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Abstract

A uniform overlapping function of the unit interval to itself is a piecewise con-
tinuous function with a single point of discontinuity and with two linear branches
of the same slope. The itineraries of the point of discontinuity, which arise in the
study of fractal transformations, are called the critical itineraries. A combinato-
rial characterization of the critical itineraries of uniform overlapping functions is
provided.

1 Introduction

The dynamics of a function from the unit interval to itself is a topic with a long and
fascinating history. Although most results concern continuous functions, there is re-
search, especially in electronics applications, on the dynamics of discontinuous functions
[5, 6, 7, 9, 10]. Recently, the dynamics of discontinuous functions have played a role
in the study of fractal transformations [2, 3]. This paper concerns the dynamics of a
piecewise continuous function of the simple form shown in Figure 1. More specifically,

f(a,p,−)(x) =

{

ax if x ≤ p

ax+ (1− a) if x > p,

or

f(a,p,+)(x) =

{

ax if x < p

ax+ (1− a) if x ≥ p,

where 1 < a ≤ 2 and 1− 1
a ≤ p ≤ 1

a . Call a function of this form uniform overlapping.
It is uniform in the sense that the two branches are linear with the same slope, and it is
overlapping in the sense that f([0, p]∩f([p, 1] 6= ∅. Computing the entropy of overlapping
functions (not necessarily uniform) is the subject of the papers [3, 11]. The notation ±
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Figure 1: A uniform overlapping dynamical system.

will mean either − or +, and the subscript (a, p,±) is omitted when no confusion arises.
Also we will omit the term ‘uniform’ since, in this paper, all overlapping functions are
uniform. Let fn = f ◦ f ◦ · · · ◦ f denote the nth iterate of f . The following “primality
tester” is a special case the main theorem of this paper.

• There is an a ≈ 1.79 and a p ≈ .44 with the following property: the natural

number n is prime if and only if f
(n−1)
(a,p,−)(p) > p.

In other words, to test whether n is prime, we iterate the point of discontinuity n − 1
times. If this itererate lies to the right of p, then n is prime; if it lies to the left, then
composite. Two comments are in order. First, this result has little to do with number
theory. Second, the method is numerically problematic because a and p, being irrational
numbers, can be estimated to at most finitely many places.

The main results in this paper, of which the primality tester is a special case, are
as follows. For an overlapping function, let I0 denote the left interval [0, p] in the case
of Figure 1a and [0, p) in the cae of Figure 1b. Let I1 denote the right interval (p, 1]
in the case of Figure 1a and [p, 1] in the cae of Figure 1b. Let Ω = {0, 1}∞ denote
the set of infinite strings ω0ω1ω1 · · · using symbols 0, 1. The two itinerary maps

τ(a,p,±) : [0, 1] → Ω of f := f(a,p,±) are given by τ(a,p,±)(x) = ω := ω0 ω1 ω2 · · · ∈ Ω,
where

ωn =

{

0 if fn(x) ∈ I0

1 if fn(x) ∈ I1.

For x ∈ [0, 1], the image τ(a,p,±)(x) is called the itinerary of x. The two itineraries
(- and +) of the point of discontinuity p will play a special role in this paper. Call
τ− := τ(a,p,−)(p) and τ+ := τ(a,p,+)(p) the critical itineraries of f(a,p,−) and f(a,p,+),
respectively. The first part of the following theorem is a combinatorial characterization
of the critical itineraries, the combinatorial conditions admissible and null defined in
Section 2.

Theorem 1. Strings α and β in Ω are the critical itineraries of some overlapping
function if and only if the pair (α, β) is admissible and non-null. Moreover, if (α, β)
is admissible and non-null, then α and β are the critical itineraries of the overlapping
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functions f(1/r,p,−) and f(1/r,p,+), respectively, where r is the smallest solution to the
equation

∞
∑

n=0

αn x
n =

∞
∑

n=0

βn x
n

in the interval [0, 1) and p =
∑

∞

n=0 αn r
n.

Example 1. The pair (α, β):

α = 011 0 1 0 1 0 0 0 1 0 1 · · ·

β = 100 0 · · · ,

where αn = 1 if and only if n+ 1 is prime, is admissible and non-null (see Example 3).
Therefore Theorem 1 asserts that α and β are the critical itineraries of an overlapping
function f . By the definition of the critical itineraries, it is exactly this function that
provides the previously described primality tester. A calculation using Theorem 1 im-
plies that the overlapping function is f(a,p,−), where a is approximately 1.792568768 and
p is approximately .4421413462.

The remainder of this paper contains the proof of Theorem 1. The definitions of
the terms admissible and null appear in Section 2. Also in that section is the proof
that (α, β) addmissible and non-null are necessary conditions for α and β to be the
critical itineraries of some overlapping function. The proof that they are also sufficient
conditions appears in Sections 3 and 4. Section 3 introduces the notion of the projection
map and contains results on the projection map required for the proof of Theorem 1.
Section 4 concludes the proof.

2 Admissible and Null Pairs

For a string ω = ω0 ω1 ω2 · · · ∈ Ω, the (n+ 1)st element in the string is denoted ωn, and
the initial string ω0 ω1 ω2 · · ·ωn is denoted ω|n. For Γ ⊆ Ω, let Γn = {ω|n : ω ∈ Γ}. A
line over a finite string denotes infinite repetition, for example 01 = 010101 · · · .

Let S denote the shift operator on Ω, i.e, S(ω0 ω1 ω2 · · · ) = ω1 ω2, ω3 · · · . Also Sn

denotes the nth iterate of S.
The lexicographic order � on Ω is the total order defined by σ ≺ ω if σ 6= ω and

σk < ωk where k is the least index such that σk 6= ωk. We use the notation

[α, β] = {ω ∈ Ω : α � ω � β}

for the closed interval; likewise for the half open intervals [α, β) and (α, β].

Definition 1. Call a pair (α, β) of strings in Ω admissible if it satisfies

1. α0 = 0, α1 = 1 and β0 = 1, β1 = 0, and

2. Snα /∈ (α, β] and Snβ /∈ [α, β) for all n ≥ 0.
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The address spaces associated with an admissible pair (α, β) are

Ω(α,β,−) := {ω ∈ Ω : Snω /∈ (α, β] for all n ≥ 0}

Ω(α,β,+) := {ω ∈ Ω : Snω /∈ [α, β) for all n ≥ 0}

Ω(α,β) := Ω(α,β,−) ∪ Ω(α,β,+).

There exist admissible pairs (α, β) whose address spaces are exceptionally sparse
in the following sense. For Γ ⊆ Ω, let |Γ| denotes the cardinality of Γ. Define the
exponential growth rate h(Γ) of Γ ⊆ Ω by

h(Γ) = lim sup
n→∞

1

n
ln |Γn|.

Although the address spaces usually have positive exponential growth rate, it is possible
that h(Ω(α,β)) = 0, as demonstrated by the following example.

Example 2. The following α and β consititute an admissible pair:

α = 0110

β = 1001.

First notice that a string ω ∈ Ω(α,β) cannot cantain either 1000 or 0111 as a substring.
Moreover ω cannot contain either 100 s 00 or 011 t 11 as a substring, where s = 10101 · · · 1
and t = 01010 · · · 0. In other words, ω is a string of alternating 0′s and 1′s with possibly
one double zero or one double one, and possibly a string of zeros or a string of ones at
the beginning. With these rigid restrictions, it is not hard to check that h(Ω(α,β)) = 0.

Definition 2. If h(Ω(α,β)) = 0, call the pair (α, β) null.

Example 3. The pair of Example 1 is admissible and not null. It is easy to check that
the pair is admissible. Concerning non-null, in this case the set Ω(α,β)|n contains all
strings of length n + 1 of the form (s1) 1 (s2) 1 (s3) 1 · · · , where (sk) is any finite string
of (at least one) zeros. So it is not hard to check that h(Ω(α,β)) > 0.

For an admissible pair (α, β) to be null is not typical. For example, if (α, β) is an
admissible pair for which α = 011α′ and β = 100β′ and either α′ begins wilth a 1 or
β′ begins with a 0, then (α, β) is non-null. This is because, in the case that α′ begins
wilth a 1 say, any string of the form 0(s1) 0 (s2) 0 (s3) 0 · · · ∈ Ω(α,β), where (sn) = 1 or
(sn) = 11 for n = 1, 2, . . . . It may be an interesting question to characterize the set of
admissible pairs that are null.

Define the two address spaces of the pair f(a,p,±) of overlapping functions by

Ω(a,p,±) := τ(a,p,±)([0, 1]).

Theorem 2. If α, β ∈ Ω are the critical itineraries of an overlapping function, then
(α, β) is a non-null, admissible pair.
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Proof. In somewhat greater generality the following statement is proved in [3, Theorem
5.2]. For an overlapping function with critical itineraries τ− and τ+, the address spaces
are given by

Ω(a,p,+) = {ω ∈ Ω : Snω /∈ [τ−, τ+) for all n ≥ 0}

Ω(a,p,−) = {ω ∈ Ω : Snω /∈ (τ−, τ+] for all n ≥ 0}.

Since β ∈ Ω(a,p,+) and α ∈ Ω(a,p,−), it is immediate that Snβ /∈ [α, β) for all n ≥ 0 and
Snα /∈ (α, β] for all n ≥ 0. Therefore the pair is admissible.

The function f(a,p,±) acting on the unit interval may be considered as a dynamical
system. For such a dynamical system there is the notion of the topological entropy, a
concept introduced by Adler, Konheim and McAndrews [1] as a measure of the com-
plexity of the dynamical system. Bowen [4] gave an equivalent definition of entropy for
a continuous map of a metric space. For our purposes the following definition of the
entropy h(f) of f := f(a,p,±), based on that given by Bowen, suffices:

h(f) = lim
n→∞

1

n
log |[Ω(a,p,−)]n| = lim

n→∞

1

n
log |[Ω(a,p,+)]n|.

It is known [8] that the topological entropy of f(a,p,±) is ln(a) > 0. If, however, α, β ∈ Ω
are the critical itineraries of some overlapping functions f(a,p,±), then Ω(α,β,±) = Ω(a,p,±),
and therefore h(Ω(α,β)) = h(Ω(a,p,±)) > 0.

3 Projection Map

Definition 3. For x ∈ [0, 1) and ω ∈ Ω, the projection map πx : Ω → [0, 1] is given
by

πx(ω) = (1− x)

∞
∑

k=0

ωk x
k.

Proposition 1 below contains a couple of known [3] properties of the projection map,
one of which concerns continuity. The relevant metric on the space of strings is as
follows. The set Ω of binary strings is a compact metric space with respect to the metric
given by

d(ω, σ) =

{

2−k if ω 6= σ

0 if ω = σ,

where k is the least index such that ωk 6= σk.

Proposition 1. If a ∈ (1, 2], then

1. πx(ω) is a continuous function of ω ∈ Ω with x fixed and a continuous function of
x ∈ [0, 1) with ω fixed, and

2. if g0(x) =
1
a x and g1(x) =

1
a x+ (1− 1

a), then

πa(ω) = lim
n→∞

(gω0
◦ gω1

◦ · · · ◦ gωn
)(x0).

for all ω ∈ Ω, the limit independent of the value of x0. (Note that g0 and g1 are
the inverse functions of the two branches of the overlapping functions f(a,p,±). )
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Throughout this section we assume that (α, β) is admissible and non-null. The main
result in this section, Theorem 3, states that πx(α) = πx(β) for some x ∈ (0, 1).

Lemma 1. If there is no x ∈ (0, 1) such that πx(α) = πx(β), then πx : Ω(α,β) → [0, 1]
is strictly increasing for all x ∈ (0, 1).

Proof. Assume, by way of contradiction, that there is an x ∈ (0, 1) such that πx :
Ω(α,β) → [0, 1] is not strictly increasing. Then there exists σ, ω ∈ Ω(α,β) such that σ ≺ ω
and πx(σ) ≥ πx(ω). By removing the maximum initial portion of the strings where σ
and ω are equal, it may also be assumed, without loss of generality, that σ0 = 0 and
ω0 = 1. Then, since π0(σ) = 0 < 1 = π0(ω), the continuity of πx stated in Proposition 1,
insures that there is an x ∈ (0, 1) such that πx(σ) = πx(ω). Let

r = min{x ∈ (0, 1) : πx(σ) = πx(ω) for some σ, ω ∈,Ω(α,β), σ0 = 0, ω0 = 1}. (1)

Note that π1/3 : Ω → [0, 1] is strictly increasing. This is easily seen because π1/3(ω) is
(up to the constant factor 2/3) just the real number represented by the base 3 decimal
.ω0ω1ω2 · · · . (In base 3 the decimals .0222 · · · and .1000 · · · are equal, but that does
not concern us because ω has only terms 0 and 1.) In particular, because σ, ω ∈ Ω(α,β)

implies σ � α ≺ β � ω, we have

π 1

3

(σ) ≤ π 1

3

(α) < π 1

3

(β) ≤ π 1

3

(ω). (2)

Now consider πx(σ), πx(α), πx(β), πx(ω) as functions of x ∈ [1/3, a]. (It is helpful to
visualize the graphs of these these four functions.) The continuity of πx with respect
to x and the assumption that there is no x ∈ (0, 1) such that πx(α) = πx(β), forces
the existence of a number b < r such that either πb(α) = πb(σ) or πb(β) = πb(ω).
(If it happens that α = σ, then πb(β) = πb(ω), and if it happens that β = ω, then
πb(α) = πb(σ). Both α = σ and β = ω is not possible.) In either case, after removing the
maximum initial portion of the strings where they are equal, we arrive at a contradiction
to the minimality of r.

Lemma 2. Assume that there is no x ∈ (0, 1) such that πx(α) = πx(β). For every
a ∈ (1, 2], there is a p such that 1 − 1/a ≤ p ≤ 1/a and such that the overlapping
functions f(a,p,±) satisfies f(a,p,±)(π1/aω) = π1/a(Sω) for all ω ∈ Ω(α,β,+).

Proof. We give the proof for +; the proof for − is similar. For ease of notation let
f := f(a,p,+) and let f0(x) = ax and f1(x) = ax + (1 − a). Let x := 1/a and let p be
any real number such πx(α) ≤ p ≤ πx(β) and 1 − 1/a ≤ p ≤ 1/a. To show that there
exists such a p with 1 − 1/a ≤ p ≤ 1/a, it is sufficient to show that πx(α) ≤ 1/a and
πx(β) ≥ 1− 1/a. This is done as follows:

1

a
πx(α) = f0 (πx(α)) = f0((1− x)

∞
∑

n=0

αnx
n) = (1− x)

∞
∑

n=0

αn+1x
n +

α0

x

= (1− x)

∞
∑

n=0

αn+1x
n = πx(Sα) ≤ 1,
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1

a
πx(β) + (1−

1

a
) = f1(πx(β)) = f1((1− x)

∞
∑

n=0

βxn) = (1− x)
∞
∑

n=0

βn+1x
n +

β0
x

−
1

x

= (1 − x)

∞
∑

n=0

βn+1x
n = πx(Sβ) ≥ 0.

To finish the proof, assume that ω ∈ Ω(α,β,+). From Lemma 1, if πx(ω) < p ≤ πx(β),
then ω ≺ β. Since ω /∈ [α, β), it follows that ω ≺ α, and hence ω0 = 0. Likewise if
πx(ω) ≥ p ≥ πx(α), then ω � α. Since ω /∈ [α, β), it follows that ω � β and hence
ω0 = 1. Therefore if πx(ω) < p then

f (πx(ω)) = f0((1 − x)
∞
∑

n=0

ωnx
n) = (1− x)

∞
∑

n=0

ωn+1x
n +

ω0

x

= (1− x)

∞
∑

n=0

ωn+1x
n = πx(Sω),

and if πx(ω) ≥ p, then

f(πx(ω)) = f1((1 − x)

∞
∑

n=0

ωxn) = (1− x)

∞
∑

n=0

ωn+1x
n +

ω0

x
−

1

x

= (1− x)

∞
∑

n=0

ωn+1x
n = πx(Sω).

Lemma 3. Assume that there is no x ∈ (0, 1) such that πx(α) = πx(β). For any
a ∈ (1, 2], let p be the number provided in Lemma 2. If f := f(a,p,+) is the corresponding
overlapping function, then Ω(α,β,+) ⊆ Ω(a,p,+).

Proof. Given ω ∈ Ω(α,β,+), let t = 1/a and y = πt(ω). Further let f0(x) = ax and
f1(x) = ax + (1 − a), and recall that f0, f1 are the inverses of the functions g0, g1 in
statement 4 of Proposition 1. Then by Lemma 2 and statement 4 of Proposition 1

fn(y) = πt(S
nω) = πt(ωn ωn+1 · · · ) = (fωn−1

◦ · · · ◦ fω1
◦ fω0

)(πt(ω))

= (fωn−1
◦ · · · ◦ fω1

◦ fω0
)(y)

for all n ≥ 0. By the definition of itinerary, this implies that τ(a,p,+)(y) = ω, and hence
ω ∈ Ω(a,p,+).

Theorem 3. If (α, β) is admissible and non-null, then there exists an x ∈ (0, 1) such
that πx(α) = πx(β).

Proof. Assume, by way of contradiction, that there is no such x ∈ (0, 1). According
to Lemma 3, for every a ∈ (1, 2], there is an overlapping function f(a,p,+) such that
Ω(α,β,+) ⊆ Ω(a,p,+). However, from the definitions of the expondential growth rate of and
topological entropy (in the proof of Theorem 2) it follows that h(Ω(α,β) ≤ h(f(a,p,+)) =
ln(a). Letting a → 1, this implies that h(Ω(α,β) = 0, contradicting that the pair (α, β)
is non-null.
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4 Main Theorem

Theorem 1 will follow immediately from Corollary 2 and Theorem 4 below. In light of
Theorem 3 define

r := min{x ∈ (0, 1) : πx(α) = πx(β).

Lemma 4. Assume (α, β) is admissible and non-null. The map πr : Ω(α,β,−)∪Ω(α,β,+) →
[0, 1] is increasing, and the maps πr : Ω(α,β,−) → [0, 1] and πr : Ω(α,β,+) → [0, 1] are
strictly increasing.

Proof. The proof that πx : Ω(α,β,−) ∪Ω(α,β,+) → [0, 1] is strictly increasing for all x < r
is exactly the same as the proof of Lemma 1. The first statement of this lemma then
follows from the continuity of πx(ω) is both x and ω (Proposition 1).

Concerning the second statement of Lemma 4, we start with some preliminary ob-
servations. Let Q0, Q1 denote the set of two intervals obtained from Ω by removing the
open interval (α, β), and let Q1 := Q0∪Q1. The first element of any sting in Q0 is 0, and
the first element in any sting in Q1 is 1. Likewise, let Q00 and Q01 be obtained from Q0

by removing the interval (0α, 0β), and let Q01 and Q11 be obtained from Q1 by removing
the interval (1α, 1β). Define Q2 := Q00∪Q01∪Q10∪Q11. Continue in this way to obtain
Qn, n ≥ 1. To be more precise, we illustrate using Q01 = [0β, α] as an example. There
is a greatest integer k such that s := (0β)|k = α|k. Now Qs0 and Qs1 are obtained from
Q01 by removing the interval (sα, sβ). (Note that there may be many finite strings t for
which Qt does not exists.) In general, Qn is the union of all the Qt, where t is a string
of length t. The sequence {Qn, n ≥ 1} of sets is nested and

⋂

∞

n=1Q
n = Ω(α,β). The left

and right endpoints of each interval Qs lie in
⋂

∞

n=1Q
n and hence in Ω(α,β). Moreover,

if the last two elements in the sting s are 01, then Qs = [t 0β, t α], and if the last two
elements in the sting s are 10, then Qs = [t β, t 1α] for some string t of length n − 2.
Concerning the endpoints of these intervals, the fact that πa(α) = πa(β) implies that

πr(tα)− πr(t 0β) = rn−2(πr(α)− rπr(β)) = rn−2(1− r)πr(α) > 0, and

πr(t 1α)− πr(tβ) = rn−2((1− r) + rπr(α) − πr(β)) = rn−2(1− r)(1− πr(α)) > 0.
(1)

Returning to the proof of the lemma, assume σ, ω ∈ Ω(α,β) and σ ≺ ω. Since
the length (in the metric on Ω) of the intervals Qs tends to 0 as the length of s
tends to infinity, there is an interval of the form Qs = [µ, ν] propertly between σ
and ω in the lexicographic order, where [µ, ν] = [t 0β, t α] or [µ, ν] = [t β, t 1α]. Since
t 0β, t α, t β, t 1α ∈ Ω(α,β), the first statement in Lemma 4 and Equation 1 now imply

πa(σ) ≤ πa(µ) < πa(ν) ≤ πa(ω).

Theorem 4. Let (α, β) be admissible and non-null. If r = min{x ∈ (0, 1) : πx(α) =
πx(β)} and p = πr(α) = πr(β), then α and β are the critical itineraries of the overlapping
functions f(1/r,p,±).

Proof. Let a = 1/r. To insure that f(a,p,±) are overlapping functions, we must first show
that 1− r ≤ p ≤ r. But

1− r ≤ (1− r)
∞
∑

0

βnr
n = p = (1− r)

∞
∑

0

αnr
n ≤ (1− r)

∞
∑

1

rn = r.
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We will prove that τ+ := τ(a,p,+)(p) = β; the proof that τ− := τ(a,p,−)(p) = α is essentially
the same. Let f := f(a,p,+) and let ω := τ(a,p,+)(p). For all n ≥ 0, we will prove the
following by induction on n:

(i) ωn = βn and,

(ii) fn(p) = πr(S
nβ).

Since both β and ω begin with a 1, both statements are true for n = 0. Assuming the
two statements true for n− 1, we will prove that they are true for n.

Starting with statement (ii):

fn(p) = f(fn−1(p)) = f(πr(S
n−1β)) = f((1− r)

∞
∑

k=0

βn−1+kr
k)

= (1− r)

∞
∑

k=0

βn+kr
k = πr(S

nβ).

The second to last equality above comes from the following direct calculation: if ωn−1 =
0, then by the induction hypothesis βn−1 = 0 and

f((1− r)

∞
∑

k=0

βn−1+kr
k) = (1− r)

∞
∑

k=0

βn+kr
k +

βn−1

r
= (1− r)

∞
∑

k=0

βn+kr
k = πr(S

nβ),

and, if ωn−1 = 1, then βn−1 = 1 and

f((1−r)

∞
∑

k=0

βn−1+kr
k) = (1−r)

∞
∑

k=0

βn+kr
k+

βn−1

a
−

1

a
= (1−r)

∞
∑

k=0

βn+kr
k = πr(S

nβ).

Concerning statement (i), if βn = 0 then, by assumption 2 in the statement of this
theorem, we have Snβ ≺ α. Because Snβ ∈ Ω(α,β,−) and α ∈ Ω(α,β,−), Lemma 4
applies. By that lemma and by statement (ii), which we have just proved, we have
fn(p) = πr(S

nβ) < πr(α) = p. By the definition of the itinerary of p this implies that
ωn = 0, and hence ωn = βn. If, on the other hand, βn = 1, then by assumption 2 of this
theorem we have Snβ � β, and therefore fn(p) = πr(S

nβ) ≥ πr(β) = p. Again by the
definition of the itinerary of p, we have ωn = 1 and hence ωn = βn.
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