Roundoff Error, Error Propagation and Dynamic Behavior
	3 The General Algorithm and its Complexity
	3.1 Syntax, Semantics and the Algorithm
	3.2 Feasibility and Correctness
	3.3 Computational Complexity

	4 Conclusions

