|
The Shergotty-Nakhla-Chassigny Meteorites
This lab has the following objectives:
-
to familiarize you with the "SNC" or "snick" meteorites on Earth thought to
have come from Mars
-
to build understanding of the evidence for and controversy around the
possibility of biotic activity on these meteorites
Background
Meteoroids are small chunks of rock and/or metal travelling through
space in their own orbits around the sun. They are smaller than asteroids,
many in the gravel to pebble range. They are often the product of asteroids
breaking up due to impacts with other asteroids or other impactors. Some of
them are materials broken off from comets, the moon, or ... Mars, again due to
impacts, impacts large enough to impart escape velocity to the debris.
Meteors are meteoroids that have entered the earth's atmosphere,
where their outer layers heat and ablate due to friction with the earth's
atmosphere, creating an incandescent or glowing streak in the night sky.
Meteors are often called "shooting stars," and a concentration of them over a
one or two night period is called a "meteor shower." Meteor showers are the
result of Earth's orbit crossing the orbit of a comet, often one broken into a
debris stream strewn across its orbit.
Meteorites are meteors that are large enough to survive the loss of
sizable amounts of material during the trip through the atmosphere, the
remnant crashing on the earth's surface. Recovered meteorites have been
classified into three basic types, based on their composition and presumed
formation and history:
- iron meteorites, thought to be from the cores of asteroids, which had
undergone melting and differentiation early in their histories (iron, nickel,
with some small amounts of sulfide and carbide)
- stony-iron meteorites, roughly half and half.
-
Some, called pallasites,
may have come from the interior of differentiated asteroids, from the zone of
contact between the iron core and the olivine and silicate mantle above it
(this theory is contested, however).
-
Others, called mesosiderites, are
thought to result from the collision and intermixing of two asteroids,
preserving some bits from either parent asteroid.
- stony meteorites are by far the most common (over 90%).
-
These include
chondrites, the silicate materials in which have never actually melted during
their histories. The resulting material is a grainy mix of silicate droplets
along with grains of sulfides and iron-rich metals. These are the most
primitive, oldest meteorites, forming 4.5 billion years ago at the beginning
of the solar system.
-
Achondrites are the second type of stony meteorite. They
are comprised of mineral melts, magmas, and are, essentially, igneous rocks.
These clearly show signs of having come from a differentiated body, whether a
melted and density-layered asteroid or the moon or Mars.
This lab is about a distinctive type of achondrite, the "SNC" or "snick"
meteorites. They are named for the three meteorite falls that defined their
characteristics:
- Shergotty, which fell on Bihar State, India, on 25 August 1865 -- comprised of basalt, an extrusive igneous rock of mafic composition (sometimes
it's more of a gabbro or intrusive igneous rock) rich in olivine and
plagioclase, which can only form on a differentiated planet-sized body
- Nakhla, which hit the El-Baharnya region in Egypt on 28 June 1911 and
killed an unfortunate dog -- a clinopyroxenite dominated rock, another very
mafic igneous rock type
- Chassigny, which struck Haute-Marne province in France on
3 October 1815 -- comprised of dunite, an ultramafic intrusive igneous rock
typical of deep mantle rock
These are known to be Martian in derivation. It's up to you to figure out
why.
ALH 84001 is the one that's been the focus of so much debate and speculation
about the possibility of life on Mars. It was the first (001) meteorite found
in 1984 by the Antarctican team picking up rocks in the Allen Hills area.
Your "data"
-
The ages of the SNC meteorites in comparison with the ages of the chondrites,
determined using the samarium-neodymium (Sm-Nd) radioactive isotope decay
system
-
The age of Nakhla 1911 (when the material comprising it crystalized)
-
The age of water exposure of Nakhla 1911 (clays)
-
The age of ALH 84001
-
The cosmic-ray exposure rate for ALH 84001, which tells the amount of time it
spent in space from the time of its launch to the time of its arrival on Earth
(judged by Helium [3He], neon [21Ne], and Argon
[38Ar] isotopes)
-
The gasses found in the SNC meteorites:
- bubbles of
gas trapped in the meteoroids during the impact shock that launched them,
which entailed the solidification of impact melted glasses, together with the
gasses that hadn't escaped the melt
- not all SNCs show signs of impact shock, but they do share certain
distinctive oxygen isotope (16O, 17O, and
18O) mixes
-
The ratios of
aluminum:silicon plotted against the ratios of magnesium:silicon for
ultramafic Earth rocks, ultramafic Mars rocks sampled by Spirit and
Opportunity, and various SNCs
-
The maximum velocity that an impact shock can impart to a chunk of planetary
rock without actually vaporizing it.
-
The escape velocity from the surface of Mars and of the earth
-
Tunnel
structures in the Nakhla 1911 meteorite
-
Images that look
like Earth nanofossils of bacteria
-
The relative sizes of Earth and Mars "nanofossils"
A few helpful resources
Lab report
Answer the following questions on a separate sheet of paper with question
numbers indicated. Don't forget to autograph it!
- How old are most SNC meteorites?
- How old is the Nakhla 1911 meteorite (and don't tell me 95 years old!)
- When in Nakhla's history was it exposed to water? Explain.
- How old is the ALH 84001 meteorite? Explain.
- When was ALH 84001 launched from Mars' surface? Explain.
- What is the maximum velocity that an impact shock can impart to a hapless
rock without actually vaporizing it to Kingdom Come?
- What is the escape velocity for something to be launched off Mars?
- What is Earth's escape velocity?
- Now, considering your responses to the previous three questions, is it
likelier for a meteoroid to be launched from Earth and get to Mars (and, thus,
maybe carry life there) or for it to be launched from Mars and get to Earth
(hmmmm, and maybe carry life or protolife here)? Explain your choice.
- Briefly describe the the tunnel structures in Nakhla 1911 (size,
relationship to fractures in rock) and their significance in the ongoing
debate about possible signs of life in the SNC meteorites?
- Briefly describe the ALH 84001 structures that some argue are signs of
microbes. What is their general chemical composition and size range and where
in the meteorite are they found (there are large proportions of the meteorite
made up of carbonate globules and orthopyroxenites, together with fused black
glass on the surface probably from the launch event)?
- How do these structures compare in size with Earth bacterial nanofossils?
- What other peculiar chemical was found in association with the
fossil-like structures?
- Briefly summarize the case for Martian microbial life evidence in ALH
84001 and Nakhla 1911.
- Briefly summarize the arguments made to debunk this case.
|
|