Exam 3 Math 444 Fall 2024 Due: Wednesday, 18 Dec

- Write concisely and clearly. Submit your work to the Canvas drop box.
- You can work with a partner–submit one paper for the group.
- Papers written in LaTeX will receive a 5% bonus.
- *Ethic*: In completing this exam, you should not consult other sources—excepting the text and instructor. The work represented by what you (and your group) submit should be entirely your own.

1 Orthogonal matrices (10 points)

A square matrix A is *orthogonal* when $AA^T = I$ where A^T is the transpose of A and I is the identity matrix. Let O_n be the set of $n \times n$ orthogonal matrices.

- a) Establish that O_n is a subgroup of the invertible $n \times n$ matrices GL_n .
- b) Show that the determinant of an orthogonal matrix is either 1 or -1.

Suggestion: Recall the homomorphism property of the determinant:

$$\det (AB) = \det A \det B.$$

- c) Let SO_n be the orthogonal matrices whose determinant is 1. Show that SO_n is a normal subgroup of O_n .
- d) Describe the quotient group O_n/SO_n . Use the first isomorphism theorem to find a group to which the quotient group is isomorphic.

2 Groups of order p^2 when p is prime (20 points)

Let p be a prime number and let G be a group with $|G| = p^2$. The task is to show that G is either cyclic or isomorphic to $\mathbf{Z}_p \times \mathbf{Z}_p$. So, suppose that G is not cyclic.

- a) Let $a \neq e$ be some element of G and $A = \langle a \rangle$. What's the order of A?
- b) Consider the cosets of A:

$$G/A = \{A, g_2A, \dots, g_nA\}$$

What's the value of n?

c) Let $\phi: G \to S_n$ (S_n is the symmetric group) be defined by

$$\phi(x)(g_k A) = xg_k A.$$

Show that ϕ is a homomorphism and that $\phi(x)$ is a permutation on G/A for all $x \in G$.

d) Argue that the only two possibilities for the kernel of ϕ are 1) ker $\phi = A$ or 2) ker $\phi = \{e\}$. But, case 2) implies that ϕ is injective. Compare the order of $\phi(G)$ to the order of S_n and show that ϕ can't be injective.

Now conclude that A is a normal subgroup of G.

e) Let $b \in G - A$. What's the order of b? Since A is normal,

$$bab^{-1} = a^k \tag{1}$$

for some k such that $1 \le k \le |a| - 1$.

f) By a similar line of reasoning, the subgroup $B = \langle b \rangle$ is also normal in G so that for some m such that $1 \le m \le |b| - 1$,

$$aba^{-1} = b^m. (2)$$

Recall the orders of $\langle a \rangle$ and $\langle b \rangle$. Use equations (1) and (2) to derive

$$a^{k-1}b^{m-1} = e$$

Why does this condition imply that

$$k - 1 = m - 1 = 0?$$

Now, conclude that ab = ba.

g) By considering *all* of the products $a^i b^j$ exhibit an isomorphism so that $G \simeq \mathbf{Z}_p \times \mathbf{Z}_p$.