Exam 1Math 444Fall 2024Deadline: Friday, 8 Oct

- Write concisely and clearly. Submit your work to the Canvas drop box.
- You can work with a partner–submit one paper for the group.
- Papers written in LaTeX will receive a 5% bonus.
- *Ethic*: In completing this exam, you should not consult other sources—excepting the text and instructor. The work represented by what you (and your group) submit should be entirely your own.

1 Group multiplication tables

For each of the following cases, can the table be the multiplication table of a group? If not, give a reason. If so, show that it is.

		a	b	c	d				a	b	c	d			a	b	c	d
	a	a	b	c	d			a	a	b	c	d		a	a	b	c	d
a)	b	b	a	d	c		b)	b	b	d	a	c	c)	b	b	c	d	a
	c	d	c	a	b		c	c	a	d	b		c	c	d	a	b	
	d	c	d	b	a			d	d	c	b	a		d	d	c	b	c

d) Note: Here, e does not signify the identity element. It's just an abstract element.

	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	c	a	e	f	d
c	c	d	b	f	a	e
d	d	e	f	a	b	c
e	e	f	d	b	c	a
f	f	a	e	c	d	b

2 Groups of order two and three.

- a) Prove that, up to isomorphism, there is only one group with two elements.
- b) Prove that, up to isomorphism, there is only one group with three elements.

Suggestion: Work with multiplication tables.

3 Groups whose elements have order two

Suppose that G is a group in which every non-identity element has order two. Show that G is commutative.

4 Cyclic group properties

Consider $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$ under addition mod n.

- a) Show that an element k is a generator of \mathbf{Z}_n if and only if k and n are relatively prime.
- b) Is every subgroup of \mathbf{Z}_n cyclic? If so, give a proof. If not, provide an example.