
Math 456: Dynamics and Geometry of Chaos Fall 2024
Lab 3: Period-doubling and the appearance of chaos
Deadline: 16 December

The ordinary-sized stuff which is our lives—clouds–daffodils–waterfalls–and what
happens in a cup of coffee when the cream goes in—these things are full of mystery,
as mysterious to us as the heavens were to the Greeks. We’re better at predicting
events at the edge of the galaxy or inside the nucleus of an atom than whether it’ll
rain on auntie’s garden party three Sundays from now.

—Tom Stoppard, Arcadia

Reminders

• Save your work every time you enter new material in a cell and before you send it to the
kernel for evaluation.

• Your submission should contain responses to the Notebook exercises. Every cell (or
sequence of cells) in your worksheet should have, at least, a preceding comment that
briefly describes the cell’s content and what the outcome means.

• You can develop your code and write your report with a partner. Submit one notebook
for the group. Include the names of group members at the top of the notebook.

• Submit to the Beachboard dropbox one worksheet file named yourlastname lab#.nb.
Include the names of all group members.

• To reduce the size of the file, use the Delete all output facility under Cell on the drop-down
menu.

• The Wolfram Documentation facility is accessible in the Help menu.

• Mathematica code appears in typewriter font.

Task

Write a program that graphically indicates the attracting periodic cycles for the logistic family

ℓa(x) = a x (1− x) 0 < a ≤ 4.

Specifics

Following the critical point. Every map ℓa has one critical point: 1
2 (−∞ can be thought

of as a superattracting fixed point). The following result tells us that, for 0 < a ≤ 4, ℓa can
have only one periodic attracting orbit. When a > 4, 1

2 belongs to the “basin of −∞ and there
are no attracting periodic points in [0, 1].

Fact. If (a1, . . . , am) is an attracting periodic cycle for ℓa, the critical point 1
2 belongs to the

cycle’s basin of attraction.

Thus, we can detect a finite attractor of ℓa (if it has one) by examining only the orbit of
c = 1

2 for values of a ∈ (0, 4].



First, for a given value of a, we compute the first k elements of the trajectory of c:

{c, ℓa(c), ℓ2a(c), . . . , ℓka(c)}.

If we compute a long sequence of iterates, we expect the trajectory to be near a periodic
attracting cycle (if one exists)

(b1, b2 = ℓa(b1), . . . , bn = ℓa(bn−1), ℓa(bn) = b1).

To make a picture of this, we could compute, say, the first 300 elements of the orbit of c, then
ignore the first 200 elements of the orbit, and finally plot the points

La = (a, ℓ201a (c)), (a, ℓ202a (c)), . . . , (a, ℓ300a (c)).

Here, we’re thinking of the horizontal axis as a parameter space—where points correspond to a
value of the parameter a. The vertical axis corresponds to points in the dynamical space—where
the trajectory of c lives. If, for a given value of a, there is a periodic attracting cycle whose
length is less than 100, this set of points should indicate it. For instance, when a = 2, there is
an attracting fixed point (namely, c). Thus, the list L0 consists of 100 points each of which is
very close to (2, 12). As a increases above 3, an attracting cycle

(b1 = ℓa(b2), b2 = ℓa(b1))

of period two appears. In this case, La should be a list of 100 points that are close to the pair

(a, b1), (a, b2).

The procedure For a specific value of a, you can use your iteration procedure to produce the
first 300 points in the orbit of c. Table or Take or Drop allow you to select the last 100 iterates.
The idea is to start at a = 0, compute the list L0, then increment a by a small amount ∆a and
compute L0+∆a, and so on.

To start off, use a “large” value for ∆a, say, .1. Once you get the thing working, then you
can use smaller values—.001 might be as small as you want to go. For an increment this small,
Mathematica will likely take several minutes to make the lists.

Now, Mathematica doesn’t see this list of lists as a bunch of points to be plotted. You can
use

ListPlot[list-of-points ]

to create graphics objects that Show[lists-of-pointplots ] will display in one coordinate
space. (Use a semi-colon at the end of the ListPlot line so that Mathematica doesn’t display
these lists.) You can specify the size of a point that Mathematica plots by setting the PlotStyle
option with PointSize—in ListPlot.

Interpreting the picture You should now have a strange looking picture (called a bifurcation
diagram) that, starting on the left (at a = 0) and moving right, shows a curve that splits into two
each branch of which then splits into two, etc. This accounts for the term “period-doubling.”
Eventually, the image seems to be full of points in many places. Remember what this image
represents: corresponding to each value of a on the horizontal axis there is a set of “vertical”
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points that reveal an attracting cycle for the map ℓa. The length of this cycle might be very
long; so, there might be a large number of points plotted. (Of course, you’re limiting the number
to 100, but you could use more points.) As an example, for values of a between 0 and 3 there’s
only one point plotted. This tells you that there’s an attracting fixed point for those maps.
Also, notice that that “curve of fixed points” indicates that the family ℓa is continuous in the
parameter a.

Notebook exercises

1) Use the bifurcation diagram to estimate the value of a for which an attracting cycle of
length four appears. (Meaning: attracting points that have period four.) You can check
this either analytically or by plotting the graph of l2a.

2) You should be able to see vertical strips that are somewhat empty. What approximate
interval (α, β) of a values corresponds to the most prominent such “window?” Using the
same step-size ∆a as before (.001 should be adequate), plot a bifurcation diagram on
(α, β). That is, start with a = α and repeatedly increment a by ∆a until you reach β.
Interpret the resulting picture. What does it tell you about the maps for values of a
between α and β?

3) By zooming in on the original bifurcation diagram, find a value of a for which ℓa has an
attractor with period three. You can find an approximate value for a when a 3-cycle first
appears by animating the graph of ℓ3a and looking for the appearance of a fixed point.
By magnifying the bifurcation diagram at this value of a, estimate the range of a values
for the period-doubling cascade that follows on from this 3-cycle—that is, the range for
cascade of attracting cycles of length 2k3.

4) Zoom in to estimate the value of a where the attracting 2k-periodic points accumulate.
What must happen in the family ℓa before the appearance of the next cascade of attracting
periodic cycles? What period of attracting cycle appears just after powers-of-2 cycles?
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