
Math 456 Fall 2024
Lab 1: Iteration in one dimension
Deadline: 4 October

She started with an equation and turned it into a graph. I’ve got a graph—real
data—and I’m trying to find the equation that would give you the graph if you
used it the way she’s used hers. Iterated it.

—Tom Stoppard, Arcadia

Reminders

• Save your work every time you enter new material in a cell and before you send it
to the kernel for evaluation.
• Your submission should contain responses to the Notebook exercises. Every cell (or

sequence of cells) in your worksheet should have, at least, a preceding comment—in a
dedicated text cell—that briefly describes the evaluation cell’s content and what the
outcome means.
• You can develop your code and write your report with a partner. Submit one notebook

for the group. Include names of group members at the top of the notebook.
• Submit by email one notebook file named yourlastname lab#.nb

• To reduce the size of the file, use the Delete all output facility under Cell on the
drop-down menu.
• The Wolfram Documentation facility is accessible in the Help menu.
• Mathematica code appears in typewriter font.

Task

Write a program that will iterate a one-dimensional map for an arbitrary starting point.

Making an iterator

What you want to create is a procedure whose input is

1) a map f(x)

2) a starting point x0

3) a number n of iterations that produces the partial orbit

x0, x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1).

A standard way to do this is by means of a loop. The loop commands Do or NestList

are appropriate for the task at hand. Using Do, you can make a list orb in which the next

element of the list is f applied to the current element. That is, if you call your list of
iterates orb, the kth element is designated orb[k] and you can set

orb[k+1] = f(orb[k]).

The routine

Do[such-and-such, {k,kStart,kStop }]

says

Implement such-and-such (which depends on an index k) for values of k starting
at kStart, ending at kStop, and incrementing by one after each implementation.

In the case of iteration, the such-and-such that you want to do is apply f to x0 n times.
A nice outcome is to produce a routine, called iterate[f ,x0 ,n] where f, x0, and n

respectivley stand for the map, initial point, and number of iterations.
Now, use Do or NestList to create such an iteration procedure. A good programming

practice is to build the procedure for a specific and simple map and, after it’s working,
modify it to deal with maps in general. The output of your procedure should be a list of
values that give the first n points in the orbit of x0. To do this efficiently, you should add
the next iterate xn+1 to the list

{x0, x1, . . . , xn}

that you already have. You don’t want to compute every value in the trajectory for each
iteration. One way to achieve this result is to place the orbit elements orb[k] into a list
using

Table[orb[k], {k,kStart,kStop }].

To speed up calculations, use decimal expressions for numbers. The command N[number]

converts an exact expression into a decimal. For example,

N[1/4]=.25 N[Sqrt[2]] = 1.41. . . .

2

Notebook exercises

Iterate the following maps. Compute some trajectories and see what happens. Conduct
experiments to explore the following issues. Plot the graph of each map. Are there subsets
of R that map into themselves? How can you tell? By experimenting with a variety of
starting points, try to find attracting points. Are there trajectories that aren’t attracted
somewhere? One thing to check are the fixed points. You can use Mathematica to compute
the fixed points. (Check out Solve and NSolve.) Is a given fixed point attracting? Re-
pelling? Neither? Use both theory and experiment to describe the global dynamics. Make
comparisons between maps where appropriate.

1) x −→ x2 − 1

2) x −→ 1
2 (x + 1

x)

3) x −→ x2 + x

4) x −→

{
x sin (1x) x ∈ [−1, 1]− {0}
0 x = 0

5) x −→ f(x) = your choice (make it interesting, but simple enough to analyze).

3

