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PERIODIC ORBITS OF BILLIARDS ON AN

EQUILATERAL TRIANGLE

ANDREW M. BAXTER1 AND RON UMBLE

Abstract. Using elementary methods, we find, classify and count
the classes of periodic orbits of a given period on an equilateral
triangle. A periodic orbit is either primitive or some iterate of a
primitive orbit. Every periodic orbit with odd period is some odd
iterate of Fagnano’s period 3. Let µ denote the Möbius function.

For each n ∈ N, there are exactly
∑

d|n µ(d)
(

⌊n/d+2

2
⌋ − ⌊n/d+2

3
⌋
)

classes of primitive orbits with period 2n.

1. Introduction

The trajectory of a billiard ball in motion on a frictionless billiards
table is completely determined by its initial position, direction and
speed. When the ball strikes a bumper, we assume that the angle
of incidence equals the angle of reflection. Once released, the ball
continues indefinitely along its trajectory with constant speed unless it
strikes a vertex, at which point it stops. If the ball returns to its initial
position with its initial velocity direction, it retraces its trajectory and
continues to do so repeatedly; we call such trajectories periodic. An
orbit is any path of the ball. An orbit is periodic if the ball follows
a periodic trajectory through exactly n ≥ 1 complete retracings. If
n = 1, the orbit is primitive; otherwise it is an n-fold iterate. If α
denotes a primitive orbit, αn denotes its n-fold iterate. The period of
an orbit is the number of times the ball strikes a bumper as it travels
along its trajectory. If α is primitive of period k, then αn has period
kn. Non-periodic orbits are either infinite or singular ; in the later case
the ball strikes a vertex.

In this article we give a complete solution to the following billiards
problem: Find, classify and count the classes of periodic orbits of a
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given period on an equilateral triangle. While periodic orbits are known
to exist on all non-obtuse and certain classes of obtuse triangles [4] , [7],
[10], [13], existence in general remains a long-standing open problem.
The first examples of periodic orbits were discovered by Fagnano in
1745. Interestingly, his orbit of period 3 on an acute triangle, known
as the “Fagnano orbit,” was not found as the solution of a billiards
problem, but rather as the triangle of least perimeter inscribed in a
given acute triangle. This problem, known as “Fagnano’s problem,” is
solved by the orthic triangle, whose vertices are the feet of the altitudes
of the given triangle (see Figure 1). The orthic triangle is a billiard
orbit since its angles are bisected by the altitudes of the triangle in
which it is inscribed; the proof given by Coxeter and Greitzer [1] uses
exactly the “unfolding” technique we apply below. Coxeter credits this
technique to H. A. Schwarz and mentions that Frank and F. V. Morley
[8] extended Schwarz’s treatment on triangles to odd-sided polygons.
For a discussion of some interesting properties of the Fagnano orbit on
any acute triangle, see [3].

Figure 1. Fagnano’s period 3 orbit.

Much later, in 1986, Masur [7] proved that every rational polygon
(one whose interior angles are rational multiples of π) admits infinitely
many periodic orbits with distinct periods, but he neither constructs
nor classifies them. A year later Katok [5] proved that the number
of periodic orbits of a given period grows subexponentially. Existence
results on various polygons were compiled by Tabachnikov [12] in 1995.

This article is organized as follows: In Section 2 we introduce an
equivalence relation on the set of all periodic orbits on an equilateral
triangle and prove that every orbit with odd period is an odd iterate of
Fagnano’s orbit. In Section 3 we use techniques from analytic geometry
to identify all orbits and classify them. The paper concludes with
Section 4, in which we derive two counting formulas: First, we establish
a bijection between classes of orbits with period 2n and partitions of n
with 2 or 3 as parts and use it to show that there are O(n) = ⌊n+2

2
⌋ −

⌊n+2
3
⌋ classes of orbits with period 2n (counting iterates). Second, we
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show that there are P(n) =
∑

d|n µ(d)O (n/d) classes of primitive orbits
with period 2n, where µ denotes the Möbius function.

2. Orbits and Tessellations

Consider an equilateral triangle △ABC. We begin with some key
observations.

Proposition 1. Every non-singular orbit strikes some side of △ABC
with an angle of incidence in the range 30◦ ≤ θ ≤ 60◦.

Proof. Given a non-singular orbit α, choose a point P1 at which α
strikes △ABC with angle of incidence θ1. If θ1 lies in the desired range,
set θ = θ1. Otherwise, let α1 be the segment of α that connects P1 to
the next strike point P2 and label the vertices of △ABC so that P1 is on
side AC and P2 is on side BC. If 60◦ < θ1 ≤ 90◦, the angle of incidence
at P2 is θ2 = m∠P1P2C = 120◦ − θ1 and satisfies 30◦ ≤ θ2 < 60◦ (see
Figure 2). So set θ = θ2. If 0◦ < θ1 < 30◦, then θ2 = m∠P1P2B =
θ1 + 60◦ so that 60◦ < θ2 < 90◦. Let α2 be the segment of α that
connects P2 to the next strike point P3. Then as in the previous case,
the angle of incidence at P3 satisfies 30◦ < θ3 < 60◦; set θ = θ3. �

θ 3θ 1

θ 2

60 °

0°< θ 1 <30 °60 °< θ 1 ≤ 90 °

60 °

θ 2

θ 1

P 3

BB

A
C CAP 1

P 2

P 1

P 2

Figure 2. Incidence angles θ2 (left) and θ3 (right) in
the range 30◦ ≤ θ ≤ 60◦.

Let α be an orbit of period n on △ABC, and choose a point P at
which α strikes △ABC with angle of incidence in the range 30◦ ≤
θ ≤ 60◦. Without loss of generality, we may assume that α begins and
ends at P . If necessary, relabel the vertices of the triangle so that
side BC contains P . Let T be a regular tessellation of the plane by
equilateral triangles, each congruent to △ABC and positioned so that
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one of its families of parallel edges is horizontal. Embed △ABC in
T so that its base BC is collinear with a horizontal edge of T . Let
α1, α2, . . . , αn denote the directed segments of α, labelled sequentially;
then α1 begins at P and terminates at P1 on side s1 of △ABC with
angle of incidence θ1. Let σ1 be the reflection in the edge of T con-
taining s1. Then α1 and σ1(α2) are collinear segments and σ1(α) is a
periodic orbit on σ1(△ABC), which is the basic triangle of T sharing
side s1 with △ABC. Follow σ1(α2) from P1 until it strikes side s2 of
σ1(△ABC) at P2 with incidence angle θ2. Let σ2 be the reflection in the
edge of T containing s2; then α1, σ1(α2) and (σ2σ1) (α3) are collinear
segments and (σ2σ1) (α) is a periodic orbit on (σ2σ1) (△ABC). Con-
tinuing in this manner for n−1 steps, let θn be the angle of incidence at
Q = (σn−1σn−2 · · ·σ1) (P ) . Then θ1, θ2, . . . , θn is a sequence of incidence
angles with 30◦ ≤ θn ≤ 60◦, and α1, σ1(α2), . . . , (σn−1σn−2 · · ·σ1) (αn)
is a sequence of collinear segments whose union is the directed segment
from P to Q. Using the notation in [6], let PQ denote the directed
segment from P to Q. Then PQ has the same length as α and en-
ters and exits the triangle (σi · · ·σ1) (△ABC) with angles of incidence
θi and θi+1. We refer to PQ as an unfolding of α and to θn as its
representation angle.

Period 10 Unfolding
Period 6 Unfolding

Period 4 Unfolding

Q

P5

P4

P3

P2

P1

Q

P3

P1

Q

P2

P

P P

Figure 3. Unfolded orbits of period 4, 6, and 10.
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Proposition 2. A periodic orbit strikes the sides of △ABC with at
most three incidence angles, exactly one of which lies in the range 30◦ ≤
θ ≤ 60◦. In fact, exactly one of the following holds:

(1) All incidence angles measure 60◦.
(2) There are exactly two distinct incidence angles measuring 30◦

and 90◦.
(3) There are exactly three distinct incidence angles φ, θ and ψ such

that 0◦ < φ < 30◦ < θ < 60◦ < ψ < 90◦.

Proof. Let α be a periodic orbit and let PQ be an unfolding. By con-
struction, PQ crosses each horizontal edge of T with angle of incidence
in the range 30◦ ≤ θ ≤ 60◦. Consequently, PQ crosses a left-leaning
edge of T with angle of incidence φ = 120◦ − θ and crosses a right-
leaning edge of T with angle of incidence ψ = 60◦ − θ (see Figure 4).
In particular, if θ = 60◦, PQ crosses only left-leaning and horizontal
edges, and all incidence angles are equal. In this case, α is either the
Fagnano orbit, a primitive orbit of period 6 or some iterate of these. If
θ = 30◦, then φ = 90◦ and ψ = 30◦, and α is either primitive of period
4 or some iterate thereof (see Figure 3). When 30◦ < θ < 60◦, and
clearly, 0◦ < φ < 30◦ and 60◦ < ψ < 90◦. �

ψ

φ
60°

60°θ
P

Figure 4. Incidence angles θ, φ and ψ.

Corollary 1. Any two unfoldings of a non-singular orbit are parallel.

Our next result plays a pivotal role in the classification of orbits.

Theorem 1. If an unfolding of a periodic orbit α terminates on a
horizontal edge of T , then α has even period.
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Proof. Let PQ be an unfolding of α. Then both P and Q lie on hori-
zontal edges of T , and the basic triangles of T cut by PQ pair off and
form a polygon of rhombic tiles containing PQ (see Figure 5). As the
path PQ traverses this polygon, it enters each rhombic tile through an
edge, crosses a diagonal of that tile (collinear with a left-leaning edge
of T ), and exits through another edge. Since each exit edge of one tile
is the entrance edge of the next and the edge containing P is identified
with the edge containing Q, the number of distinct edges of T cut by
PQ is twice the number of rhombic tiles. Thus α has even period. �

Q

P

Figure 5. A typical rhombic tiling.

Let γ denote the Fagnano orbit.

Theorem 2. If α is a periodic orbit and α 6= γ2k−1 for all k ≥ 1, then
every unfolding of α terminates on a horizontal edge of T .

Proof. We prove the contrapositive. Suppose there is an unfolding PQ
of α that does not terminate on a horizontal edge of T . Let θ be the
angle of incidence at Q; then θ is also the angle of incidence at P and
θ ∈ {30◦, 60◦} by the proof of Proposition 2. But if θ = 30◦, then α
is some iterate of the period 4 orbit whose unfoldings terminate on a
horizontal of T (see Figure 3). So θ = 60◦. But α is neither an iterate
of the period 6 orbit nor an even iterate of γ since their unfoldings
also terminate on a horizontal edge of T (see Figure 3). It follows that
α = γ2k−1 for some k ≥ 1. �
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Combining the contrapositives of Theorems 1 and 2 we obtain the
following characterization:

Corollary 2. If α is an orbit with odd period, then α = γ2k−1 for some
k ≥ 1, in which case the period is 6k − 3.

Let α be an orbit with even period and let PQ be an unfolding.
Let G be the group generated by all reflections in the edges of T .
Since the action of G on BC generates a regular tessellation H of the
plane by hexagons, α terminates on some horizontal edge of H. Let
f = σnσn−1 · · ·σ1 denote the composition of reflections in the edges of
T that (1) maps P to Q and (2) maps the hexagon whose base BC
contains P to the hexagon whose base B′C ′ contains Q. Then n is even

and f is either a translation by vector
−→
PQ or a rotation of 120◦ or 240◦.

But BC‖B′C ′ so f is a translation and the position of Q on B′C ′ is
exactly the same as the position of P on BC.

On the other hand, periodic orbits represented by horizontal trans-
lations of an unfolding PQ are generically distinct, but have the same
length and incidence angles (up to permutation) as α. Hence it is
natural to think of them as equivalent.

Definition 1. Periodic orbits α and β are equivalent if there exist
respective unfoldings PQ and RS and a horizontal translation τ such

that RS = τ
(

PQ
)

. The symbol [α] denotes the equivalence class of α.
The period of a class [α] is the period of its representatives; an even
class has even period, otherwise it is odd.

Q

Q

P

P

Figure 6. Unfoldings of equivalent period 4 orbits
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Consider an unfolding PQ of a periodic orbit α. If [α] is even, let

R be a point on BC and let τ is the translation from P to R. We
say that the point R is singular for [α] if τ(PQ) contains a vertex of
T ; then τ(PQ) is an unfolding of a periodic orbit whenever R is non-
singular for [α]. Furthermore, α strikes BC at finitely many points and
at most finitely many points on BC are singular for [α]. Therefore [α]
has cardinality c (the cardinality of an interval). On the other hand, if
[α] is odd, then α = γ2k−1 for some k ≥ 1 by Corollary 2, and PQ is
collinear with the midline of adjacent parallels of T . But translations
of PQ off of these midlines are not unfoldings of periodic orbits so
[

γ2k−1
]

is a singleton class. We have proved:

Proposition 3. The cardinality of a class is determined by its parity;
in fact, α has odd period if and only if [α] is a singleton class.

Proposition 3 completely classifies orbits with odd period. The re-
mainder of this article considers orbits with even period. Our strategy
is to represent the classes of all such orbits as lattice points in some
“fundamental region,” which we now define. Since at most finitely
many points in BC are singular for a given class, there is a point O
on BC other than the midpoint with the following property: Given
even class [α], there is a point S such that OS is an unfolding of some
representative. Note that if PQ is an unfolding of α, then OS is the

horizontal translation of PQ by
−→
PO and S is uniquely determined by

α. Hence we refer to OS as the fundamental unfolding of [α]. The fun-
damental region at O, denoted by ΓO, is the polar region 30◦ ≤ θ ≤ 60◦

centered at O; the points S given by fundamental unfoldings OS are
called lattice points of ΓO.

Since O is not the midpoint of BC, odd iterates of Fagnano’s orbit
γ have no fundamental unfoldings. On the other hand, fundamental
unfoldings of γ2n represent some n-fold iterate of a primitive period 6
orbit. Nevertheless, with the notable exception of [γ2] , “primitivity”
is a property common to all orbits of the same class (see Figure 7).
Indeed, the fundamental unfolding of [γ2] represents a primitive. So
define a primitive class to be either [γ2] or a class of primitives.

To complete the classification, we must determine exactly which di-
rected segments in ΓO with initial point O represent orbits with even
period. We address this question in the next section.

3. Orbits and Rhombic Coordinates

In this section we introduce the analytical structure we need to com-
plete the classification and to count the distinct classes of orbits of a
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Figure 7. The Fagnano orbit and an equivalent period
6 orbit (dotted).

given even period. Expressing a fundamental unfolding OS as a vector
−→
OS allows us to exploit the natural rhombic coordinate system given
by T . Let O be the origin and take the x-axis to be the horizontal line
containing it. Take the y-axis to be the line through O with inclination
60◦ and let BC be the unit of length (see Figure 8). Then in rhombic
coordinates

ΓO = {(x, y) | 0 ≤ x ≤ y} .

Figure 8. Rhombic coordinates.

Since the period of [α] is twice the number of rhombic tiles cut by
its fundamental unfolding OS, and the rhombic coordinates of S count
these rhombic tiles, we can strengthen Theorem 1:
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Corollary 3. Let OS be the fundamental unfolding of [α] . If S =
(x, y) , then the period of α is 2(x+ y).

Points in the integer sublattice L of points on the horizontals of H
that are images of O under the action of G have a simple characteriza-
tion. Let H be the hexagon of H with base BC; the six hexagons adja-
cent toH are its images τ b

2τ
a

1 (H), (a, b) ∈ {±(1, 0),±(1,−1),±(2,−1)}.
Inductively, if H ′ is any hexagon of H, then H ′ = τ b

2τ
a

1 (H) for some
a, b ∈ Z. Note that a(1, 1)+b(0, 3) defines the translation τ b

2τ
a

1 . Hence L
is generated by the vectors (1, 1) and (0, 3) and it follows that (x, y) ∈ L
if and only if x ≡ y (mod 3).

Recall that if OS is an unfolding, then S lies on a horizontal of H.
Hence OS is an unfolding if and only if S ∈ L ∩ ΓO −O. This proves:

Theorem 3. There is the correspondence

{[α]|[α] has period 2n} ↔ {(x, y) ∈ Z
2 ∩ ΓO|x ≡ y(mod 3), x+ y = n}.

Taken together, Proposition 3, Corollary 3 and Theorem 3 classify all
perioidic orbits on an equiateral triangle.

Theorem 4. (Classification) Let α be a periodic orbit on an equilateral
triangle.

(1) If α has period 2n, then [α] has cardinality c and contains a
unique representative whose unfolding OS with S = (x, y) sat-
isfies 0 ≤ x ≤ y, x ≡ y (mod 3) and x+ y = n.

(2) Otherwise, α = γ2k−1 for some k ≥ 1, in which case its period
is 6k + 3.

In view of Theorem 3, we may count classes of orbits of a given
period 2n by counting integer pairs (x, y) such that 0 ≤ x ≤ y, x ≡ y
(mod 3) and x+y = n. This is the objective of the next and concluding
section.

4. Orbits and Partitions of n

We will often refer to an ordered pair (x, y) as an “orbit” when we
mean the even class of orbits to which it corresponds. Two questions
arise: (1) Is there an orbit with period 2n for each n ∈ N? (2) If so,
exactly how many distinct classes of orbits with period 2n are there?

If we admit iterates, question (1) has an easy answer. Clearly there
are no period 2 orbits since no two sides of △ABC are parallel. For
each n > 1, the orbit

α =







(n

2
, n

2
), n even

(n−1
2

− 1, n−1
2

+ 2), n odd.
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Figure 9. Translated images of O in ΓO and unfoldings
of period 22 orbits.

Figure 10. Period 22 orbits (1, 10) (left) and (4, 7) (right).

has period 2n. Note that the period 22 orbits (1, 10) and (4, 7) are not
equivalent since they have different lengths and representation angles
(see Figures 9 and 10).

To answer to question (2), we reduce the problem to counting parti-
tions by constructing a bijection between classes of orbits with period
2n and partitions of n with 2 and 3 as parts. For a positive integer
n, a partition of n is a nonincreasing sequence of nonnegative integers
whose terms sum to n. Such a sequence has finitely many non-zero



12 ANDREW M. BAXTER1 AND RON UMBLE

terms, called the parts, followed by infinitely many zeros. Thus, we
seek pairs of nonnegative integers (a, b) such that n = 2a + 3b. The
reader can easily prove:

Lemma 1. For each n ∈ N, let

Xn =
{

(x, y) ∈ Z
2 | 0 ≤ x ≤ y, x ≡ y (mod 3), x+ y = n

}

and

Yn = {(a, b) ∈ Z
2 | a, b ≥ 0 and 2a+ 3b = n}.

The function ϕ : Yn → Xn given by ϕ (a, b) = (a, a+ 3b) is a bijection.

Combining Theorem 4 and Lemma 1, we get:

Corollary 4. For each n ∈ N, there is a bijection between period 2n
orbits and the partitions of n with 2 and 3 as parts.

Counting partitions of n with specified parts is well understood (e.g.,
Sloane’s A103221, [11]). The number of partitions of n with 2 and 3
as parts is the coefficient of xn in the generating function

f(x) =
∞

∑

n=0

O(n)xn

= (1 + x2 + x4 + x6 + · · · )(1 + x3 + x6 + x9 + · · · )

=
1

(1 − x2)(1 − x3)
.

To compute this coefficient, let ω be a primitive cube root of unity and
perform a partial fractions decomposition. Then

f(x) =
1

4(1 + x)
+

1

4(1 − x)
+

1

6(1 − x)2
+

1

9

(

1 + 2ω

ω − x
+

1 + 2ω2

ω2 − x

)

=
1

4

∞
∑

n=0

(−1)nxn +
1

4

∞
∑

n=0

xn +
1

6

∞
∑

n=0

(n + 1)xn

+
1

9

∞
∑

n=0

(ω2n+2 + 2ω2n + ωn+1 + 2ωn)xn

and we have

O(n) =
(−1)n

4
+
n

6
+

5

12
+

1

9

(

ω2n+2 + 2ω2n + ωn+1 + 2ωn
)

.

By easy induction arguments, one can obtain simpler formulations
(see [11]):
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Theorem 5. The number of distinct classes of period 2n is exactly

O(n) =

{

⌊n

6
⌋, n ≡ 1 (mod 6)

⌊n

6
⌋ + 1, otherwise

=

⌊

n+ 2

2

⌋

−

⌊

n+ 2

3

⌋

.

Let us refine this counting formula by counting only primitives. For
every divisor d of n, the (n/d)-fold iterate of a primitive period 2d orbit
has period 2n. Hence, if P(n) denotes the number of primitive classes
of period 2n, then

O(n) =
∑

d|n

P(d).

A formula for P(n) is a direct consequence of the Möbius inversion
formula (see [9]). The Möbius function µ : N →{−1, 0, 1} is defined by

µ (d) =







1, d = 1
(−1)r , d = p1p2 · · · pr for distinct primes pi

0, otherwise.

Theorem 6. For each n ∈ N, there are exactly

P(n) =
∑

d|n

µ(d)O(n/d)

primitive classes of period 2n.

Theorems 5 and 6 imply:

Corollary 5. O(n) = 0 if and only if n = 1; P(n) = 0 if and only if
n = 1, 4, 6, 10.

Corollary 6. The following are equivalent:

(1) The integer n is 1 or prime.
(2) P(n) = O(n).
(3) All classes of period 2n are primitive.

Table 1 in the Appendix displays some values of O and P. The values
O(4) = 1 and P(4) = 0, for example, indicate that the single class of
period 8 contains 2-fold iterates of the period 4.

We conclude with an example of a primitive class of period 2n for
each n ∈ N − {1, 4, 6, 10}. But first we need the following self-evident
lemma:

Lemma 2. Given an orbit (x, y) ∈ ΓO, let d ∈ N be the largest value
such that x/d ≡ y/d (mod 3). Then (x, y) is primitive if and only if
d = 1; otherwise (x, y) is a d-fold iterate of the primitive (x/d, y/d).
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Although d is difficult to compute, it is remarkably easy to check for
primitivity.

Theorem 7. An orbit (x, y) ∈ ΓO is primitive if and only if either

(1) gcd (x, y) = 1 or
(2) (x, y) = (3a, 3b), gcd (a, b) = 1 and a 6≡ b (mod 3) for some

a, b ∈ N∪{0} .

Proof. If gcd (x, y) = 1, the orbit (x, y) is primitive. On the other hand,
if (x, y) = (3a, 3b), a 6≡ b (mod 3) and gcd (a, b) = 1 for some a, b, let d
be as in Lemma 2. Then d 6= 3 since a 6≡ b (mod 3) But gcd (a, b) = 1
implies d = 1 so (x, y) is also primitive when either (1) or (2) holds. �

Example 1. Using Theorem 7, the reader can check that the following
orbits of period 2n are primitive:
• n = 2k + 1, k ≥ 1 : (k − 1, k + 2)
• n = 2 : (1, 1)
• n = 4k + 4, k ≥ 1 : (2k − 1, 2k + 5)
• n = 4k + 10, k ≥ 1 : (2k − 1, 2k + 11).

Since Corollary 5 asserts that there are no primitive orbits of period 2,
8, 12 or 20, Example 1 exhibits a primitive orbit of every possible even
period.

5. Concluding Remarks

Many interesting open questions remain; we mention three:

(1) What can be said if the equivalence relation on the set of all periodic
orbits defined above were defined more restrictively? For example, one
could consider an equivalence relation in which equivalent orbits have
cycles of incidence angles that differ by a cyclic permutation.

(2) Every isosceles triangle admits a period 4 orbit resembling (1,1)
and every acute triangle admits an orbit of period 6 resembling (0,3).
Empirical evidence suggests that every acute isosceles triangle with
base angle at least 54 degrees admits an orbit of period 10 resembling
(1,4). Thus we ask: To what extent do the results above generalize to
acute isosceles triangles?

(3) Define OO(n) =
∑

n

i=1 O(n) and PP(n) =
∑

n

i=1 P(n). Inspection
of graphs suggests that O(n) and P(n) grow linearly while OO(n) and
PP(n) are approximately quadratic (see Figures 11 and 12). Den-
nis DeTurck asked: Are O(n) and P(n) in some sense derivatives of

OO(n) and PP(n)? Furthermore, note that QQ(n) = PP(n)
OO(n)

< 1.

Does lim
n→∞

QQ(n) exist? If so, this limit is the fraction of all periodic

orbits (counted by O) that are primitive.
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Figure 11. Graphs of O(n) and P(n)
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Figure 12. Graphs of OO(n) and PP(n).
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helpful suggestions in Sections 1-3. We thank each of these individuals
for their significant contributions.
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7. Appendix

n 2n O(n) P(n)
1 2 0 0
2 4 1 1
3 6 1 1
4 8 1 0
5 10 1 1
6 12 2 0
7 14 1 1
8 16 2 1
9 18 2 1
10 20 2 0
11 22 2 2
12 24 3 1
13 26 2 2
14 28 3 1
15 30 3 1
16 32 3 1
17 34 3 3
18 36 4 1
19 38 3 3
20 40 4 2
21 42 4 2
22 44 4 1
23 46 4 4
24 48 5 1
25 50 4 3
26 52 5 2
27 54 5 3
28 56 5 2
29 58 5 5
30 60 6 2

n 2n O(n) P(n)
31 62 5 5
32 64 6 3
33 66 6 3
34 68 6 2
35 70 6 4
36 72 7 2
37 74 6 6
38 76 7 3
39 78 7 4
40 80 7 2
41 82 7 7
42 84 8 2
43 86 7 7
44 88 8 4
45 90 8 4
46 92 8 3
47 94 8 8
48 96 9 3
49 98 8 7
50 100 9 4
51 102 9 5
52 104 9 4
53 106 9 9
54 108 10 3
55 110 9 6
56 112 10 4
57 114 10 6
58 116 10 4
59 118 10 10
60 120 11 2

Table 1. Sample Values for O(n) and P(n).
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